
Hyperon axial charges in two-flavor chiral perturbation theory

Fu-Jiun Jiang1,* and Brian C. Tiburzi2,†

1Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern, Switzerland
2Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,

College Park, Maryland 20742-4111, USA
(Received 12 May 2009; published 21 October 2009)

We use two-flavor heavy baryon chiral perturbation theory to investigate the isovector axial charges of

the spin one-half hyperons. Expressions for these hyperon axial charges are derived at next-to-leading

order in the chiral expansion. We utilize phenomenological and lattice QCD inputs to assess the

convergence of the two-flavor theory, which appears to be best for cascades.
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I. INTRODUCTION

The low-energy structure of hadrons is notoriously dif-
ficult to describe quantitatively, because the underlying
QCD dynamics is nonperturbative. Fortunately numerical
simulation of QCD on Euclidean spacetime lattices allows
first principles study of hadrons [1]. Impressive strides
continue to be made, as algorithmic advances in conjunc-
tion with expanded computing resources have put lattice
methods in reach of physical predictions. Chiral perturba-
tion theory (�PT) [2,3] continues to aid the extraction of
physical quantities from lattice QCD. �PT is an effective
low-energy description of QCD based on symmetries, and
allows for quark-mass and lattice volume dependence of
certain low-energy QCD observables to be addressed in a
model-independent fashion.

An effective description of low-energy QCD is possible
provided a systematic power counting can be established to
order the infinite terms in the �PT Lagrangian. An SUð2Þ
chiral expansion is better suited for this task compared to
SUð3Þ, because the eta mass squared m2

� is not particularly

small compared to the square of the chiral symmetry break-
ing scale �2

�. The inclusion of baryons can be done sys-

tematically by treating the baryon mass MB as a large
parameter [4,5]. An SUð2Þ expansion for baryons is ex-
pected to be more effective than SUð3Þ, because the latter
expansion contains terms that scale linearly with
m�=MB � 0:5. Recent lattice QCD results, moreover, em-

pirically indicate trouble with SUð3Þ expansions [6–8]. For
the nonstrange hadrons, SUð2Þ �PT has long been utilized;
while for strange hadrons, two-flavor expansions have been
rather limited until recently [9–13].

In this work, we compute the isovector axial charges of
hyperons utilizing SUð2Þ heavy baryon �PT. Phe-
nomenologically these charges enter the p-wave ampli-
tudes for nonleptonic weak decays of hyperons, where a
long-standing puzzle persists. These charges also play an
important role in the convergence of �PT, because the

pion-baryon loop diagrams are generated from the axial
couplings in �PT. Recent fully dynamical lattice QCD
calculations of the nucleon axial charge [14,15] have
been accompanied by the first calculation of hyperon axial
charges [16]. Comparing the axial couplings obtained,
gA � 1:2, g�� � 0:8, and g�� � 0:2, suggests better con-
vergence of �PT with increasing strangeness quantum
number. Using phenomenological and lattice QCD inputs,
we verify this pattern of convergence for the axial charges.
Furthermore, we find that the empirical quark-mass ex-
trapolation used in [16] is consistent with our SUð2Þ for-
mula for the cascade (and possibly for the sigma). Thus we
expect �PT can be used for a controlled extrapolation of
data at smaller pion masses. For the nucleon, the situation
is less clear.

II. HYPERON AXIAL CHARGES

The isovector axial charges of spin- 12 hyperons are de-

fined from axial-vector matrix elements. For the isodoublet
of quark fields Q ¼ ðu; dÞT , the isospin-raising axial cur-
rent in QCD is written as Jþ�;5 ¼ �Q���5�

þQ, where �þ ¼
�1 þ i�2. The axial charges G�� and G�� and the charge
of the axial transition G�� are defined from the rest-frame
matrix elements

h�0ð0ÞjJþ�;5j��ð0Þi ¼ 1ffiffiffi
2

p G�� �u�ð0Þ���5u�ð0Þ;

h�ð0ÞjJþj;5j��ð0Þi ¼ 1ffiffiffi
6

p G��ð�2
��Þ �u�ð0Þ�j�5u�ð0Þ;

h�0ð0ÞjJþ�;5j��ð0Þi ¼ G�� �u�ð0Þ���5u�ð0Þ: (1)

In the case of the transition matrix element, the �-� mass
splitting leads to nonvanishing energy transfer ��� ¼
M� �M�. We have taken the jth spatial component of
the �-� axial current to eliminate the contribution from
the pseudoscalar form factor. The axial charge of the
transition is defined by the axial form factor at vanishing
four-momentum transfer G�� ¼ G��ð0Þ. There are addi-
tional nonvanishing hyperon matrix elements of Jþ�;5, but

these are related to those given in Eq. (1) by isospin. Our
normalization conventions are those in [17].
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To compute the axial charges G��, G��, and G��, we
utilize two-flavor �PT for the S ¼ 1 and S ¼ 2 hyperons
[12]. At leading order in the chiral and heavy baryon
expansions, the axial current is matched onto the operator

Jþ�;5 ¼
ffiffiffi
2

3

s
g��½trð ��S��þÞ�þ �� trðS��þ�Þ�

þ g�� trð ��½�þ;��Þ þ 2g��ð ��S��
þ�Þ: (2)

We have omitted a surface term for the �-� transition
current [11], as it only contributes to the pseudoscalar form
factor. The leading-order current produces the axial
charges: G�� ¼ g��, G�� ¼ g��, and G�� ¼ g��.
Notice we employ lowercase letters for the chiral limit
values of the axial couplings, and uppercase letters for
the axial charges. At leading order, the two are identical.

Beyond leading order, there are chiral corrections to the
axial currents arising from local terms and long-distance
pion loops. The local corrections arise from the next-to-
leading order (NLO) axial current operator that depends on
unknown low-energy constants that we label A��, A��,
and A��. In the isospin limit, this operator has a form
identical to that in Eq. (2) with the replacement gBB0 !
ABB0m2

�=�
2
�, where �� ¼ 2

ffiffiffi
2

p
�f is the chiral symmetry

breaking scale, and f ¼ 132 MeV is the pion decay con-
stant. The unknown parameters are expected to be of
natural size. Pion loop contributions give rise to the long-
distance corrections to axial current matrix elements.
These loops are generated from vertices in the hyperon
chiral Lagrangian; and, at this order, the pion-hyperon
coupling constants are just the chiral limit axial couplings.
Additional nonanalytic dependence on the pion mass arises
from including the nearby spin- 32 resonances. These con-

tributions are important in light of lattice applications
because the lattice pion masses are not considerably
smaller than the spin- 32–spin-

1
2 mass splittings. The requi-

site one-loop diagrams generated from spin- 12 and spin- 32
pion-hyperon interactions are depicted in [17]. As dis-
cussed in [18], there is potentially a problem with includ-
ing the�� due to the kaon-nucleon threshold. Investigation
of the relevant SUð2Þ expansion parameter, however, sug-
gests that the threshold can be adequately described by
terms analytic in the pion mass squared, but nonanalytic in
the strange quark mass. Thus we include the �� baryons.
Combining results of the tree-level and one-loop com-

putations at NLO, we arrive at the following expressions
for the hyperon axial charges:

G�� ¼ g�� þ 1

�2
�

�
A��ð�Þm2

� � ð7g3
��

þ 4g��ÞJ ð0; �Þ þ 2

3
g��g

2
��Kð����; �Þ þ 8

3
g��g

2
���Kð���� ; �Þ

� g��g
2
��J ð����; �Þ � 8

3

ffiffiffi
2

3

s
g���g��g���Ið����;���� ; �Þ �

�
10

9
g���� þ 4g��

�
g2���J ð���� ; �Þ

�
; (3)

G�� ¼ g�� þ 1

�2
�

�
A��ð�Þm2

� � 4g��J ð0; �Þ � 6g��g
2
���J ð���� ; �Þ þ 2g��g

2
��Kð���; �Þ � 3g��g

2
��J ð0; �Þ

� 1

3
g3
��

Ið���;����; �Þ � 8

ffiffiffi
2

3

s
g��g���g���Kð���? ; �Þ þ 20

3

ffiffiffi
2

3

s
g����g���g���Ið���� ;���� ; �Þ

� 2g��g
2
���J ð���� ; �Þ � 3

2
g3
��

J ð���; �Þ � 1

2
g3
��

J ð����; �Þ þ 8

3
g��g

2
���Ið���� ;����; �Þ

� 8

3
g��g

2
���Ið���;���� ; �Þ

�
; (4)

G�� ¼ g�� þ 1

�2
�

�
A��ð�Þm2

� � 4ð2g3
��

þ g��ÞJ ð0; �Þ �
�
6g�� þ 10

9
g����

�
g2
���J ð���� ; �Þ

� 8

3
g��g

2
���Kð���� ; �Þ

�
: (5)

The nonanalytic functions appearing above can be expressed in terms of a function F ðm�; �;�Þ, namely,

Ið�1; �2;�Þ ¼�2

3

1

�1 ��2

½F ðm�;�1;�Þ�F ðm�;�2;�Þ�; J ð�;�Þ ¼ Ið�;�;�Þ; Kð�;�Þ ¼ Ið�;0;�Þ ¼ Ið0; �;�Þ;

with the pion mass dependence kept implicit. Any terms analytic in the pion mass squared are subsumed into the local
contribution. Furthermore we add to the Lagrangian the appropriate terms to preserve the chiral limit values of the axial
couplings. Accordingly the loop corrections vanish in the chiral limit F ð0; �;�Þ ¼ 0; see e.g. [19] for the explicit
expression for F ðm;�;�Þ. The various couplings and mass splittings that also appear in the NLO expressions will be
discussed below.
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III. PION MASS DEPENDENCE

We use both physical and lattice QCD inputs to explore
the pion mass dependence of the hyperon axial charges in
two-flavor �PT. Ideally we would use lattice data to study
the pion mass dependence of the axial charges and deduce
the unknown couplings (and potentially indirectly verify
values of known couplings). Armed with knowledge of
these parameters, we could diagnose the behavior of
SUð2Þ expansions in each strangeness sector, extrapolate
the lattice data to the physical pion mass, etc. The first
calculation of hyperon axial charges [16] is fortunately
fully dynamical so that contact with QCD can in principle
be made. The study is limited, however, notably by two
conditions: the pion masses lie in the range 350 MeV &
m� & 750 MeV, and a single lattice spacing was used in a
hybrid lattice action employing different fermion discreti-
zations for valence and sea quarks. The former condition
only provides us with data at the lowest pion mass (possi-
bly lowest two masses) for chiral extrapolations.1 The
latter further complicates extrapolation because valence-
sea meson masses are additively renormalized by a non-
negligible amount [23–25], necessitating a partially

quenched treatment.2 Because chiral extrapolation of the
data in [16] would be premature, we pursue a more modest
goal of estimating the pion mass dependence of the axial
charges using input from lattice QCD.
Table I summarizes input used to study hyperon axial

charges. Additionally we compare with the case of the
nucleon axial charge GA.

3 Mass splittings are taken from

TABLE I. Summary of input and output parameters. Cited
lattice values at the physical pion mass are obtained from an
empirical extrapolation unrelated to �PT that describes the data
remarkably well. Without lattice data for the �-� transition, we
assume A��ð��Þ � 0. Estimated values for output parameters

result from using the listed input parameters as well as lattice
data at the lightest valence pion mass m� ¼ 354 MeV [16]. To
use this pion mass, we are neglecting the additive mass renor-
malization of valence-sea mesons due to discretization.

Input parameters Source

� ¼ 290 MeV ��� ¼ 77 MeV Expt.

���� ¼ 270 MeV ���� ¼ 215 MeV

GAð139 MeVÞ ¼ 1:27 G��ð139 MeVÞ ¼ 1:47 Expt.

g�N ¼ 1:48 g��� ¼ �0:91

g��� ¼ 0:76 g��� ¼ 0:69

g�� ¼ �2:2 g���� ¼ �1:47 g���� ¼ �0:73 SUð3Þ [27]
G��ð139 MeVÞ ¼ 0:78 G��ð139 MeVÞ ¼ 0:24Extrap. [16]

Output parameter estimates

gA ¼ 1:18 ANNð��Þ ¼ �12:0

g�� ¼ 0:73 A��ð��Þ ¼ �2:9

g�� ¼ 1:29 � � �
g�� ¼ 0:23 A��ð��Þ ¼ �0:22

0.0 0.1 0.2 0.3 0.4 0.5
0.9

1.0

1.1

1.2

1.3

1.4

m GeV

G
A

g A

0.0 0.1 0.2 0.3 0.4 0.5
0.9

1.0

1.1

1.2

1.3

1.4

m GeV

G
g

0.0 0.1 0.2 0.3 0.4 0.5
0.9

1.0

1.1

1.2

1.3

1.4

m GeV

G
g

0.0 0.1 0.2 0.3 0.4 0.5
0.9

1.0

1.1

1.2

1.3

1.4

m GeV

G
g

FIG. 1 (color online). Pion mass dependence of isovector axial
charges. Stars denote physical inputs, while the points are lattice
QCD results taken from [16], of which the value at the physical
pion mass is obtained from an empirical quark-mass extrapola-
tion, and the lowest mass data are used to estimate chiral limit
couplings and local contributions at NLO. For G�� and G��,
cusps appear at m� ¼ ��� where the � becomes unstable to
strong decay. Below this value, we plot the real part; the
imaginary part is negative and an order of magnitude smaller.

1For the nucleon axial charge, chiral extrapolations have been
carried out including pion masses basically in the same range
[20,21]. We have carried out similar extrapolations for the
hyperons. While high quality fits to the pion mass dependence
of nucleon and hyperon axial charges result, one should question
the remarkable ability of the effective theory to work outside the
range of its applicability. Estimating the size of neglected higher-
order terms casts doubt as to whether the effective theory is
under control for the range of pion masses used. Such error
estimates have been made for nucleon mass extrapolations [22].

2Partially quenched computations exist for the case of three
light valence quark flavors [26].

3For reference, the nucleon axial charge at NLO is given by
[28]

GA ¼ gA þ 1

�2
�

�
ANNð�Þm2

� � 4ð2g3A þ gAÞJ ð0; �Þ

þ 64

9
gAg

2
�NKð�; �Þ � 8

�
gA þ 25

81
g��

�
g2�NJ ð�; �Þ

�
:
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experiment, as are the known axial charges, and spin- 32-to-

spin-12 axial transition couplings. For the spin- 32 axial

charges, we assume SUð3Þ symmetry, and use input values
that are coincidentally not too different from SUð6Þ quark
model predictions. The remaining unknown parameters are
estimated using results from lattice QCD.

With the values obtained, we plot the pion mass depen-
dence of the various axial charges in Fig. 1, where ratios of
each axial charge to its chiral limit value are plotted. As the
ratios are NLO values relative to their LO values, they
thereby give an indication of when the expansion is per-
turbative. Because we set the NLO local contribution for
the�-� transition to zero, we vary it,�4<A��ð��Þ< 0,

with the sign chosen to be consistent with the NLO con-
tributions of the other baryons. To obtain an estimation of
the errors resulting from neglected higher-order terms for
the remaining baryons, we construct a band corresponding
to varying local corrections arising at next-to-next-to-
leading order in the chiral and heavy baryon expansions,
which have the form

�GBB ¼ A0
BBgBB

�BB�m2
�

MB�
2
�

: (6)

The bands arise from the range of values, �2< A0
BB < 2.

For the nucleon, the estimated local term in Table I is
unnaturally large in magnitude, and the curve in Fig. 1 does
not follow the lattice data. This suggests that higher-order
terms are important, or the value of g�� may be different—
this coupling is also not likely under control in �PT [29].
For the �, the estimated local term is 4 times smaller in
magnitude, and the curve better follows the trend in the
lattice data. For the �, the local term is even smaller in
magnitude, and the trend in the lattice data is even better
matched. We conclude that the empirical quark-mass ex-
trapolation performed in [16] is likely consistent with an
SUð2Þ analysis of the � and� axial charges. Furthermore,
it appears that the S ¼ 2 sector has the best convergence
properties. To verify these claims, lattice data at smaller
pion masses are needed. Additionally lattice calculation of
the �-� axial transition will better determine parameters,
as the� and� systems are coupled. Extraction ofG�� can
best be performed with isospin twisted boundary condi-
tions [30].
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