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An on-shell renormalization program for the chargino/neutralino and the sfermion sectors within the

minimal supersymmetric standard model as implemented in a fully automated code, SLOOPS, for the

calculation of one-loop processes at the colliders and in astrophysics, is presented. This is a sequel to our

previous study where an on-shell renormalization of the Higgs (and the gauge/fermion) sector is

performed. The issue of mixing is treated in a unified and coherent manner in all these sectors, in

particular, we give some new insight into the renormalization of the mixing angle in the sfermion sector.

Like with the issue of tan� in the Higgs sector, we discuss different schemes for the mixing in the

sfermion sector. We also perform numerical comparisons between our code SLOOPS and different results

found in the literature. In particular, we consider loop corrections to the neutralino and sfermion masses,

chargino pair production and stau pair production in eþe� colliders as well as a few decays of the heavier

chargino. For all these observables, we analyze the tan� scheme dependence using different definitions of

this parameter and comment on the impact of using different renormalization of the mixing parameter in

the sfermion sector.
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I. INTRODUCTION

The description of the Higgs within the standard model
is unsatisfactory as it poses the problem of naturalness.
Besides, the Higgs particle is still missing. Moreover, there
is overwhelming evidence that there is a large amount of
dark matter that can not be accounted for by any of the
particles of the standard model (SM). All this points to new
physics. The best motivated model of this new physics is
undoubtedly supersymmetry that rests on solid theoretical
grounds and allows for full calculability and therefore
predictions. Full calculability is not, by itself, a sacrosanct
virtue but it must be admitted that supersymmetry ad-
dresses some of the problems of the SM. Indeed, although
the primary motivation for supersymmetry as implemented
in the MSSM, minimal supersymmetric standard model,
was to solve the hierarchy and naturalness problem, it was
soon realized that the model contained an excellent candi-
date for cold dark matter beside incorporating almost
naturally the gauge unification. However, predictions of
the MSSM based on tree-level calculations predict a Higgs
that is lighter than the Zmass. By now, this is ruled out. It is
only through radiative corrections that the MSSM has
survived. Radiative corrections are therefore essential.
Moreover, the next generation of experiments at the col-
liders will reach unsurpassed precision which will need
computations beyond the tree approximation. Extraction of
the cosmological parameters that are used to measure the
relic density of cold dark matter have recently reached an
accuracy that will also soon compete with the accuracy we
have been accustomed to from the LEP era. Precision loop
calculations within the MSSM are therefore a must. It must

be said that quite a lot of these calculations have been
performed, even though the bulk of these have been made
for observables at the colliders and indirect precision mea-
surements such ðg� 2Þ�; b ! s�; . . . . Very little has been

done concerning the cross sections relevant for dark matter
annihilation that enter, for example, a precise prediction of
the relic density. It rests that these calculations have been
done piecemeal and quite often within different renormal-
ization schemes.
One of the reasons that these calculations have been

done piecemeal is that the MSSM, though minimal, still
contains a large number of particles and a very large
number of parameters especially through the soft-
supersymmetry (SUSY) breaking terms, for example.
This explains why different groups have concentrated on
different sectors of the model. Performing loop calcula-
tions with so large a number of parameters and huge
numbers of interactions is an almost untractable task,
especially if one has to be ready to perform precision
predictions for any process or at least a large number of
processes as it occurs, for example, with the calculation of
the relic density where many processes and subprocesses
are at play for a particular choice of parameters. One has to
rely on a fully automatized code for such calculations.
SLOOPS is such a code with an automatization starting

already from the implementation of the model file.
Instead of coding by hand all the Feynman rules, which
usually constitute the model file and realizing that for one-
loop applications one needs to also enter the full set of
counterterms, SLOOPS relies on a much improved version
of LANHEP [1] to automatically generate the model file.
Through LANHEP, one writes the Lagrangian in a compact
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form through multiplets and the use of the superpotential.
The improved version of LANHEP has built-in rules for
shifting fields and parameters thus easily generating the
set of counterterms. This approach therefore takes care of
generating the few thousand Feynman rules for all the
vertices needed for the calculations of any one-loop pro-
cess in the MSSM.

The model file thus generated is interfaced to the bundle
of packages FEYNARTS [2], FORMCALC [3], and LOOPTOOLS

[4] that we will refer to as FFL for short. This code has
recently been used very successfully for the first calcula-
tion of a number of processes that enter the prediction of
the relic density of dark matter [5] as well as some one-
loop induced processes of relevance for indirect detection
[6].

The aim of the present paper is to first give some details
on the renormalization scheme that is implemented in
SLOOPSand, in particular, how the sfermion sector and the

neutralino/chargino sector are treated. This is a follow up
to our paper detailing the renormalization of the Higgs
sector, where apart from the implementation of the scheme
we brought up crucial issues related to the definition of
tan�, the issue of gauge invariance, and the impact of
different schemes on observables in the Higgs sector. The
present paper will also compare one-loop predictions in the
sfermion and chargino/neutralino sector based on different
schemes for tan�. We will also make some interesting
observations and analyses concerning the treatment of
mixing in these sectors, especially how one could define
a process independent mixing angle in the sfermion sector.

The paper is structured as follows. In Sec. II, we give a
brief summary of the renormalization scheme used in the
code for the Higgs sector and the SM-like sector that
includes the gauge and fermion parts. In the same section
we also present a general overview of our approach.
Section III deals with the sfermion sector, both squarks
and sleptons that we use in SloopS. In Sec. IV, we detail
our on-shell renormalization scheme in the chargino/neu-
tralino sector and comment on some alternatives for the
choice of the input parameters. Section V illustrates the use
of the code for some applications. We will give results for
the one-loop corrections to the masses of the heavier
neutralinos and the sfermions that are not used as input
in our schemes. We also present results for the one-loop
calculation of chargino pair production and sfermion pair
production at a linear collider eþe� ! ~�þ

1 ~��
1 and

eþe� ! ~�i �~�j, comparing whenever possible with existing

calculations. Finally, we compare our results with those
of GRACE-SUSY [7], taking as examples a few decay chan-
nels of the heavier chargino for a certain choice of parame-
ters. In all these examples, the tan�-scheme dependence is
also studied thus complementing the scheme dependence
that we studied for observables within the Higgs sector and
for annihilation processes of interest for the relic density
computations. Section VI gives a brief summary and
outlook.

II. RENORMALIZATION: THE GENERAL
APPROACH, THE GAUGE, THE FERMION, AND

THE HIGGS SECTOR

Our renormalization of the MSSM, with CP conserva-
tion with all parameters taken real, follows the same strat-
egy and the same procedure that we adopted for the
renormalization of the standard model, see [8]. In particu-
lar, we strive for an on-shell renormalization of the physi-
cal parameters. Counterterms to these parameters are
gauge independent. Wave function renormalization is in-
troduced in order that the residue of the two-point function,
the propagator, is unity for the physical state on its mass
shell as well as to eliminate any mixing between the
physical fields when these are on shell so that the qualifi-
cation as a physical field is maintained order by order.
Naturally, these field renormalization constants are not
needed if one only requires that the observables of the
S-matrix are finite, but one does not insist that all the
Green’s function to be finite, see [8]. On the technical
side, this field renormalization avoids that one included
in the calculation of matrix elements loop corrections on
the external legs. Moreover, there is no need to consider
field renormalization for the unphysical fields, like the
Goldstones bosons, or on the current fields before mixing.
Talking about the Goldstone fields, a very powerful feature
of SLOOPS is the use and implementation of a nonlinear
gauge-fixing condition [8–10]. The gauge-fixing condition

furnishes eight gauge parameters ð~�; ~�; ~�; ~!; ~�; ~	; ~
; ~�Þ on
which we could perform gauge parameter independence
checks, beside the ultraviolet finiteness checks. The gauge
fixing writes

LGF ¼ � 1

�W

FþF� � 1

2�Z

jFZj2 � 1

2��

jF�j2; with

Fþ ¼
�
@� � ie~��� � ie

cW
sW

~�Z�

�
W�þ

þ i�W

e

2sW
ðvþ ~�h0 þ ~!H0 þ i~	A0 þ i~�G0ÞGþ;

FZ ¼ @�Z0
� þ �Z

e

s2W
ðvþ ~
h0 þ ~�H0ÞG0;

F� ¼ @��
�: (2.1)

As extensively stressed in [8,9], the gauge-fixing term is
considered renormalized. h0 and H0 are, respectively, the
lightest and heaviest CP-even Higgses, A0 is the CP-even
Higgs, G0;� are the Goldstone bosons, and W�, Z, � are,
with obvious notations, the gauge fields. We have
cW � cos�W ¼ MW=M

0
Z.
1 We work with �W;Z;� ¼ 1 in

order not to have to deal with too high a rank tensors
concerning the loop libraries, see [9].

1To avoid clutter, we use some abbreviations for the trigono-
metric functions. For example, for an angle �, cos� will be
abbreviated as c�, etc. . . t� will then stand for tan�.
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Another crucial feature of our renormalization program
is our treatment of the mixing which occurs in all sectors of
the MSSM. In general, fields are expressed in the current
basis. They, however, mix. Physical mass eigenstates fields
are obtained from these current fields through some rota-
tion matrix at tree level. We consistently take, in all sectors,
this matrix to be renormalized and therefore no extra
counterterm is introduced to this matrix. At one loop,
this will still leave some transitions between fields, how-
ever, field renormalization is defined to precisely get rid of
any residual mixing when the physical particles are on
shell. Therefore inducing counterterms for the rotation
matrix is redundant and not helpful.

Let us now briefly recap the renormalization of the
gauge, fermion, and Higgs sector.

A. The fermion and gauge sector

The fermion sector as well as the gauge sector are
renormalized on shell. It means, for example, that the
gauge boson masses MW� and MZ0 are defined from the
pole mass, imposing the one-loop on-shell condition on the
mass counterterms as

�M2
W� ¼ �Re�T

W�W�ðM2
W�Þ;

�M2
Z0 ¼ �Re�T

Z0Z0ðM2
Z0Þ:

(2.2)

The electric charge e is defined in the Thomson limit. Since
the MSSM processes and parameters are taking place at the
weak scale, the effective gauge coupling constant is of
order �ðM2

Z0Þ which includes large logarithms from the

very light standard model charged fermion masses. It is
useful to reparametrize the one-loop corrections in terms of
this effective coupling in order to absorb these large log-
arithms, as we will see later.

B. The Higgs sector

The renormalization scheme and renormalization proce-
dure at one loop in the Higgs sector that we adopt in the
code is detailed in Ref. [9]. The only ingredient that makes
its way from the Higgs sector and the Higgs observables to
the chargino/neutralino sector and the sfermion sector is
the ubiquitous t� and its renormalization. We use the same

notation as in [8]. At tree level, t� is defined by the ratio of

the two vacuum expectation values t� ¼ v2=v1. At one

loop, as pointed out in Refs. [9,11], it is difficult to find a
proper definition for t�. In [9], we critically discussed the

issue of gauge invariance as regards to a different definition
of t� and looked quantitatively at the scheme dependence

introduced by t� in some Higgs observables. We will

extend this investigation in our applications to observables
involving the sfermions and the chargino/neutralinos. We
therefore consider 4 definitions which are detailed in [9].

(i) A�� scheme.
t� is extracted from the decay A0 ! �þ�� to which

the QED corrections have been subtracted. This
leads to a gauge-independent counterterm. In
Ref. [12], the decay of the charged Higgs boson
Hþ into �þ and associated neutrino 
� has been
suggested. This would qualify as a gauge-
independent definition, the advantage of our A0 !
�þ�� is that the full QED corrections can be ex-
tracted most unambiguously.

(ii) MH scheme.
Here, the heaviest CP-even Higgs massMH0 is taken
as input. This definition is obviously gauge indepen-
dent and process independent, but unfortunately we
remarked that it induces large corrections in many
cases.

(iii) DR (dimensional reduction) scheme.
Here, only the ultraviolet part of an observable such
as A0 ! �þ�� (or any other definition but within the
linear gauge, see [9]) is extracted. In this scheme, the
counterterm depends explicitly on a scale ��. This
scale �� is fixed at MA0 .

(iv) DCPR (Dabelstein, Chankowski, Pokorski, and
Rosiek) scheme [13].
�t� is extracted from the A0-Z0 transition at q2 ¼
M2

A0 ,

�tDCPR�

t�
¼ � 1

MZs2�
Re�A0Z0ðM2

A0Þ: (2.3)

The self energy of the A0-Z0 transition at large t� is

dominated by the bottom/tau loops because of the
A0bb vertex which is proportional to mbt� and thus

enhanced when t� becomes large,

�tDCPR�

t�
’ � t�

s2�

g2

c2WM
2
Z

1

4�2
ð3m2

bB0ðM2
A0 ; m

2
b; m

2
bÞ

þm2
�B0ðM2

A0 ; m
2
�; m

2
�ÞÞ: (2.4)

The loop functions B0 is defined in [14]. At large t�,

s2� � 2=t�, the finite part of �t�=t� in the DCPR

scheme is of order t2�. This scheme is not gauge

independent and would depend on some parameter
of the nonlinear gauge, for example. When compar-
ing the results of observables within this scheme, we
will set all nonlinear gauge parameters to zero, i.e.
we will be specializing to the linear gauge.

III. THE SFERMION SECTOR AND ITS
RENORMALIZATION

The sfermion sector comprises the superpartners of the
fermions of the standard model where the interaction fields
are the chiral left and right states. We do not consider
generation mixing. For each generation, the field content

is therefore the doublet ~QL ¼ ð~uL; ~dLÞ and singlets ~uR and
~dR for the squarks. For the sleptons, we have ~EL ¼ ð~
L; ~eLÞ
and ~eR. In case the corresponding Yukawa coupling is zero
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with vanishing fermion masses, we expect no ~uL-~uR and
~dL-~dR mixing so that the physical fields are ~uL, ~uR, and ~dL,
~dR in the squark sector. Let us briefly recall where the mass
parameters of the sfermion sector originate from and how
many can be identified and defined solely within the sfer-
mion sector, once, for example, the Higgs sector and gauge
sector have been identified.

(i) The soft supersymmetry breaking terms

L
~f
soft ¼ �X

~fi

M2
~fi
~f�i ~fi ~fi ¼ ~QL; ~LL; ~uR; ~dR; ~eR

(3.1)

� 
ij

� ffiffiffi
2

p
mu

v2

AuH
i
2
~Qj
L~u

�
R þ

ffiffiffi
2

p
md

v1

AdH
i
1
~Qj
L
~d�R

þ
ffiffiffi
2

p
me

v1

AeH
i
1
~Lj
L~e

�
R þ H:c:

�
: (3.2)

Our conventions for the Higgs doublet and the vac-
uum expectation values of these are defined in [9].
Supersymmetry breaking therefore provides the soft
scalar massesM2

~fi
in Eq. (3.1) and the trilinear scalar

coupling Af parameters in Eq. (3.2) for f ¼ e, u, d of

one generation. The contribution of the latter van-
ishes in the chiral limit where the mass of the fer-
mion mf vanishes. The latter generates not only a

contribution to the mass of the different sfermions
but also contributes to the coupling of the sfermions
to Higgses and Goldstones. As known, because of
the SUð2Þ symmetry, there is only one soft mass
parameter for the up and down left component of
the scalars.

(ii) Sfermion masses get also a contribution from the
usual Yukawa mass terms; these are proportional to
the corresponding m2

f.

(iii) We also get contributions from the supersymmetry
conserving F terms. The FðfÞ contribution does not
mix left and right explicitly (though it is proportional
to the corresponding fermion masses, m2

f). This only

generates couplings to Higgses. The FðH1;2Þ involve
the � parameter and generate supersymmetry con-
serving trilinear scalar coupling. They lead to left-
right mixing which is proportional to mf�.

(iv) There are also D term contributions, chirality con-
serving, proportional to the gauge boson masses.
These give contributions to the sfermion mass terms,
~f ~f , Higgs couplings ~f ~fH, G, and quartic scalar

couplings: ~f ~f ~f ~f and ~f ~fHH. Once the gauge and
Higgs sector have been renormalized, these contri-
butions are also.

These simple observations show that since the Af terms

and � contributions do not act similarly on the mass term
and the Higgs couplings of sfermions, renormalization of
the sfermion two-point functions (mass, mixing, and wave

function renormalization) is not enough to completely
renormalize processes with ordinary standard particles
and sfermions. One needs also to define a renormalization
to the � parameter. This is most conveniently done from
the chargino/neutralino sector. Note, however, that the
Higgs coupling to sfermions can provide an alternative
definition to �.

A. Renormalization of the squark sector

We show in detail the different steps specializing to
those squarks with mixing. The case with no mixing is
then trivial.

1. Fields and parameters at tree level

The tree-level kinetic and mass term for the squarks ~q ¼
~u, ~d are given by

L ~q ¼ � 1

2
@�~q

�
L @�~q

�
R

� � @�~qL
@�~qR

� �
þ ~q�L ~q�R
� �

M2
~q

~qL
~qR

� �
; (3.3)

with the 2� 2 nondiagonal mass matrix

M 2
~q ¼

M2
~qLL M2

~qLR

M2
~qLR M2

~qRR

" #
: (3.4)

The different components of this matrix are

M2
~qLL ¼ M2

~QL
þm2

q þ c2�ðT3
q �Qqs

2
WÞM2

Z; (3.5)

M2
~qRR ¼ M2

~qR
þm2

q þ c2�Qqs
2
WM

2
Z; (3.6)

M2
~qLR ¼ mqðAq ��t

�2T3
q

� Þ: (3.7)

M2
~QL

is the soft-supersymmetry-breaking mass parameter

of the SUð2ÞL doublet, whereas M2
~qR

is the soft-SUSY-

breaking mass parameter of the singlet. T3
q and Qq are

the third component of the isospin and the electric charge,
respectively. M2

~qLR is the mixing parameter that has con-

tributions from both the Higgsino supersymmetry conserv-
ing mass parameters and the trilinear supersymmetry
breaking term. This induces mixing between the left and
right components. This mixing vanishes for sfermions
associated to massless quarks but is important especially
for the third family squarks. Note that this mixing can also
vanish at tree level, even for massive quarks for excep-
tional At ¼ �=t� for stops and Ab ¼ �t� for sbottoms.

If � is to be determined from the chargino/neutralino
sector, this sector involves 5 new parameters, M ~QL

, M~uR ,

M~dR
, Au, Ad and thus requires 5 renormalization condi-

tions. For a physical on-shell renormalization, this requires
trading these Lagrangian parameters with 5 physical pa-
rameters. Owing to SUð2Þ invariance, the soft-breaking
mass parameters M ~QL

of the left-chiral scalar fermions of
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each isospin doublet are identical. Thus, one of the physi-
cal squark masses, say ~u1, could be expressed in terms of
the other masses which will be used as input. The mass of
the ~u1 would then receive a finite shift at the one-loop level.
In order to find the physical fields ~q1;2, we introduce a

rotation matrix R~q such as

~q1
~q2

� �
¼ R~q

~qL
~qR

� �
; R~q ¼ c�q s�q�s�q c�q

 !
: (3.8)

This transformation diagonalizes the mass matrix M2
~q,

M2
~q ¼ R~qM2

~qR
y
~q ¼ diagðm2

~q1
; m2

~q2
Þ; m2

~q1
>m2

~q2
:

(3.9)

The physical masses are expressed in terms of the soft-
SUSY mass terms as

m2
~q1;2

¼ 1

2

�
M2

~qLL þM2
~qRRÞ �

1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

~qLL �M2
~qRRÞ2 þ 4ðM2

~qLRÞ2
q �

: (3.10)

For further reference, it is useful to express s2�q , the

parameter that measures the amount of mixing, in terms
of the Lagrangian mixing parameter and the physical
masses

s2�q ¼
2M2

~qLR

m2
~q1
�m2

~q2

: (3.11)

Note, also the trivial fact that s2�q as expressed through

Eq. (3.11) is regular in the limit m2
~q1
! m2

~q2
since this

necessarily corresponds to no mixing with M2
~qLR ¼ 0. In

this limit, we can take �q ¼ 0. At tree-level, s2�q can be

accessed directly through the ~q1 ! ~q2Z
0 (or Z0� ! ~q1 �~q2)

which is described by the Lagrangian

L ~q1 ~q2Z ¼ igZT
3
f

s2�f
2

ðð~f�1@$~f2 þ ~f�2@
$~f1ÞZ0

�Þ: (3.12)

Provided both parameters �u;d have been determined along

side the physical masses of ~u2, ~d2, ~d1 one determines the
tree-level ~u1 mass

m2
~u1
¼ 1

c2�u
ðc2�dm2

~d1
þ s2�dm

2
~d2
� s2�um

2
~u2

þm2
u �m2

d þ c2�M
2
WÞ: (3.13)

In principle, we could also use all four masses as input and

trade this input with one of the mixing parameters, leading
to

s2�u ¼
c2�dm

2
~d1
þ s2�dm

2
~d2
�m2

~u1
þm2

u �m2
d þ c2�M

2
W

m2
~u2
�m2

~u1

:

(3.14)

Note, however, that the appearance of ðm2
~u2
�m2

~u1
Þ in the

denominator makes this definition subject to large uncer-
tainties especially for nearly degenerate masses of ~u1 and
~u2. The definition from a decay such as ~u1 ! ~u2Z

0, if
open, is more direct. This is reminiscent of our discussion
about the choice of a good definition of the parameter tan�
in [9]. Compared to the case of the neutralino/chargino
system, the extraction of the underlying parameters in
terms of the physical mass parameters is rather trivial. In
fact, the most important underlying parameter to extract
here is Af as this will be needed for the coupling to

Higgses.

2. Counterterms

So far all fields and the parameters of the Lagrangian
should be considered as bare quantities. The bare parame-
ters, for example, labeled as P 0 will now be split into a
renormalized parameter P and its counterterm �P 0.
It is very important to stress that the rotation matrix is

defined as renormalized in our approach. This we have
pursued consistently throughout all the sectors. Therefore
from Eq. (3.8)

~q1

~q2

 !
0 ¼ R~q

~qL
~qR

� �
0
; implies

~q1
~q2

� �
¼ R~q

~qL
~qR

� �
:

(3.15)

This allows us to introduce the wave function renormal-
ization directly on the ‘‘physical’’ fields after rotation to
the mass basis. These field renormalization constants will
be chosen so that one gets rid of the mixing introduced by
the mass shifts, at least one of these physical particles are
on their mass shell. We therefore introduce the following
counterterms

~q i0 ¼
�
�ij þ 1

2
�Z~q

ij

�
~qj; (3.16)

M 2
~q0 ¼ M2

~q þ �M2
~q: (3.17)

The shifts on the parameters induce

�M2
~q ¼

�M2
~QL

þ �ðm2
q þ c2�ðT3

q �Qqs
2
WÞM2

ZÞ �ðmqAqÞ � �ðmq�t
�2T3

q

� Þ
�ðmqAqÞ � �ðmq�t

�2T3
q

� Þ �M2
~qR
þ �ðm2

q þ c2�Qqs
2
WM

2
ZÞ

264
375: (3.18)

After shifting the parameters and the fields, the renormalized self energies for the squarks are given by
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�̂~qi~qjðq2Þ ¼ �~qi~qjðq2Þ þ �m2
~qij

� 1

2
�Z~q

ijðq2 �m2
~qi
Þ

� 1

2
�Z~q

jiðq2 �m2
~qj
Þ: (3.19)

The counterterm �m2
~qij

is connected to the counterterm
�M2

~qij
through the relation

�m2
~qij

¼ ðR~q�M2
~qR

y
~q Þij: (3.20)

3. Constraining the wave function renormalization
constants

The residue condition at the pole for the diagonal self-
energy propagator imposes 4 conditions on the diagonal

wave function renormalization constants, for ~q ¼ ð~u; ~dÞ,
�Z~q

11 ¼ Re�0
~q1 ~q1

ðm2
~q1
Þ; �Z~q

22 ¼ Re�0
~q2 ~q2

ðm2
~q2
Þ:
(3.21)

We impose that no mixing occurs between the two squarks
~q1 and ~q2 when on shell, constraining the nondiagonal
wave function renormalization constants accordingly,

�Z~q
12 ¼

2

m2
~q2
�m2

~q1

ðRe�~q1 ~q2ðm2
~q2
Þ þ �m2

~q12
Þ;

�Z~q
21 ¼

2

m2
~q1
�m2

~q2

ðRe�~q1 ~q2ðm2
~q1
Þ þ �m2

~q12
Þ:

(3.22)

In our approach, the nondiagonal wave functions are not
completely determined at this stage because the mixing
counterterm �m2

~q12
appears in their definitions. It is also

important to point out that unless �m2
~q12

is chosen judi-

ciously these nondiagonal wave functions are ill-defined in
the limit m2

~q1
! m2

~q2
. For further reference it is interesting

to define

�Z~qS
12 ¼ 1

m2
~q2
�m2

~q1

ðRe�~q1 ~q2ðm2
~q2
Þ � Re�~q1 ~q2ðm2

~q1
ÞÞ;

�Z~qA
12 ¼ 1

m2
~q2
�m2

~q1

ðRe�~q1 ~q2ðm2
~q2
Þ þ Re�~q1 ~q2ðm2

~q1
Þ

þ 2�m2
~q12
Þ; (3.23)

such that

�Z~q
12;21 ¼ �Z~qS

12 � �Z~qA
12 : (3.24)

Only �Z~qA
12 is now potentially singular in the limit m2

~q2
!

m2
~q1
. We will come back to this issue when fixing a renor-

malization for �m2
~q12
.

4. Renormalization of the mass parameters, physical
masses as input

The default scheme in SLOOPS takes m~d1
, m~d2

, and m~u2

(the lightest up-type squark) as input parameters consid-

ered to be the physical masses of ~d1, ~d2, and ~u2, respec-
tively. This fixes 3 counterterms

�m2
~d11

¼ �Re�~d1 ~d1
ðm2

~d1
Þ; �m2

~d22
¼ �Re�~d2 ~d2

ðm2
~d2
Þ;

�m2
~u22

¼ �Re�~u2 ~u2ðm2
~u2
Þ: (3.25)

5. Renormalization of the mass parameters, the issue of
the mixing parameter at one loop

To complete the renormalization of the squark sector for
each generation, as we need 5 renormalization conditions,
we have to impose two additional conditions on what
measures the mixing in the up squarks and down squarks

and therefore fixes �m2
~q12

for ~q ¼ ~u, ~d. Once this is fixed,

the remaining heaviest up squark ~u1 mass receives a finite
correction at one loop. One possibility is to define these
mixing parameters through physical observables. One can,

for example, choose the two decays ~d1 ! ~d2Z and ~d1 !
~u2W

� as inputs, provided they are open. This is within the
spirit we have followed to define a gauge-invariant tan�
from the decay A0 ! �þ�� [9]. This will then define Ad

and Au at one loop, respectively. The one-loop radiative
corrections to sfermions into gauge bosons have been
studied in previous work [15,16]. Since the issue of mixing
is quite subtle with many definitions based on two-point
functions being rather ad hoc, we look at the problem
rather afresh. Moreover, the discussion is the same for
sleptons with mixing, we therefore generalize this for
sfermions in general and consider that the counterterm

�m2
~f12

absorbs the ultraviolet divergence of the decay ~f1 !
~f2Z

0. We have just seen, for example, that at tree level this
coupling is a direct measure of the mixing. Taking a
physical observable will unravel how to possibly extract
a gauge-invariant universal definition based on the two-
point functions.

With M
~f1 ~f2Z

0

0 representing the tree-level amplitude,

M
~f1 ~f2Z

0

0 ¼ igZT
3
fs2�f=2, where gZ ¼ g=cW , the one-loop

correction can be written as

M
~f1 ~f2Z

0

1 ¼M
~f1 ~f2Z

0

0

�
1þ �

~f1 ~f2Z
0

V1
þ �e

e
� c2W

c2W

�sW
sW

þ 1

2
�ZZZ þ 1

2
�Z

~f
11 þ

1

2
�Z

~f
22

�
þ igZT

3
f�

~f1 ~f2Z
0

V2
þ igZT

3
fð1� 4s2W jQfjÞ

�
�Re�~f1 ~f2

ðm2
~f2
Þ � Re�~f1 ~f2

ðm2
~f1
Þ

m2
~f1
�m2

~f2

�
þ igZT

3
fc2�f

�2�m2
~f12

þ Re�~f1 ~f2
ðm2

~f1
Þ þ Re�~f1 ~f2

ðm2
~f2
Þ

m2
~f1
�m2

~f2

�
: (3.26)

The first part of the correction proportional to the tree-level contribution is due to diagonal wave function renormalization
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and renormalization of the gauge parameters. Just like the
tree-level contribution, this part is regular in the limit
ðm2

~f1
�m2

~f2
Þ ! 0, see the trivial remark we made after

Eq. (3.11). �
~f1 ~f2Z

0

V2
represents purely one-loop virtual cor-

rections which do not necessarily vanish in the limit of a
vanishing tree-level mixing with �f ¼ 0 much like the
one-loop induced ~f1 ! ~f2�. The corrections in the third
and fourth line of Eq. (3.26) are due to ~f1 $ ~f2 transitions
triggered from the diagonal couplings ~fi ~fiZ.

M
~f1 ~f2Z

0

1 contains pure QED corrections that can be
unambiguously extracted, these contain infrared singular-
ities that need to be combined with the bremsstrahlung
corrections. Subtracting these pure QED virtual correc-
tions and the corresponding gluonic QCD corrections de-
fines a gauge-invariant infrared safe observable that does
not depend on any experimental cutoff on the energy of the
bremsstrahlung photon or gluon. Let us define this observ-

able as �M
~f1 ~f2Z

0

1 . �m2
~f12

defined from �M
~f1 ~f2Z

0

1 by requiring

that the one-loop correction ( �M
~f1 ~f2Z

0

1 �M
~f1 ~f2Z

0

0 ) van-

ishes, constitutes a fully gauge invariant, although process
dependent definition of �m2

~f12
. In this definition, process

dependent vertex corrections combine with self-energy
contributions leading to a gauge-independent definition.
Equation (3.26) is also instructive in that it reveals how
to extract a process and gauge-independent definition of
�m2

~f12
. Indeed, Eq. (3.26) exhibits a specific pole structure

in ðm2
~f1
�m2

~f2
Þ. The residue of the pole in ðm2

~f1
�m2

~f2
Þ

must be gauge independent. Therefore considering a
Laurent series of the amplitude in the pole ðm2

~f1
�m2

~f2
Þ,2

a gauge and process independent definition based on two-
point functions can be defined as

�m2
~f12

¼ � 1

2
lim

m2
~f1
!m2

~f2

ðRe�~f1 ~f2
ðp2 ¼ m2

~f1
Þ

þ Re�~f1 ~f2
ðp2 ¼ m2

~f2
ÞÞ

� �Re�P
~f1 ~f2

ðm2
~f1
; m2

~f2
Þ: (3.27)

It is important to note that �m2
~f12

is expressed in terms of

the nondiagonal self energy which is a function of the two
variables ðm2

~f1
; m2

~f2
Þ. To make things clearer, let us keep in

mind that in general �~f1 ~f2
ðp2Þ calculated at some external

momenta p2 is in fact a function of p2, m2
~f1
, m2

~f2
beside

some other masses involved in the loop. One usually just
writes �~f1 ~f2

ðm2
~f1
Þ for �~f1 ~f2

ðp2 ¼ m2
~f1
Þ, and at the same

time suppressing the dependence in m2
~f2
in the writing of

�~f1 ~f2
ðm2

~f1
Þ. As an example, the neutral Goldstone coupling

to the sfermions ~f1 ~f2G
0 that contributes to the sfermion

self energies is proportional to the off-diagonal element of
the sfermion mass matrix [see Eq. (3.7)]. The latter can be
written directly in terms of ðm2

~f1
�m2

~f2
Þ through Eq. (3.11).

This shows explicitly the dependence of �~f1 ~f2
ðp2Þ in the

two sfermion masses for any p2 beside the possible con-
tribution coming from the mass of the internal sfermion
line. For what concerns us here, one should always keep in
mind that the function we are dealing with is a function

�~f1 ~f2
ðm2

~f1
; m2

~f2
Þ. The value at the pole in Re�P

~f1 ~f2
ðm2

~f1
; m2

~f2
Þ

is gauge invariant and universal. All the remaining contri-
butions in Eq. (3.26) are then regular in the limit ðm2

~f1
�

m2
~f2
Þ ! 0 and, in particular, the contribution in the third

line of Eq. (3.26).
Care should be taken in defining these limits. To take the

limit in Eq. (3.27), it is useful to express m2
~f1;2

in terms of

m2
~f�

m2
~f�

¼
m2

~f1
�m2

~f2

2
; (3.28)

in order to make the dependence in the pole m2
~f�

explicit.

Then �~f1 ~f2
ðp2 ¼ m2

~fi
Þ ¼ �~f1 ~f2

ðm2
~fþ
;�m2

~f�
Þ so that

�~f1 ~f2
ðm2

~fi
Þ is a function of these two variables. These

functions should be expanded in m2
~f�

such that

�~f1 ~f2
ðm2

~fþ
;�m2

~f�
Þ ¼ �~f1 ~f2

ðm2
~fþ
; 0Þ �m2

~f�

@�~f1 ~f2
ðm2

~fþ
; 0Þ

@m2
~f�

þ � � � : (3.29)

We then have

Re�~f1 ~f2
ðm2

~f1
Þ þ Re�~f1 ~f2

ðm2
~f2
Þ

m2
~f1
�m2

~f2

¼
Re�~f1 ~f2

ðm2
~fþ
; 0Þ

m2
~f�

þ
m2

~f�
2

Re
@2�~f1 ~f2

ðm2
~fþ
; 0Þ

ð@m2
~f�
Þ2

þOððm2
~f�
Þ3Þ;

Re�~f1 ~f2
ðm2

~f1
Þ � Re�~f1 ~f2

ðm2
~f2
Þ

m2
~f1
�m2

~f2

¼ Re
@�~f1 ~f2

ðm2
~fþ
; 0Þ

@m2
~f�

þOððm2
~f�
Þ2Þ:

(3.30)

We can identify

Re�P
~f1 ~f2

ðm2
~f1
; m2

~f2
Þ ¼ Re�~f1 ~f2

ðm2
~fþ
; 0Þ: (3.31)

By looking at the pole structure of the amplitude it is now
clear that Re�~f1 ~f2

ðm2
~fþ
; 0Þ is gauge independent. However,

Re@�~f1 ~f2
ðm2

~fþ
; 0Þ=@m2

~f�
in Eq. (3.30), for example, is not

2This is in line with the definition of the Z0 mass from
eþe� ! �þ�� through a Laurent series based on analyticity
properties of the S matrix, see [17].
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guaranteed to be gauge independent. Its gauge-dependent
part cancels against those contained in the vertex
corrections.

One should be aware of the following:

Re�P
~f1 ~f2

ðm2
~f1
; m2

~f2
Þ ¼ Re�~f1 ~f2

ðm2
~fþ
; 0Þ

� Re�~f1 ~f2
ðp2 ¼ m2

~fþ
Þ: (3.32)

In �~f1 ~f2
ðp2 ¼ m2

~fþ
Þ � �~f1 ~f2

ðp2 ¼ m2
~fþ
; m2

~f�
Þ, m2

~f�
is still

undefined. Whereas, we should have

Re�P
~f1 ~f2

ðm2
~f1
;m2

~f2
Þ ¼Re�~f1 ~f2

ðm2
~fþ
;0Þ

¼Re�~f1 ~f2
ðp2 ¼m2

~fþ
;m2

~f�
! 0Þ

¼Re�~f1 ~f2
ðp2 ¼m2

~fþ
;m2

~f�
¼ 0Þ: (3.33)

Indeed, a naive replacement Re�~f1 ~f2
ðp2 ¼ m2

~fþ
Þ may still

give extra contributions that are of order m2
~f�
. This is

exactly what happens when we calculate Re�~f1 ~f2
ðp2Þ in

a gauge which is not the Feynman gauge with �W;Z � 1.
One finds that the gauge dependent parts of the quantity
Re�~f1 ~f2

ðp2 ¼ m2
~fþ
Þ proportional to ð1� �W;ZÞ are of order

m2
~f�
, see [18,19]. To make this point more transparent, let

us borrow from [18,19] the expression for the two-point
function in the stop sector for a general �W;Z for theW and

Z gauge bosons

�~t1~t2ðp2Þ ¼ �~t1~t2ðp2Þj�Z¼�W¼1 þ g2Z
16�2

ð1� �ZÞ�Z
1k�

Z
2k

� ½�f12ðp2Þ�Z þ g12ðp2; m2
~tk
Þ�ð0Þ

Z~tk
ðp2Þ�

þ g2

8�2
ð1� �WÞ�W

1k�
W
2k½�f12ðp2Þ�W

þ g12ðp2; m2
~bk
Þ�ð0Þ

W ~bk
ðp2Þ�: (3.34)

The first term in Eq. (3.34) represents the result in the
Feynman gauge. �Z

ik, �
W
ik describe the mixing involved in

the coupling of the stops with the Z and the W. �Z;W and

�ð0Þ
Z~tk

ðp2Þ, �ð0Þ
W ~bk

ðp2Þ are scalar loop functions, see [18,19].

The important factors that concern us here are the functions

f12ðp2Þ � ðp2 �m2
~tþ
Þ; (3.35)

g12ðp2; m2Þ � 2ðp2 �m2Þðp2 �m2
~tþ
Þ

� ðp2 �m2
~tþ
�m2

~t�
Þðp2 �m2

~tþ
þm2

~t�
Þ:
(3.36)

We see that although f12ðp2 ¼ m2
~tþ
Þ ¼ 0, g12ðp2¼m2

~tþ
Þ¼

Oðm2
~t�
Þ2 is indeed of order m2

~t�
and does not vanish, mean-

ing that these two-point functions are indeed gauge depen-
dent. As we have advocated, in a gauge-invariant
definition, we should set p2 ¼ m2

~tþ
with m2

~t�
¼0. This

example also confirms that the gauge dependence is nec-
essarily proportional to m2

~t�
. Indeed, �~t1~t2ðp2¼m2

~tþ
Þ has a

part of proportional to ð1��W;ZÞðm2
~t�
Þ2, whereas�~t1~t2ðp2¼

m2
~tþ
;m2

~t�
¼0Þ¼�~t1~t2ðp2¼m2

~tþ
;m2

~t�
¼0Þj�Z¼�W¼1.

Let us mention that the choice based on Re�~f1 ~f2
ðp2 ¼

m2
~fþ
Þ had been advocated to improve the scale indepen-

dence of the mixing angle [20].
Note that after the renormalization of the mixing has

been set according to Eqs. (3.27) and (3.31), the last term in
Eq. (3.26) contributes an ultraviolet finite part. This, on the
other hand, is not the case of the contribution from the third
line in Eq. (3.26). Indeed, its Re�0

~f1 ~f2
ðp2 ¼ m2

~fþ
Þ might

still be needed to absorb possible infinities from the vertex
virtual corrections, for example.
In SLOOPS, we work in the Feynman gauge with �W ¼

�Z ¼ 1. At one loop, �~fi ~fj
is insensitive to the nonlinear

gauge parameters in Eq. (2.1). We therefore obtain the
same result for �~fi ~fj

as in the usual linear gauge within

the Feynman gauge. Therefore one can afford using
Eq. (3.32). Taking this into account with Eqs. (3.27) and
(3.31), the default scheme in SLOOPS is

�m2
~f12

¼ �Re�~f1 ~f2
ðp2 ¼ m2

~fþ
Þ: (3.37)

To compare with results in the literature, we have also
implemented the prescription

�m2
~f12

¼ � 1

2
ðRe�~f1 ~f2

ðm2
~f1
Þ þ Re�~f1 ~f2

ðm2
~f2
ÞÞ; (3.38)

which is equivalent to the condition introduced in
Ref. [21]. In the Feynman gauge, the difference with the
default scheme is ultraviolet safe and numerically small,
see the examples in Secs. VA and VE.
As we stressed repeatedly, in our approach we do not

introduce counterterms to the rotation matrices since non-
diagonal wave function renormalization is necessary in any
case. For the sfermions, this more easily reveals the correct
prescription to take for the renormalization of the mixing
parameter. In practically all other approaches, counter-
terms to mixing matrices are introduced and therefore
�f ! �f þ ��f. We can recover these approaches by, for

example, looking at the example of ~f1 ! ~f2Z
0 and con-

sidering the shift to the angle, rather than introducing the
shift �m2

~f12
indirectly through the nondiagonal wave func-

tion renormalization constants. From �s2�f ¼ 2c2�f��f,

we make the identification

��f ¼
�m2

~f12

m2
~f1
�m2

~f2

: (3.39)

6. SUSY QCD corrections and the squark mixing angle

There have been many proposals in defining this angle
or, alternatively, the mixing parameter when considering
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purely supersymmetric QCD corrections. The different
proposals relied on constraining the mixing angle
Eq. (3.39) through a combination of two-point functions
in order that some specific observable be finite. This rather
ad hoc approach would, of course, guarantee finiteness for
that observable but does not necessarily guarantee that this
observable or quantity is gauge invariant with this choice
of counterterm. What is worse, is that if one uses the same
prescription when considering one-loop electroweak cor-
rections to the same quantity even finiteness is lost. The
prescription based on the residue of the pole would have
given the correct procedure. The aim of this subsection is
to understand why finiteness is obtained in the case of
supersymmetric QCD corrections.

Pure QCD contributions to �~q1 ~q2 are from the gluino ~g

exchange self energies and the tadpole squark exchange.
The results can be written in a very compact form, see, for
example, [22]

�~g
~q1 ~q2

ðp2Þ ¼ 4�s

3�
m~gmqc2�qB0ðp2; m~g;mqÞ;

�~q
~q1 ~q2

ðp2Þ ¼ �s

3�
c2�qs2�qðA0ðm2

~q2
Þ � A0ðm2

~q1
ÞÞ:

(3.40)

The loop functions A0 and B0 are as defined in [14]. It is

evident that �~q
~q1 ~q2

ðp2Þ is of order m2
~q2
�m2

~q1
. It indepen-

dently vanishes for s2�q ! 0. Note that the QCD contribu-

tion of the gluino does not depend on the squark masses for

a general p2. Therefore �~g;~q
~q1 ~q2

ðm2
~q1
Þ � �~g;~q

~q1 ~q2
ðm2

~q2
Þ is finite.

This explains why different schemes work fine, in the sense
of leading to finite results, for SUSY QCD corrections to
processes involving squarks. One of the most complicated
is based on tuning combinations of �~q1 ~q2 such that a finite

result for eþe� ! ~q1 �~q2 obtains as far as QCD corrections
are concerned [23]. With the coupling of the Z to squarks
defined as cij for Z~qi~qj, the following combination is used

to define the counterterm:

c22 Re�~q1 ~q2ðm2
~q1
Þ � c11 Re�~q1 ~q2ðm2

~q1
Þ

c22 � c11
: (3.41)

This can be rewritten as

c22 Re�~q1 ~q2ðm2
~q1
Þ � c11 Re�~q1 ~q2ðm2

~q1
Þ

c22 � c11

¼ Re�~q1 ~q2ðm2
~q1
Þ þ Re�~q1 ~q2ðm2

~q2
Þ

2
þ c22 þ c11

c22 � c11

� Re�~q1 ~q2ðm2
~q1
Þ � Re�~q1 ~q2ðm2

~q2
Þ

2
: (3.42)

The much simpler scheme based on the use of
Re�~q1 ~q2ðm2

~q1
Þ [24] is, in fact, a very special case of the

scheme in Eq. (3.42), we can see that it is obtained as

c11 ! 0 in Eq. (3.42). For the electroweak case, the extra
terms proportional to Re�~q1 ~q2ðm2

~q1
Þ � Re�~q1 ~q2ðm2

~q2
Þ in

Eq. (3.42) are not finite apart from the gauge invariance
issue. However, as we have seen, the ultraviolet divergent
part can be canceled in ðRe�~q1 ~q2ðm2

~q1
Þ þ Re�~q1 ~q2ðm2

~q2
ÞÞ=2

as suggested in [25]. However, this suggestion was not
based on a very strong theoretical or physical argument
apart from it being more symmetric or democratic in the
two squarks.

7. Deriving the counterterms

We are now in a position to derive all the needed
counterterms. First, with both prescriptions for �m2

~q12
ei-

ther based on Eq. (3.37) or the naive Eq. (3.38), the non-
diagonal wave function renormalization constants �Z~u

ij and

�Z
~d
ij are now regular in the limit m2

~q1
! m2

~q2
, where any

potential ultraviolet divergence is contained in �Z~q;S
12 . In

fact, in the scheme of Eq. (3.38), only this part remains and

therefore �Z~q
12 ¼ �Z~q

21 ¼ �Z~q;S
12 .

The remaining counterterm �m~u11 is completely con-

strained

�m2
~u11

¼ 1

c2�u

�
c2�d�m

2
~d11

þ s2�d�m
2
~d22

� s2�d�m
2
~d12

� s2�u�m
2
~u22

þ s2�u�m
2
~u12

þ �m2
u � �m2

d

þM2
W

�
c2�

�M2
W

M2
W

� s22�
�t�
t�

��
: (3.43)

For c2�u 	 1, this scheme is not appropriate as it will

induce large radiative corrections. One should prefer the
use of m2

~u1
as input parameter in lieu of m2

~u2
. With m2

~u2
as

input parameter, the physical mass of ~u1 will then receive a
finite correction at one loop

m
phys
~u1

¼ m2
~u1
þ �m2

~u11
þ Re�~u1 ~u1ðm2

~u1
Þ: (3.44)

Alternatively, we can use m~u1 as input like we have done

with the other squark masses. This will allow us to define
t� from the sfermion sector through

�t�
t�

¼ 1

s22�M
2
W

ðc2�d�m2
~d11

þ s2�d�m
2
~d22

� s2�d�m
2
~d12

� �m2
d

� c2�u�m
2
~u11

þ s2�u�m
2
~u22

� s2�u�m
2
~u12

þ �m2
u

þ c2��M
2
WÞ: (3.45)

Using Eq. (3.20), we find the relations between the counter-
terms �m2

~qij
and the counterterms �M ~QL

, �M~uR , �M~dR
,

�Au, and �Ad of the underlying parameters at the
Lagrangian level
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�M ~QL
¼ 1

2M ~QL

�
c2�d�m

2
~d11

þ s2�d�m
2
~d22

� s2�d�m
2
~d12

� �m2
d �M2

Z

�
� 1

2
þ 1

3
s2W

��
c2�

�M2
Z

M2
Z

� s22�
�t�
t�

�
� c2�

1

3
M2

Z�s
2
W

�
;

�M~uR ¼ 1

2M~uR

�
s2�u�m

2
~u11

þ c2�u�m
2
~u22

þ s2�u�m
2
~u12

� �m2
u � 2

3
s2WM

2
Z

�
c2�

�
�M2

Z

M2
Z

þ �s2W
s2W

�
� s22�

�t�
t�

��
;

�M~dR
¼ 1

2M~dR

�
s2�d�m

2
~d11

þ c2�d�m
2
~d22

þ s2�d�m
2
~d12

� 2md�md þ 1

3
s2WM

2
Z

�
c2�

�
�M2

Z

M2
Z

þ �s2W
s2W

�
� s22�

�t�
t�

��
;

�ðmuAuÞ ¼
s2�u
2

ð�m2
~u11

� �m2
~u22
Þ þ c2�u�m

2
~u12

þmu

t�

�
��þ�

�mu

mu

��
�t�
t�

�
;

�ðmdAdÞ ¼
s2�d
2

ð�m2
~d11

� �m2
~d22
Þ þ c2�d�m

2
~d12

þmdt��

�
��

�
þ �md

md

þ �t�
t�

�
: (3.46)

B. Slepton sector

After having shown in detail how the squark sector is
renormalized in the case of mixing, it is straightforward to
treat the slepton sector. Again for the sleptons, the case
with mixing is, for all practical purposes, only relevant for
the ~�. In the code, we have implemented mixing for all
generations, in the first and second generation this is used
only in to conduct high precision checks on the results, for
applications the unmixed case is used. Here, we will show
only the case with mixing, the unmixed case is then trivial.

Compared to the squark sector, as seen from Eq. (3.2),
one has, for each generation, only 3 parameters:M ~LL

,M~eR ,

Ae and one field is missing ~
R. ~eL and ~eR will mix, leading
to the physical fields ~e1 and ~e2. In the unmixed case, we
associate ~e1 with ~eL. The mixing matrix is described in
exactly the same way as in Eq. (3.4) with ~q ! ~e and the
different components given by Eqs. (3.5), (3.6), and (3.7)

with ~Q ! ~L with the corresponding quantum charges.
Shifting the fields and parameters, we can write the self-
energies (in the case of � diagonal and nondiagonal) as

�̂~ei~ejðq2Þ ¼ �~ei~ejðq2Þ þ �m2
~eij

� 1

2
�Z~e

ijðq2 �m2
~ei
Þ

� 1

2
�Z~e

jiðq2 �m2
~ej
Þ;

�̂~
ðq2Þ ¼ �~
ðq2Þ þ �m2
~
 � �Z~
ðq2 �m2

~
Þ: (3.47)

We take the physical selectron masses as input parameters
through the usual on shell condition. We require the residue
of the propagators of ~ei and ~
 to be equal to unity and no
mixing between ~e1 and ~e2 when these are on shell. These
conditions imply

�m2
~eii

¼ �Re�~ei~eiðm2
~ei
Þ; �Z~e

ii ¼ Re�0
~ei~ei

ðm2
~ei
Þ;

�Z~
 ¼ Re�0
~
ðm2

~
Þ;
�Z~e

12 ¼
2

m2
~e2
�m2

~e1

ðRe�~e1~e2ðm2
~e2
Þ þ �m2

~e12
Þ;

�Z~e
21 ¼

2

m2
~e1
�m2

~e2

ðRe�~e1~e2ðm2
~e1
Þ þ �m2

~e12
Þ: (3.48)

The remaining parameter �m2
~e12

describing mixing is fixed

analogously as in the squark sector. The default scheme in
SLOOPS is

�m2
~e12

¼ �Re�~e1~e2ððm2
~e1
þm2

~e2
Þ=2Þ: (3.49)

As in the squark sector, a better definition would be to
relate this counterterm to a physical observable like the
slepton decay ~e1 ! ~e2Z

0, for example, see (3.26). The
naive scheme

�m2
~e12

¼ � 1

2
ðRe�~e1~e2ðm2

~e1
Þ þ Re�~e1~e2ðm2

~e2
ÞÞ (3.50)

is also implemented. Another possible scheme uses the
mass of the sneutrino as an input parameter such that

�m2
~
 ¼ �Re�~
ðm2

~
Þ; (3.51)

and the counterterm �m2
~e12

is given by

�m2
~e12

¼ 1

s2�e

�
c2�e�m

2
~e11

þ s2�e�m
2
~e22

� �m2
~
 � �m2

e

þM2
W

�
c2�

�M2
W

M2
W

� s22�
�t�
t�

��
: (3.52)

However, this definition is to be avoided since the mixing
in the slepton sector is usually very small s2�e � 0, even for

�’s which would lead to large corrections.
The extraction of the counterterms of the parameters at

the Lagrangian follows:
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�M ~LL
¼ 1

2M ~LL

�
c2�e�m

2
~e11

þ s2�e�m
2
~e22

� s2�e�m
2
~e12

� �m2
e �M2

Z

�
� 1

2
þ s2W

��
c2�

�M2
Z

M2
Z

� s22�
�t�
t�

�
� c2�M

2
Z�s

2
W

�
;

�M~eR ¼ 1

2M~eR

�
s2�e�m

2
~e11

þ c2�e�m
2
~e22

þ s2�e�m
2
~e12

� �m2
e þ s2WM

2
Z

�
c2�

�
�M2

Z

M2
Z

þ �s2W
s2W

�
� s22�

�t�
t�

��
;

�ðmeAeÞ ¼
s2�e
2

ð�m2
~e11

� �m2
~e22
Þ þ c2�e�m

2
~e12

þme�t�

�
��

�
þ �me

me

þ �t�
t�

�
: (3.53)

If the sneutrino mass is not used as input then it is predicted
with a finite correction from its value at tree level

m1-loop2
~
 ¼mtree 2

~
 þðRe�~
ðmtree 2
~
 Þ�Re�~e1~e1ðm2

~e1
ÞÞ

þM2
W

�
c2�

�M2
W

M2
W

� s22�
�t�
t�

�
þ s2�eðRe�~e1~e1ðm2

~e1
Þ

�Re�~e2~e2ðm2
~e2
ÞÞ� s2�e�m

2
~e12

��m2
e: (3.54)

In the limit of massless fermions, the term in the second
line vanishes and we identify, as said earlier, ~e1 with ~eL.
This is a very good limit for the selectron and smuon sector
but we have to consistently take the electron and muon
Yukawa couplings to zero.

It is important to note that the renormalization of the
trilinear coupling both for the sleptons [�ðmeAeÞ in
Eq. (3.53)] and the squarks [�ðmdAdÞ in Eq. (3.46)] may
introduce a large tan� scheme dependence for large values
of tan�. As underlined in the introduction of this section,
contrary to the cases of sfermion masses, this trilinear
coupling enters directly in the coupling of the Higgses to
sfermions and therefore this might lead to possible uncer-
tainty in the prediction at one loop of these couplings in
this regime.

IV. THE CHARGINO/NEUTRALINO SECTOR AND
ITS RENORMALIZATION

A. Fields and parameters

The charginos and neutralinos are mixtures of the
spin-1=2 fermions which are part, on the one hand, of the

two Higgses chiral multiplets Ĥ1;2 which constitute the

Higgsinos, and, on the other hand, the electroweak gaugi-
nos within the gauge supermultiplet for theUð1Þ and SUð2Þ
gauge groups of the standard model. In terms of the two-
component (left-handed) Weyl spinors, the two Higgsino
doublets, in accordance with our definition in the Higgs
sector [9], are ~H1 ¼ ð ~H0

1; ~H
�
1 Þ and ~H2 ¼ ð ~Hþ

2 ; ~H
0
2Þ. We

denote the Uð1Þ gaugino (bino) as ~B0 and the SUð2Þ one
as ~Wi, i ¼ 0, 1, 2 with ~W� ¼ 1

2 ð ~W1 
 i ~W2Þ. Because of

electroweak symmetry breaking, the electrically charged
components will mix and lead to the charginos that will be
collected as Dirac spinors ~��

1;2, while the electrically neu-

tral ones will mix leading to the neutralinos that will be
described as Majorana fermions, ~�0

1;2;3;4. In this sector, soft

masses enter only through the soft masses of the gauginos

L ~V
soft ¼ � 1

2

�
M1

~B0 ~B0 þM2

X
i

~Wi ~Wi

�
; (4.1)

which is the only source of mass for the gauginos before
electroweak symmetry breaking. The Higgsinos get a mass
from the supersymmetry, preserving � term in the super-
potential

L ~H
� ¼ �
ij ~H

i
1
~Hj
2 þ H:c: (4.2)

Supersymmetric gauge matter interactions lead to mass
mixing terms between these states after symmetry breaking
through

L
~H; ~V
mix ¼ � 1ffiffiffi

2
p ðHy

1 ðg ~Wi�i � g0 ~B0Þ ~H1

þHy
2 ðg ~Wi�i þ g0 ~B0Þ ~H2 þ H:c:Þ; (4.3)

with �i the Pauli matrices. At this point, let us give our
convention on the sign of the parameters �, M1, M2. We
can always take M2 > 0 since any other phase can be
transformed away by a field redefinition in Eq. (4.1), how-
ever, because of the mixing term in Eq. (4.3), we loose the
freedom to redefine the phases of the Higgsino and bino
fields and hence the sign of � and M1.
The kinetic term in terms of the current fields writes as

Lkin ¼ i �~W
i
���ð@� ~WiÞ þ i �~B

0
���ð@� ~B0Þ þ i �~H1 ��

�@� ~H1

þ i �~H2 ��
�@� ~H2: (4.4)

Collecting all terms in the chargino mass matrix and
defining

c c
R ¼ ~W�

~H�
1

 !
; c c

L ¼ ~Wþ
~Hþ
2

 !
; (4.5)

leads to

Lc ¼ i½c c
R
t��@� �c c

R þ �c c
L
t ���@�c

c
L�

� ½c c
R
tXc c

L þ �c c
L
tXy �c c

R�: (4.6)

t stands for the transpose operation and the mass mixing
matrix is given by

X ¼ M2

ffiffiffi
2

p
MWs�ffiffiffi

2
p

MWc� �

 !
: (4.7)

The system can be diagonalized by two unitary matrices U
and V that define the physical (Weyl) fields as
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�c
R ¼ Uc c

R; �c
L ¼ Vc c

L: (4.8)

In the case of CP conservation that we will cover here, we
can take both U and V as real. We write the diagonalized
mass matrix ~X

~X ¼ UXVt ¼ ~Xt ¼ VXtU ¼ m~��
1

0
0 m~��

2

 !
: (4.9)

m~��
1;2
are the (positive) eigenvalues of the Hermitian matrix

XXy with m~��
1
<m~��

2
. In our implementation in order to

have positive eigenvalues, we take

detU ¼ þ1 and detV ¼ signðdetXÞ ¼ 
� with

detX ¼ M2��M2
Ws2�: (4.10)

The physical masses are also defined from the invariant
basis independent quantities that are the trace and the
determinant of the square matrice XXt, which give

m2
~��
1
þm2

~��
2
¼ M2

2 þ�2 þ 2M2
W;

m2
~��
1
m2

~��
2
¼ ðdetXÞ2; (4.11)

and

m2
~��
1
;~��

2

¼ 1

2
ðM2

2 þ�2 þ 2M2
W 
 ½ðM2

2 ��2Þ2

þ 4M4
Wc

2
2� þ 4M2

WðM2
2 þ�2

þ 2�M2s2�Þ�1=2Þ: (4.12)

The corresponding chargino Dirac spinor ~�c
i (i ¼ 1, 2) is

constructed as

~�þ
i ¼ �c

Li
��c
Ri

� �
) �~�þ

i ¼ ð�ct
Ri; ��

ct
Li Þ ¼ ~��t

i i ¼ 1; 2:

(4.13)

Similarly, the Lagrangian for neutralinos writes

Ln ¼ i

2
½c nt��@� �c n þ �c nt ���@�c

n�

� 1

2
½c ntYc n þ �c ntYy �c n�; (4.14)

where

c n ¼
~B0

~W0

~H0
1

~H0
2

0BBB@
1CCCA: (4.15)

The mass matrix Y

Y ¼
M1 0 �MZsWc� MZsWs�
0 M2 MZcWc� �MZcWs�

�MZsWc� MZcWc� 0 ��
MZsWs� �MZcWs� �� 0

0BBB@
1CCCA

(4.16)

can be diagonalized by an unitary complex matrix with the
physical states being

�n ¼ Nc n: (4.17)

We will refer to the diagonal matrix as

~Y ¼ N�YNy ¼ diagðm~�0
1
; m~�0

2
; m�0

3
; m�0

4
Þ;

0<m�0
1
<m�0

2
<m�0

3
<m�0

4
:

(4.18)

Note that N can be written as JN̂, where N̂ is real and J ¼
diagðj1; j2; j3; j4Þ. N̂ diagonalizes Y but leads to masses
that are not necessarily positive. A positive mass obtained

with N̂ corresponds to ji ¼ 1, a negative mass corresponds
to ji ¼ i. The corresponding neutralino (4-component)
Majorana spinor ~�0

i (i ¼ 1, 2, 3, 4) is given by

~� 0
i ¼ �n

i
��n
i

� �
: (4.19)

B. Renormalization: Counterterms and self-energies

We could have treated the chargino and neutralino sys-
tem that we have just exposed within a common notation,
deriving in a compact form the neutralino sector on the
basis of its Majorana nature. This could have been done
through a mass matrix M that stands for either X (chargi-
nos) or Y of the neutralinos and the two fields c R;L that

represent either c c
R;L or the single Majorana field c n. To

make our renormalization procedure of this sector as trans-
parent as possible, we will take this common approach to
show that the approach in renormalizing the chargino and
neutralino sector is exactly the same and that it corresponds
to the approach that we have taken in the Higgs sector and
the sfermion sector as concerns the issue of mixing. In
particular, we stress that we do not renormalize the rotation
matrices that express the mass eigenstates from the current
eigenstates. Summarizing what we have just seen in the
sfermion sector and splitting, as usual, the bare Lagrangian
(denoted by 0) into a renormalized Lagrangian and coun-
terterms, the kinetic term and the mass term of a fermion
field c with an arbitrary number of components can be
written as

Lf
0 ¼ i½c t

R0�
�@� �c R0 þ �c t

L0 ��
�@�c L0�

� ½c t
R0M0c R0 þ �c t

L0M
y
0
�c R0�; (4.20)

where c R=L0 represents the fermion field and M0 the non-

diagonal mass matrix at bare level. At tree level, this mass
matrix is diagonalized by rotating the fields with two
unitary matrices DR and DL which define the current fields
so that at bare level we write these fields as

�R0 ¼ DRc R0; �L0 ¼ DLc L0: (4.21)

The corresponding diagonal mass matrix ~M is then given
by
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~M ¼ D�
RMDy

L ¼ ~My ¼ DLM
tDt

R ¼ diagðm~�1
; m~�2

; . . .Þ
(4.22)

and gives the physical masses m~�i
. The ensuing Dirac/

Majorana spinors ~�i0 are constructed with these Weyl
spinors

~� i0 ¼
�Li

��Ri

� �
0
: (4.23)

After the diagonalization is performed, the counterterms
for the different parameters involved in the mass matrix are
introduced

M0 ¼ Mþ �M (4.24)

and also the wave function renormalization constants

�ZR;L
ij for each chiral physical field �R=L,

�R;Lij0 ¼
�
�ij þ 1

2
�ZR;L

ij

�
�R;Lj: (4.25)

These transformations for the chiral fields are equivalent to
the following transformation for the four-component
spinor ~�i,

~� i0 ¼ ~�i þ 1

2
½�ZL

ijPL þ �ZR�
ij PR�~�j: (4.26)

We stress again that in our renormalization scheme, we do
not use the extra shifts on the diagonalization matrices
DL;R, DL;R ! DL;R þ �DL;R, in other words, �DL;R ¼ 0
as done in Ref. [26]. This is in the same spirit as within the
Higgs sector and the sfermion sector. So we consider that
the diagonalization matrices DL;R at tree level and at the

one loop level are the same, DL;R are renormalized. With

the renormalization counterterms (4.24) and (4.25) and

� ~M ¼ D�
R�MDy

L; (4.27)

the renormalized self-energies �̂~�i ~�j
can be cast into

�̂~�i ~�j
ðqÞ ¼ �~�i ~�j

ðqÞ � PL� ~Mij � PR� ~M�
ji

þ 1

2
ðq6 �m~�i

Þ½�ZL
ijPL þ �ZR�

ij PR�

þ 1

2
½�ZL�

ji PR þ �ZR
jiPL�ðq6 �m~�j

Þ: (4.28)

Equation (4.28) shows clearly that the wave function re-
normalization constants are not involved in the renormal-
ization of the Lagrangian parameters contained in the mass
matrices ~M, which in our case involve M1, M2, �.

It is useful to decompose the self-energy into the inde-

pendent Lorentz structures through the projectors PL;R ¼
1
�5

2 ,

�~�i ~�j
ðqÞ ¼ PL�

LS
~�i ~�j

ðq2Þ þ PR�
RS
~�i ~�j

ðq2Þ þ q6 PL�
LV
~�i ~�j

ðq2Þ
þ q6 PR�

RV
~�i ~�j

ðq2Þ: (4.29)

Hermiticity imposes the following constraints on the ele-
ments of the Lorentz decomposition

�RS
~�i ~�j

ðq2Þ ¼ �LS�
~�j ~�i

ðq2Þ; �LV
~�i ~�j

ðq2Þ ¼ �LV�
~�j ~�i

ðq2Þ;
�RV

~�i ~�j
ðq2Þ ¼ �RV�

~�j ~�i
ðq2Þ: (4.30)

These are also satisfied by the corresponding covariants of
the renormalized self-energies in Eq. (4.28). For a
Majorana fermion (like a neutralino in the following), the
additional Majorana symmetry imposes

�RS
~�i ~�j

ðq2Þ ¼ �RS
~�j ~�i

ðq2Þ; �LS
~�i ~�j

ðq2Þ ¼ �LS
~�j ~�i

ðq2Þ;
�LV

~�i ~�j
ðq2Þ ¼ �RV�

~�i ~�j
ðq2Þ ¼ �RV

~�j ~�i
ðq2Þ: (4.31)

Some of these properties are used in our code as an extra
test.
To fix the wave function renormalization constants

�ZR;L
ij , we require that

(i) The propagators of all the charginos and neutralinos
are properly normalized with residue of 1 at the pole
mass. This pole mass may get one-loop correction.
For our treatment at one loop, it is sufficient to
impose the residue condition by taking the tree-level
mass. Taking the one-loop mass is a higher order
effect, see Sec. 4.7 of [9] of our treatment in the
Higgs sector. This condition implies

lim
q2!m2

~�i

q6 þm~�i

q2 �m2
~�i

fRe�̂~�i ~�i
ðqÞu�i

ðqÞ ¼ u�i
ðqÞ and

lim
q2!m2

~�i

�u�i
ðqÞfRe�̂~�i ~�i

ðqÞ q6 þm~�i

q2 �m2
~�i

¼ �u�i
ðqÞ: (4.32)

(ii) No mixing between the physical fields when these
are on mass shell

fRe�̂~�i ~�j
ðqÞu�j

ðqÞ ¼ 0 for q2 ¼m2
�j
; ði� jÞ:

(4.33)

With these conditions, we do not have to consider
any loop correction on the external legs. Note that as

usual [14], fRe signifies that the imaginary absorptive
part of the loop function is discarded so as to main-
tain Hermiticity at one loop. Equation (4.33) gives
the diagonal element of the wave function renormal-
ization constants

�ZL
ii ¼ �fRe�LV

~�i ~�i
ðm2

~�i
Þ �m2

~�i
ðfRe�LV 0

~�i ~�i
ðm2

~�i
Þ

þ fRe�RV 0
~�i ~�i

ðm2
~�i
ÞÞ � 2m~�i

fRe�LS0
~�i ~�i

ðm2
~�i
Þ;

�ZR
ii ¼ �fRe�RV

~�i ~�i
ðm2

~�i
Þ �m2

~�i
ðfRe�LV 0

~�i ~�i
ðm2

~�i
Þ

þ fRe�RV 0
~�i ~�i

ðm2
~�i
ÞÞ � 2m~�i

fRe�RS0
~�i ~�i

ðm2
~�i
Þ;

(4.34)
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where we have used the fact that in the case of CP
conservation�LS

~�i ~�i
ðm2

~�i
Þ ¼ �RS

~�i ~�i
ðm2

~�i
Þ. The prime on

a function such as �RV 0
~�i ~�i

ðm2
~�i
Þ stands for the deriva-

tive @�RV
~�i ~�i

ðq2Þ=@q2jq2¼m2
~�i

.

The nondiagonal elements (i � j) of �ZL;R are derived
from the constraints of Eq. (4.33)

�ZL
ij ¼

2

m2
~�i
�m2

~�j

ðm~�i
fRe�LS

~�i ~�j
ðm2

~�j
Þ

þm~�j
fRe�RS

~�i ~�j
ðm2

~�j
Þ þm~�i

m~�j
fRe�RV

~�i ~�j
ðm2

~�j
Þ

þm2
~�j

fRe�LV
~�i ~�j

ðm2
~�j
Þ �m~�i

� ~Mij �m~�j
� ~M�

jiÞ;

�ZR�
ij ¼ 2

m2
~�i
�m2

~�j

ðm~�j
fRe�LS

~�i ~�j
ðm2

~�j
Þ

þm~�i
fRe�RS

~�i ~�j
ðm2

~�j
Þ þm2

~�j

fRe�RV
~�i ~�j

ðm2
~�j
Þ

þm~�i
m~�j

fRe�LV
~�i ~�j

ðm2
~�j
Þ �m~�i

� ~M�
ji �m~�j

� ~MijÞ:
(4.35)

Specializing to the case of the charginos, we will have to
take DR ¼ U and DL ¼ V, see Eq. (4.7) and M ¼ X, see
Eq. (4.8), where both U and V are real matrices as is the
mass matrix X in our case with CP conservation. In this
case, �ZL;R can be taken real. For the neutralinos DL ¼
DR ¼ N, see Eq. (4.17) and M ¼ Y is a symmetric real
matrix, see Eq. (4.16). In this case, as expected, we have
�ZL ¼ �ZR ¼ �Z0 which is a result of the symmetry of Y
and the Majorana constraints of Eq. (4.31). In fact, Eq.
(4.35) can be recast into

�Z0
ij¼

1

m~�0
i
�m~�0

j

ðm~�0
j
ðfRe�LV

~�0
i ~�

0
j

ðm2
~�0
j

ÞþfRe�LV�
~�0
i ~�

0
j

ðm2
~�0
j

ÞÞ

þðfRe�LS
~�0
i ~�

0
j

ðm2
~�0
j

ÞþfRe�LS�
~�0
i ~�

0
j

ðm2
~�0
j

ÞÞ�ð� ~Yijþ� ~Y�
ijÞÞ

þ 1

m~�0
i
þm~�0

j

ð�m~�0
j
ðfRe�LV

~�0
i
~�0
j

ðm2
~�0
j

Þ�fRe�LV�
~�0
i
~�0
j

ðm2
~�0
j

ÞÞ

þðfRe�LS
~�0
i ~�

0
j

ðm2
~�0
j

Þ�fRe�LS�
~�0
i ~�

0
j

ðm2
~�0
j

ÞÞ�ð� ~Yij�� ~Y�
ijÞÞ:

(4.36)

Note that while Z0
ii is real, Z

0
ij (i � j) is either purely real

[given by the first two lines in Eq. (4.36)] or purely imagi-
nary [given by the last two lines in Eq. (4.36)], when using

N ¼ JN̂ in order to have positive masses. Using N ¼ N̂,
we can have Z0

ij as real but we have to keep track of the sign

of the masses in Eq. (4.36). For example, with N ¼ N̂
(real), when both m~�i;j

> 0 are obtained, we get

�Z0
ij ¼

2

m~�0
i
�m~�0

j

ðfRe�LS
~�0
i
~�0
j

ðm2
~�0
j

Þ

þm~�0
j

fRe�LV
~�0
i ~�

0
j

ðm2
~�0
j

Þ � � ~YijÞ: (4.37)

It is important to note a common feature of our approach
that we already encountered in the case of the mixing in the
Higgs sector and the sfermion sector. The nondiagonal
wave function renormalization constants in Eqs. (4.35),
(4.36), and (4.37) are fully determined only once the
mass counterterms � ~M are fixed. In our case, this requires
fixing �M1, �M2, and �� to which we turn in the next
section.
For completeness, let us give the corresponding counter-

term matrices �X and �Y. We have

�X ¼ �M2 �X12

�X21 ��

� �
;

�Y ¼
�M1 0 �Y13 �Y14

0 �M2 �Y23 �Y24

�Y13 �Y23 0 ���
�Y14 �Y24 ��� 0

26664
37775;

(4.38)

with

�X12 ¼ þ ffiffiffi
2

p
MWs�

�
1

2

�M2
W

M2
W

þ c2�
�t�
t�

�
;

�X21 ¼ þ ffiffiffi
2

p
MWc�

�
1

2

�M2
W

M2
W

� s2�
�t�
t�

�
;

�Y13 ¼ �sWMZc�

�
1

2

�M2
Z

M2
Z

þ 1

2

�s2W
s2W

� s2�
�t�
t�

�
;

�Y14 ¼ þsWMZs�

�
1

2

�M2
Z

M2
Z

þ 1

2

�s2W
s2W

þ c2�
�t�
t�

�
;

�Y23 ¼ þcWMZc�

�
1

2

�M2
Z

M2
Z

þ 1

2

�c2W
c2W

� s2�
�t�
t�

�
;

�Y24 ¼ �cWMZs�

�
1

2

�M2
Z

M2
Z

þ 1

2

�c2W
c2W

þ c2�
�t�
t�

�
:

(4.39)

C. Fixing �M1, �M2, ��

�M1, �M2, �� can be fixed through the diagonal self-
energies of the chargino-neutralino system which we have
not fully exploited yet and which constrain the physical
masses of the charginos and neutralinos. The most straight-
forward and simple choice is based on the fact that the
chargino system is a 2� 2 system which is easier to handle
that the 4� 4 system of the neutralinos. In SLOOPS, the
default scheme is to choose the two chargino masses m~��

1

and m~��
2
as inputs to define the two parameters M2 and �

and one neutralino mass to define M1. The lightest neu-
tralino mass m~�0

1
is used by default to fix M1. The three

other neutralino massesm~�0
2;3;4

are derived and receive one-

loop quantum corrections. At one loop, these three input
parameters translate into the usual definition of the pole
masses in the on-shell scheme through the renormalized
self-energies of the charginos and the lightest neutralino
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fRe�̂~�i ~�i
ðqÞu�i

ðqÞ ¼ 0 for q2 ¼ m2
�i
;

for �i ! ��
1 ; �

�
2 ; �

0
1: (4.40)

This translates into

� ~X11 ¼ �m~��
1

¼ fRe�LS
~��
1
~��
1

ðm2
~��
1
Þ þ 1

2
m~��

1
ðfRe�LV

~��
1
~��
1

ðm2
~��
1
Þ

þ fRe�RV
~��
1
~��
1

ðm2
~��
1

ÞÞ;
� ~X22 ¼ �m~��

2

¼ fRe�LS
~��
2
~��
2

ðm2
~��
2

Þ þ 1

2
m~��

2
ðfRe�LV

~��
2
~��
2

ðm2
~��
2

Þ

þ fRe�RV
~��
2
~��
2

ðm2
~��
2

ÞÞ;

� ~Y11 ¼ �m~�0
1
¼ fRe�LS

~�0
1
~�0
1

ðm2
~�0
1

Þ þm~�0
1

fRe�LV
~�0
1
~�0
1

ðm2
~�0
1

Þ:
(4.41)

These three counterterms can be inverted to derive the
counterterms parameters �M1, �M2, �� through � ~Y ¼
N��YNy and � ~X ¼ U��XVy, see Eq. (4.27). In fact,
�M2, �� can be derived more directly without going
through the mixing matrices from Eq. (4.11). We get

�M2 ¼ 1

M2
2 ��2

�
ðM2m

2
~�þ
1

�� detXÞ�m~�þ
1

m~�þ
1

þ ðM2m
2
~�þ
2
�� detXÞ�m~�þ

2

m~�þ
2

�M2
WðM2 þ�s2�Þ

� �M2
W

M2
W

��M2
Ws2�c2�

�t�
t�

�
;

�� ¼ 1

�2 �M2
2

�
ð�m2

~�þ
1

�M2 detXÞ
�m~�þ

1

m~�þ
1

þ ð�m2
~�þ
2
�M2 detXÞ

�m~�þ
2

m~�þ
2

�M2
Wð�þM2s2�Þ

� �M2
W

M2
W

�M2M
2
Ws2�c2�

�t�
t�

�
; (4.42)

�M1 ¼ 1

N�2
11

ð�m�0
1
� N�2

12�M2 þ 2N�
13N

�
14��

� 2N�
11N

�
13�Y13 � 2N�

12N
�
13�Y23 � 2N�

11N
�
14�Y14

� 2N�
12N

�
14�Y24Þ: (4.43)

The physical masses of the other three neutralinos (i ¼ 2,
3, 4) receive a correction at one loop given by

mphys

~�0
i

¼m~�0
i
þ� ~Yii �fRe�LS

~�0
i
~�0
i

ðm2
~�0
i

Þ
�m~�0

i

fRe�LV
~�0
i
~�0
i

ðm2
~�0
i

Þ with

� ~Yii ¼ N�2
i1 �M1 þN�2

i2 �M2 � 2N�
i3N

�
i4��þ 2N�

i1N
�
i3�Y13

þ 2N�
i1N

�
i4�Y14 þ 2N�

i2N
�
i3�Y23 þ 2N�

i3N
�
i4�Y24:

(4.44)

Checking the cancellation of the ultraviolet divergences in
Eq. (4.44) is an important nontrivial test on the validity and
correctness of the procedure and its implementation. Other
schemes in the neutralino/chargino sector can be imple-
mented in SLOOPS as will be shown in a forthcoming
publication. A deviation from the commonly used scheme
adopted here was taken in Ref. [27], where the input
parameters are the masses of ~�0

1, ~�
0
2, and ~��

2 .
There are a few important remarks to make about

Eqs. (4.42) and (4.43). The choice of m~�0
1
as an input

parameter is appropriate only if the lightest neutralino is
mostly bino or if the binolike neutralino is not too heavy
compared to the other neutralinos. Otherwise, the extrac-
tion ofM1 would be subject to uncertainties. This shows in
Eq. (4.43) since N11 would be too small which would, in
turn, induce large radiative corrections. Another difficulty
arises with the special configuration M2 ���. Equation
(4.42) shows that an apparent singularity might be present.
We had already pointed out in [5] that this configuration
can induce a large t�-scheme dependence in the counter-

terms �M1;2 and �� and therefore to the annihilation of the

lightest supersymmetric particle into W’s for a mixed
lightest supersymmetric particle, see also [28]. Let us
look at this configuration again. We can rewrite
Eq. (4.42) as

�M2 ¼ 1

M2
2 ��2

ð
���E� þ ðM2 � 
��Þ�F�Þ ¼ 1

M2
2 ��2

ðj�j�E� þ ðM2 � j�jÞ�F�Þ;

�� ¼ 1

�2 �M2
2

ð
�M2�E� þ ð�� 
�M2Þ�F�Þ ¼

�

�2 �M2
2

ðM2�E� þ ðj�j �M2Þ�F�Þ;

�E� ¼ 1

2
�ðm~�þ

1
�m~�þ

2
Þ2 �M2

W

�
�M2

W

M2
W

ð1þ 
�s2�Þ þ 
�s2�c2�
�t�
t�

�
;

�F� ¼ 1

2
ð�m2

~�þ
1
þ �m2

~�þ
2
Þ � �M2

W: (4.45)
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It is important to note that the contributions proportional to
�F� are regular in the limitM2 ! j�j, moreover �F� does
not introduce any t� dependence. Only terms in �E� may
cause trouble. The problem is confined to the finite part (in
the ultraviolet sense) of �E�. Indeed, we have checked
explicitly that in the limitM2 ! j�j, �E� is finite. This is a
strong check on the validity of the code. Therefore any
nonregular term comes from the finite part (in the ultra-
violet sense) of �E� and calls for a good choice of the
renormalization scheme in order not to induce too large
corrections or ill-defined constants.

D. Input parameters and parameter reconstruction

In practice, in the on-shell scheme that is generally used
for the chargino/neutralino sector and that we adopt here,
we need to reconstruct from experiments the value of �,
M2, and M1 from three physical masses. If we invert the
mass relations of the chargino sector, we would, in general,
get four solutions ðM2; �Þ for one set of chargino masses
ðm~�þ

1
; m~�þ

2
Þ

�2 ¼
m2

~�þ
1

þm2
~�þ
2

� 2M2
W

2
� 
�

2
½ðm2

~�þ
1
þm2

~�þ
2
� 2M2

WÞ2

� 4ðM2
Ws2� þ 
�m~�þ

1
m~�þ

2
Þ2�1=2;

M2 ¼ ½m2
~�þ
1

þm2
~�þ
2

� 2M2
W ��2�1=2; (4.46)

where 
�;� can take the value �1 and summarize the

ambiguities in the reconstruction [29]. 
� represents the

sign of � so that � ¼ 
�
ffiffiffiffiffiffi
�2

p
. 
� represents the M2 $ �

symmetry in the reconstruction so that Sgn
� ¼ Sgnð�2 �
M2

2Þ. In the numerical computations of the one-loop cor-
rection to the neutralino masses in Sec. VB, we have taken
the set corresponding to 
�¼
�¼1. Once M2 and � are

known, the remaining parameterM1 can be extracted from
the knowledge of one of the masses of the neutralinos. For
example, in the case where the neutralino is mostly bino-
like and corresponds to the lightest neutralino with mass
m~�0

1
as what occurs with the models with gaugino mass

unification at the grand unified theories (GUT) scale, we
have3

M1 ¼
m4

~�0
1

�M2m
3
~�0
1

� ð�2 þM2
ZÞm2

~�0
1

� ðs2�M2
Z�� ð�2 þ s2WM

2
ZÞM2Þm~�0

1
þ s2�s

2
WM

2
Z�M2

m3
~�0
1

�M2m
2
~�0
1

� ð�2 þ c2WM
2
ZÞm~�0

1
� s2�c

2
WM

2
Z�þ�2M2

: (4.47)

Having M1, M2, �, a consistency check can be made to
make sure that M1 is indeed given through Eq. (4.47) with
m~�0

1
as input and not some other neutralino. This somehow

shows the ambiguity, already encountered in extracting
M2, � from the 2 chargino masses, in reconstructing the
Lagrangian parameters from the knowledge of three
masses only. This said, considering that, with the present
limits on the chargino masses, the effect of mass splitting is
small like, as we will see, the effect of the radiative
corrections on the neutralino masses, discovery of both
charginos almost certainly guarantees the discovery of
the two Higgsino and the winolike neutralinos with masses
of the same order as the corresponding charginos therefore
allowing to select the correct ðM2; �Þ from the chargino
reconstruction. If the binolike is not too heavy it will then
be easy to single out and hence measure M1. Another
exploration about the correct extraction of M2, �, M1,
can also be done through the measurements of some cou-
plings of the charginos (see, for example, [30] for a tree-
level analysis) and the neutralinos (see, for example, [31]).
We will see below how one can extract these parameters in
decays involving the neutralinos combined with the mea-
surements of the chargino masses. Although the situation
here is quite different from the mixing in the sfermions,
exploiting decays as inputs, to fix the underlying parame-
ters less unambiguously when mixing takes place, is prom-
ising. We will get back to this issue in a forthcoming
publication. Meanwhile, let us give an example about the
reconstruction. As an example the measured masses that

we take as input are the two chargino masses with m~�þ
1
¼

232 GeV and m~�þ
1
¼ 426 GeV and the lightest neutralino

mass m~�0
1
¼ 98 GeV. From the chargino masses, we ob-

tain four solutions for ðM2; �Þ according to Eq. (4.46). For
each one of these solutions, we first reconstruct the corre-
sponding M1 by imposing the mass of the ~�0

1 taken as
input. In the example we have taken, the four solutions for
ðM2; �;M1Þ are (all given in GeV)

ð250:39 399:78 100:38Þ for 
� ¼ 1; 
� ¼ 1;

ð240:39;�405:86 98:22Þ for 
� ¼ 1; 
� ¼ �1;

ð399:78 250:39 103:68Þ for 
� ¼ �1; 
� ¼ 1;

ð405:86;�240:39 100:05Þ for 
� ¼ �1; 
� ¼ �1:

(4.48)

Each solution will lead to different predictions on the
observables in the chargino and neutralino sector as well
as the sfermion/Higgs sector. Comparing the theoretical
predictions to the measurements of a minimal set of these
observables lifts the four-fold ambiguity. Theoretically,
with each set of solutions in Eq. (4.48), we can give one-
loop predictions given some other model parameters that
indirectly enter in the one-loop calculation. For simplicity,
and to avoid having to deal with QED corrections, we
consider the prediction on the 3 other neutralino masses
and the decays ~�0

2 ! ~�0
1ð�; Z0Þ. The former is a pure one-

3Equation (4.47) was derived in [26]; however, there is a typo.
s2W in the last term in the numerator of Eq. (4.47) is missing in
[26].
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loop effect. We take the pseudoscalar mass MA0 ¼
300 GeV, a common soft-SUSY sfermion mass M~f ¼
500 GeV, a common Af ¼ 0, the SUð3Þ gaugino mass is
set at M3 ¼ 1000 GeV and t� ¼ 10. For t�, the results we
present below are within the MH scheme. ��ð~�0

2 ! ~�0
1Z

0Þ
is the one-loop correction to the rate ~�0

2 ! ~�0
1Z

0.
The results in Table I show that disentangling between

the possible solutions is, in principle, possible even if not
all neutralino masses are measured. For example, the rate
~�0
2 ! ~�0

1Z
0 is a clear cut indicator for the sign of 
� since

this rate is an order of magnitude larger if the Higgsinolike
neutralino is lighter than the winolike neutralino. If a
precision measurement below the 10% level can be
achieved on this observable, it can, by itself, also disen-
tangle between all four solutions. Considering the small-
ness of the rate ~�0

2 ! ~�0
1Z

0, this observable is perhaps of
academic interest. Note, however, that it can, in principle,
be used to lift the degeneracy between all four solutions.

Combining measurements like this with measurements of
some of the other neutralino masses or measuring all the
neutralino masses is certainly a good way to lift the
ambiguity.

V. APPLICATIONS AND EXAMPLES AT ONE
LOOP

Our code has been checked extensively. We have written
a script that automatically calculates cross sections for all
2 ! 2 process in the MSSM at one loop. We check ultra-
violet finiteness as well as the independence in each of the
nonlinear gauge parameters. Results of these extensive
checks can be found in [32].
Moreover, we have compared the results of the code and

the renormalization procedure with quite a few observables
that have appeared in the literature. Apart from these com-
parisons, which we will report here, the flexibility of the
code allows us to study the scheme dependence of the re-
sult. We show, here, a few examples, taken from studies by
different groups, of comparisons ranging from mass cor-
rections, two-body decays as well as 2!2 processes pay-
ing a particular attention to the important t� scheme depen-

dence. For the latter, we consider the schemes introduced
in [9] and summarized in Sec. II. The examples we will re-
view here cover the sectors we studied in this paper, leav-
ing aside the Higgs sector that we studied at length in [9].
Before embarking on showing our results for some ob-

servables at one loop, let us briefly describe how we treat
infrared divergences. The one-loop corrections can still
contain infrared divergences due to photon virtual ex-
changes. These are regulated by a small photon mass.
The photon mass regulator contribution contained in the
virtual correction should cancel exactly against the one
present in the photon final state radiation. The photonic
contribution is, in fact, split into a soft part, where the
photon energy is less than some small cutoff kc,
Msoft

� ðE� < kcÞ and a hard part with Mhard
� ðE� > kcÞ.

The former requires a photon mass regulator. We use the
usual universal factorized form with a simple rescaling for
the case of the gluon correction in all processes we have
studied where the non-Abelian coupling of the gluon is not
at play. The test on the infrared finiteness is performed by
including both the loop and the soft bremsstrahlung con-
tributions and checking that there is no dependence on the
fictitious photon mass �� or gluon mass �g. For the brems-

strahlung part, we use VEGAS adaptive Monte Carlo inte-
gration package provided in the FFL bundle and verify the
result of the cross section against COMPHEP [33]. We
choose kc small enough and check the stability and inde-
pendence of the result with respect to kc.

A. Corrections to the sbottom and stau masses

We compare our results with those of Ref. [34], where an
approach similar to ours in this sector is taken. For t�, the

TABLE I. Disentangling between the four solutions forM2, �,
and M1 from the input with m~�þ

1
¼ 232 GeV, m~�þ

1
¼ 426 GeV,

and m~�0
1
¼ 98 GeV. All masses and decay widths are in GeV

units. �� is the one-loop correction in the MH scheme.


� ¼ 1, 
� ¼ 1
mtree-level

~�0
2

¼ 232:34, m
phys

~�0
2

¼ 232:19,

mtree-level
~�0
3

¼ 405:26, m
phys

~�0
3

¼ 407:41,

mtree-level
~�0
4

¼ 425:69, m
phys

~�0
4

¼ 425:77,

�ð~�0
2 ! ~�0

1�Þ ¼ 0:308� 10�8,

�ð~�0
2 ! ~�0

1Z
0Þtree-level ¼ 0:223� 10�2,

��ð~�0
2 ! ~�0

1Z
0Þ ¼ 0:533� 10�4.


� ¼ 1, 
� ¼ �1
mtree-level

~�0
2

¼ 231:83, m
phys

~�0
2

¼ 231:74,

mtree-level
~�0
3

¼ 414:02, m
phys

~�0
3

¼ 414:19,

mtree-level
~�0
4

¼ 422:79, m
phys

~�0
4

¼ 423:46,

�ð~�0
2 ! ~�0

1�Þ ¼ 0:182� 10�7,

�ð~�0
2 ! ~�0

1Z
0Þtree-level ¼ 0:202� 10�2,

��ð~�0
2 ! ~�0

1Z
0Þ ¼ 0:780� 10�4.


� ¼ �1, 
� ¼ �1

mtree-level
~�0
2

¼ 236:17, m
phys

~�0
2

¼ 236:17,
mtree-level

~�0
3

¼ 256:54, m
phys

~�0
3

¼ 254:71,

mtree-level
~�0
4

¼ 425:00, m
phys

~�0
4

¼ 425:81,

�ð~�0
2 ! ~�0

1�Þ ¼ 0:142� 10�7,

�ð~�0
2 ! ~�0

1Z
0Þtree-level ¼ 0:197� 10�1,

��ð~�0
2 ! ~�0

1Z
0Þ ¼ 0:271� 10�2.


� ¼ �1, 
� ¼ �1

mtree-level
~�0
2

¼ 231:76, m
phys

~�0
2

¼ 232:59,

mtree-level
~�0
3

¼ 249:64, m
phys

~�0
3

¼ 249:53,

mtree-level
~�0
4

¼ 425:80, m
phys

~�0
4

¼ 425:65,

�ð~�0
2 ! ~�0

1�Þ ¼ 0:368� 10�10,

�ð~�0
2 ! ~�0

1Z
0Þtree-level ¼ 0:277� 10�1,

��ð~�0
2 ! ~�0

1Z
0Þ ¼ 0:157� 10�2.
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authors of [34] take a DCPR scheme and comparewithDR.
The mixing parameter in [34] is, however, defined through
the naive scheme of Eq. (3.38).

In order to conduct this comparison, we first need to
implement the same set of input parameters as in [34]. We
therefore slightly change our scheme to predict the heav-
iest sbottom mass m~b1

at one loop instead of the heaviest

stop mass m~t1 which is therefore taken as input. Because

our code is quite flexible, this change can be made very
easily. The set of parameters corresponds to the (tree level)
choice � ¼ 100 GeV, M1 ¼ 95 GeV, M2 ¼ 200 GeV,
M3 ¼ 719 GeV, MA0 ¼ 150 GeV, and M~fR

¼ M~fL
¼

Af ¼ 300 GeV. This assumes implicitly that these

Lagrangian parameters have been reconstructed from the
physical inputs. Let us discuss our results first, taking the
same scheme for the sfermion mixing parameter as in
Ref. [34] before commenting on the impact of taking the
SLOOPS default scheme for this parameter. As Fig. 1 shows,

the corrections are almost insensitive to the t� scheme in

the case of the correction to the sbottom mass, which is
very welcome. Indeed, the A��, DR, and DCPR are within
0.03% and thus indistinguishable, they are shown as one
prediction in Fig. 1. The MH scheme deviates very slightly
from the other schemes, especially for small t�, this dif-

ference is at most of order 0.3%. However, in this case, the
uncertainty introduced by the MH scheme is an order of
magnitude smaller compared to the total correction which
is of order 3–4%. For the sbottom, the corrections are due
essentially to the QCD/SQCD (supersymmetric quantum
chromodynamics) corrections increasing with t� from 3%

to about 4%. This correction is by itself small. The correc-
tion in the case of the stau mass is even smaller by an order
of magnitude at least. However, here the MH uncertainty at
small t� is noticeable at small t� of order 0.1–0.2% from

the other three t� schemes which agree with each other to

better than 0.01%. The reason for the (almost) scheme
independence is that the t�-scheme dependence of the

sbottom mass as well as of the stau mass is proportional
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FIG. 1 (color online). Heaviest sbottom massm~b1
and heaviest stau massm~�1 at tree level (solid line) and at one loop for the A�� (and

also, DR and DCPR) scheme (dashed line) and for the MH scheme (dash-dot-dotted line) as a function of t�. The percentage correction

is also given.
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to s22� ’ 4=t2� which is strongly suppressed for large t�.

Our results for the DCPR and DR schemes are in excellent
agreement with those of Ref. [34]. Concerning the choice
of the mixing parameter �m2

f12
, we observe a small differ-

ence between the default choice in SLOOPS given by
Eq. (3.37) and the one given by Eq. (3.38). To give an
idea, the difference is about 0.2% in the sbottom mass
correction for both t� ¼ 10 and t� ¼ 50.
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FIG. 2 (color online). Neutralino masses at tree level (solid/black line) and at one loop by using the A�� scheme (dashed/blue line),
the DR scheme (dotted/light green line), the DCPR scheme (dash-dotted/ purple line), and the MH scheme (dash-dot-dotted/red line)
as a function of t�.
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B. Corrections to the masses of the heaviest neutralinos,
m�0

2;3;4

We calculated the quantum corrections to the masses of
the three neutralinos for the different schemes of t� im-

plemented in our code and compared our results with
Ref. [26], which works within the DCPR scheme but
otherwise takes the same input parameters, namely, the
chargino masses and the lightest supersymmetric particle
(LSP) mass. The input chargino/neutralino parameters are
m�þ

1
¼ 180 GeV, m�þ

2
¼ 350 GeV, m�0

1
¼ 160 GeV, we

choose, as in [26], the model corresponding to 
� ¼ 
� ¼
1 in Eqs. (4.46) and (4.47) in order to reconstruct the three
fundamental parameters M1, M2, and �. The other input
parameters given in Ref. [26] which enter indirectly in the
loop calculation areMA0 ¼ 150 GeV,M3 ¼ 600 GeV and
for the sfermion sector, M ~LL

¼M~eR ¼M ~QL
¼M~qR ¼

300GeV, Ae¼Ad¼900GeV, and Au ¼ 100 GeV.
Figure 2 shows our findings. The results obtained by using
the DCPR scheme is in complete agreement with Fig. 2 of
the Ref. [26]. The corrections within the A�� scheme, DR
scheme, and DCPR scheme are very modest. They are
largest for m�0

3
, where they reach a maximum of 5 GeV,

which corresponds to a mere 2.5% relative correction. The
results between the A�� scheme and the DR scheme are
almost indistinguishable for all values of t� and all three

masses. The DCPR scheme is also very close to the latter
schemes, a slight deviation occurs for values of t� in excess

of 30. The largest corrections are found with the MH
scheme which deviates considerably from all other
schemes when t� is in excess of 30. Therefore, once again,

this scheme does not look very suitable.

C. Some decays of the two charginos

We compute the full electroweak corrections to a few
decays of the charginos that were considered in Ref. [35]
with the help of the code GRACE-SUSY at one loop. One of
the main differences between our approach and the one
adopted in [35] is the definition of t�. In [35], t� is closely

related to our MH definition. [35] works with renormalized
mixing matrices apart from the case of sfermions where a
shift in the angle defining the diagonalizing matrix is
performed. To conduct the comparison, we take set (A)
of [35] given in Table II; moreover, we have m�þ

1
¼

184:2 GeV, m�þ
2
¼ 421:2 GeV, m�0

1
¼ 97:75 GeV. We

study also the t� scheme dependence of the result. As we

find an excellent agreement at tree level, Table III shows
the tree-level result for both codes in one column. For one-
loop results, the agreement is generally good when we
switch to the MH scheme apart from the corrections to
the �0

3;4 masses where a difference is noticeable.4 The

correction to the �0
2 mass is quite good. The corrections

to the masses are negligible especially in the DR scheme
and A�� scheme. In the one-loop corrections to the decays,
this additional negligible mass correction is not taken into
account in a decay such as ~�þ

1 ! Wþ�0
2, for example,

especially because of the large mass difference between
~�þ
2 and �0

2. For the decays, the largest discrepancy is for
~�þ
1 ! Wþ�0

1 and ~�þ
2 ! Z�þ

1 . However, we note that

when this discrepancy is largest, the correction within
our MH scheme deviates drastically from the prediction
within the A�� and DR schemes. The MH scheme leads, in
some decays, to too large corrections. For example, for
~�þ
1 ! Wþ�0

1 the MH scheme gives 23% correction
whereas the correction in DR is only 5%. A similar obser-
vation can be made for ~�þ

2 ! ~�þ2 
�, where in the A��

scheme the correction is �0% whereas it reaches 24%
within our MH scheme. These examples also show that
for all decays considered in Table III the predictions of the
A�� andDR are within 2% and very often even much better.
Once more, these examples show that the MH scheme is
not to be recommended, we suspect strongly that the
differences we find between GRACE-SUSY and SLOOPS are
essentially due to the peculiar choice of the scheme based
on the heavy neutral CP-even Higgs that greatly amplifies
the corrections and the differences.

D. eþe� ! ~�þ
1 ~��

1

We now turn to the full Oð�Þ correction to chargino
production at a linear collider. We consider the same
process as the one computed in [35] within GRACE-SUSY,
namely, eþe� ! �þ

1 �
�
1 ð�Þ. We use the same set of pa-

rameters, Set (A), defined in Table II and study the energy
dependence of the total cross section. The same cross
section has been studied in [36,37]. The QED radiation
in view of an event generator has been studied in [38].
Figure 3 shows the cross section of this process computed
at tree level and also at one loop for different t� schemes.

We find excellent agreement with the results of Ref. [35],
when specializing to the MH scheme. The A��, DR, and
DCPR give corrections within the per-mil level and one
can hardly distinguish between the three schemes. For this

TABLE II. Set of supersymmetric parameters defined as set
(A) in [35]. All mass parameters are in GeV.

t� MA0 � ~e ~� ~�

10.00 424.90 399.31 M ~LL
184.12 184.11 182.19

M1 M2 M3 M~lR
118.01 117.99 111.29

100.12 197.52 610.00 Al �398:93 �452:58 �444:84

~u ~d ~c ~s ~t ~b

M ~QL
565.97 565.91 453.05

M~qR 546.78 544.95 546.84 544.97 460.52 538.13

Aq �775:58 �979:08 �784:72 �1025:74 �535:40 �938:50

4Note that we have found perfect agreement with Ref. [26] as
concerns corrections to all ~�0

i (i ¼ 2, 3, 4) masses in the DR and
DCPR scheme, see Sec. VB.
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process and with Set (A), the MH scheme gives system-
atically about �1 to �1:5% difference from the other
schemes which is very small compared to the discrepancies
we have noted for some decays of the charginos with the
same set of parameters. This suggests that the t� scheme

dependence is quite small and explains why our results for
this process agree very well with those of GRACE-SUSY. In
any case, over the whole range of energies, the full Oð�Þ
corrections in the DR scheme amounts to about�9% for a
center of mass energy

ffiffiffi
s

p ¼ 500 GeV reaching a maxi-
mum of about �7% at

ffiffiffi
s

p ¼ 700 GeV and dropping to
about �11% at

ffiffiffi
s

p ¼ 1300 GeV.

E. eþe� ! ~�i
�~�j

eþe� ! ~�1 �~�1, ~�2 �~�2, ~�1 �~�2 have been calculated in
Refs. [39–41]. In Refs. [39,40], only the electroweak

non-QED corrections are computed, the QED corrections
are dismissed on a diagrammatic level by leaving out one-
loop Feynman diagrams with virtual photon exchange. In
Ref. [41], the full Oð�Þ is performed with a resummation
of the leading log QED corrections within a structure
function approach for the universal initial state radiation.
We perform here a complete Oð�Þ calculation of these
processes and compare our results to those of [40] as it
concerns the electroweak non-QED corrections. We there-
fore take scenario 1 of [40] with the following set of
parameters: t�¼20, �¼1000GeV, M1¼94:92GeV,

M2¼200GeV, M3 ¼ 669:18 GeV, MA0 ¼300GeV,
M ~LL

¼M~eR ¼M ~QL
¼M~uR;~dR

¼400GeV, Af¼�500GeV,

M~tR ¼ 360 GeV, and M~bR
¼ 440 GeV. In [40], the elec-

tromagnetic coupling is not taken in the Thomson limit but

is fixed from �MSðM2
ZÞ with �MSðM2

ZÞ ¼ 1=127:934. This

TABLE III. Some ~�þ
1;2 decays at tree level and at one loop with three different t� schemes in SLOOPS compared to GRACE-SUSY for set

(A) defined in Table II. Corrections to the masses of �0
2;3;4 are also given.

Decays (GeV) Tree Level GRACE SLOOPS MH SLOOPS DR SLOOPS A��

~�þ
1 ! 
�~�

þ
1 3:91� 10�2 3:78� 10�2ð�3%Þ 3:79� 10�2ð�3%Þ 4:18� 10�2ðþ7%Þ 4:15� 10�2ðþ6%Þ

~�þ
1 ! �þ~
� 1:47� 10�2 1:48� 10�2ð0%Þ 1:47� 10�2ð0%Þ 1:44� 10�2ð�2%Þ 1:49� 10�2ðþ1%Þ

~�þ
1 ! Wþ ~�0

1 9:65� 10�4 1:28� 10�3ðþ33%Þ 1:19� 10�3ðþ23%Þ 1:01� 10�3ðþ5%Þ 1:03� 10�2ðþ7%Þ
~�þ
2 ! 
�~�

þ
2 1:54� 10�1 1:48� 10�1ð�4%Þ 1:40� 10�1ð�9%Þ 1:52� 10�1ð�1%Þ 1:51� 10�1ð�2%Þ

~�þ
2 ! �þ~
� 6:89� 10�2 5:70� 10�2ð�17%Þ 5:27� 10�2ð�24%Þ 6:75� 10�2ð�2%Þ 6:88� 10�2ð0%Þ

~�þ
2 ! Wþ ~�0

1 1:93� 10�1 2:07� 10�1ðþ7%Þ 2:02� 10�1ðþ5%Þ 2:08� 10�1ðþ7%Þ 2:08� 10�1ðþ7%Þ
~�þ
2 ! Wþ ~�0

2 8:67� 10�1 9:93� 10�1ðþ15%Þ 9:75� 10�1ðþ12%Þ 8:75� 10�1ðþ1%Þ 8:80� 10�1ðþ1%Þ
~�þ
2 ! Z~�þ

1 7:53� 10�1 8:56� 10�1ðþ14%Þ 8:06� 10�1ðþ7%Þ 7:64� 10�1ðþ1%Þ 7:68� 10�1ðþ2%Þ
Neutralino masses (GeV)

�0
2 184.55 184.62 184.60 184.44 184.46

�0
3 405.14 398.30 405.93 407.51 407.38

�0
4 420.49 413.39 420.23 419.54 419.60
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FIG. 3 (color online). Total cross section of eþe� ! �þ
1 �

�
1 ð�Þ as a function of

ffiffiffi
s

p
at tree level (solid/black line) and at one loop (full

order Oð�Þ) in the A�� scheme (dashed/blue line), the DR scheme (dotted/light green line), the DCPR scheme (dash-dotted/purple
line), and the MH scheme (dash-dot-dotted/red line). The right panel gives the percentage correction. In the left panel considering the
A�� scheme, the DR and the DCPR scheme are not distinguishable and we therefore only show the result of the A�� scheme beside the
tree level and the MH scheme.
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absorbs large logarithms compared to our on shell scheme
based on �ð0Þ ¼ 1=137:036. In [40], the mixing parameter
in the stau sector is parametrized through the mixing angle
which is renormalized according to Eq. (3.38). For the sake
of comparison, we will here also switch to this scheme for
the sfermion mixing.

In addition to the tree level cross section calculated with
�ð0Þ ¼ 1=137:036 and the complete Oð�Þ one-loop cor-
rection, we compute the improved tree-level cross section

with �MSðM2
ZÞ ¼ 1=127:934. Our evaluation of the weak

non-QED correction is different from the one in [40]. In
our case, the weak correction is obtained by subtracting the
leading QED corrections. The initial state radiation factor,
including the virtual photon correction and the soft brems-
strahlung photon below the cutoff energy kc, is universal
and known, see, for example, [42],

�QED
VþS ¼ 2�

�

�
ðLe � 1Þ lnkc

Eb

þ 3

4
Le þ �2

6
� 1

�
;

Le ¼ lnðs=m2
eÞ; (5.1)

whereme is the electron mass and Eb the beam energy s ¼
4E2

b. To subtract not only the initial but also the final state

radiation and the final-initial interference QED effect, we
take the result of the virtual one-loop correction and the
soft radiation factor obtained by the code and subtract the
following:

�weakð ffiffiffi
s

p Þ ¼ �virtualþsoftð ffiffiffi
s

p
; kcÞ � �

�
Að ffiffiffi

s
p Þ ln

�
2kcffiffiffi
s

p
�

� 3�

2�
�treeð ffiffiffi

s
p Þ ln

�
s

m2
e

�
: (5.2)

The last term in Eq. (5.2) stems from the collinear singu-
larity due to initial state radiation and we neglect nonlog
terms, the latter that arise from initial radiation are negli-
gible of order 0.3% relative correction. The term Að ffiffiffi

s
p Þ is

extracted numerically based on the fact that the weak non-
QED correction is independent of the cutoff kc. We take
two small enough cutoff kc1 , kc2 to extract Að ffiffiffi

s
p Þ,

�

�
Að ffiffiffi

s
p Þ ¼ �virtualþsoftð ffiffiffi

s
p

; kc1Þ � �virtualþsoftð ffiffiffi
s

p
; kc2Þ

lnðkc2kc1
Þ

:

(5.3)

We have checked that �weakð ffiffiffi
s

p Þ defined this way is inde-
pendent of the cutoff kc by taking other values of kc. Such a
definition of the weak correction has been introduced in
[43].
Our tree-level results for the improved tree level with

� ¼ �MSðM2
ZÞ reproduces the corresponding cross section

in Ref. [40] perfectly.
To help compare our results with those Ref. [40], the

right panel of Fig. 4 shows also the relative weak non-QED

correction with �MSðM2
ZÞ as input rather than �ð0Þ, hence

subtracting large logs from the running of �. Our predic-
tions for the weak correction defined this way are within
1% of those in [40] within the DCPR scheme used in [40].
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FIG. 4 (color online). Total cross section of eþe� ! ~�i �~�jð�Þ as a function of
ffiffiffi
s

p
at tree level (solid/black line) and at full one loop in

the DCPR scheme (dashed/blue line). We also show the tree level improved cross section with �MS (M2
Z) (dash-dotted/red line) and the

pure weak correction in the on-shell scheme as defined in the text (dotted/purple line). The full Oð�Þ relative corrections for the three
channels with respect to the tree-level cross sections with �ð0Þ is shown in the panel on the right (dashed/blue line). We also show the

weak non-QED relative correction (dotted/purple line) where the improved tree-level cross section with �MS (M2
Z) is used to absorb

large logs from the running of �. This correction should be contrasted to the one obtained in Ref. [40]. In order not to crowd the figure,
the channels are not labeled. They can be easily identified as they have different thresholds.
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We have traced this small difference to the different ways
the weak correction is defined from the subtraction of the
QED corrections. The energy dependence of the weak
corrections matches perfectly.

We can now comment on the t� scheme dependence and

the sfermion mixing renormalization scheme. The correc-
tions induced by the different t� schemes are very small.

Even the MH scheme departs by no more than 0.3% from
the DR. The other schemes, DCPR and A��, agree within
better than 0.01% with DR. The difference in the choice of
the sfermion mixing parameter �m2

f12
is even more negli-

gible here. For example, for a center of mass energy
ffiffiffi
s

p ¼
1000 GeV, the one-loop correction to the process eþe� !
~�1 �~�2 differs only about 0.003% when we switch from the
default definition in SLOOPS Eq. (3.37) to the one that has
been usually used Eq. (3.38).

These calculations show that not only it is important to
take into account the QED corrections but also that the
pure electroweak corrections are certainly not negligible,
for example, even after absorbing the effect due to the
running of �, the weak corrections for ~�1 �~�2 production is
about �15%.

VI. CONCLUSIONS

We have presented in detail a complete renormalization
of the sfermion sector as well as of the chargino/neutralino
sector of the MSSM in the case of CP conservation. We
critically analyzed the renormalization of the mixing pa-
rameter in the sfermion sector and discussed different ways
to define it in a consistent manner. This paper is a sequel to
our study in Ref. [9] and completes the presentation of all
the ingredients that are built into our automatized code for
one-loop calculations in the MSSM, SLOOPS. Although
other approaches to renormalizing the MSSM have been
worked out, we believe that our approach treats all the
sectors consistently within the same general on-shell
framework, in particular, about the treatment of mixing
and how one deals with the rotation and diagonalizing
matrices. Moreover, our code permits powerful gauge
checks with the help of the nonlinear gauge-fixing condi-
tion and allows us to easily switch between different
renormalization schemes. Some very powerful and exten-
sive tests have been conducted on the code as concerns
ultraviolet finiteness and gauge parameter independence
on an almost exhaustive list of 2 ! 2 processes, see [32].

In the present paper, we choose to concentrate on a few key
observables in the sfermion and chargino/neutralino sector
and compared our results with some that are found in the
literature while at the same time studying the impact of
different renormalization schemes. We have calculated
one-loop corrections to sfermion masses and also neutra-
lino masses. We have also derived some chargino decay
widths and presented a calculation of the production of
charginos and sleptons at eþe� colliders. We find the
genuine electroweak corrections in these cross sections to
be rather important and should therefore be taken into
account. Having at our disposal a code that allows the
one-loop calculation for any process in the MSSM, it is
now possible to envisage revisiting analyses for the extrac-
tion of the fundamental supersymmetric parameters from
precision measurements at the colliders and use them in
turn for a precision calculation of the relic density, for
example. Finally, let us mention that other renormalization
schemes, with different choices of the input parameters
from the one described in this paper, for the chargino/
neutralino sector are already implemented in the code
and would be part of a forthcoming study. Although in
the many examples we have shown here the QCD correc-
tions are calculated, a complete treatment of the gluon/
gluino sector within an automated code such as SLOOPS

and, in particular, how to easily implement within the code
a regulator for the infrared singularity is work in progress.
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