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We investigate the consequences of replacing the global flavor symmetry of minimal flavor violation

(MFV) SUð3ÞQ � SUð3ÞU � SUð3ÞD � � � � by a discrete DQ �DU �DD � � � � symmetry. Goldstone

bosons resulting from the breaking of the flavor symmetry generically lead to bounds on new flavor

structure many orders of magnitude above the TeV scale. The absence of Goldstone bosons for discrete

symmetries constitute the primary motivation of our work. Less symmetry implies further invariants and

renders the mass-flavor basis transformation observable in principle and calls for a hierarchy in the

Yukawa matrix expansion. We show, through the dimension of the representations, that the (discrete)

symmetry in principle does allow for additional �F ¼ 2 operators. If though the �F ¼ 2 transitions are

generated by two subsequent �F ¼ 1 processes, as, for example, in the standard model, then the four

crystal-like groups �ð168Þ � PSLð2; F7Þ, �ð72’Þ, �ð216’Þ and especially �ð360’Þ do provide enough

protection for a TeV-scale discrete MFV scenario. Models where this is not the case have to be

investigated case by case. Interestingly �ð216’Þ has a (nonfaithful) representation corresponding to an

A4 symmetry. Moreover we argue that the, apparently often omitted, (D) groups are subgroups of an

appropriate �ð6g2Þ. We would like to stress that we do not provide an actual model that realizes the MFV

scenario nor any other theory of flavor.
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I. INTRODUCTION

In the absence of Yukawa interaction, GF ¼ Uð3Þ5 ¼
Uð3ÞQ �Uð3ÞUR

�Uð3ÞDR
�Uð3ÞL �Uð3ÞER

is the

maximal global symmetry that commutes with the gauge
groups of the standard model (SM) [1]. The Yukawa ma-
trices YU;D;E break this symmetry down to1

GF ¼ Uð3Þ5 !YU;D;E
Uð1ÞB �Uð1ÞL: (1)

It was realized a long time ago [3] that these sort of flavor
symmetries forbid flavor changing neutral currents
(FCNCs) at tree level. Most models of new physics do
not posses a rigid flavor structure and large FCNC effects
should be expected in general. On the other hand experi-
ments in the quark flavor sector CLEO, BABAR, Belle,
NA48, KTeV, KLOE, TeVatron, etc., do not, yet, show any
significant deviations of FCNC or CP violation. This mo-
tivated the effective field theory approach, called minimal
flavor violation (MFV) [4], where it is postulated that the
sole sources of flavor violation are the Yukawa matrices.
We shall be more precise later on. New physics contribu-
tions of the MFV type compared to the SM in K0 and Bd

oscillations can still be as large as CSM=CMFV ’

ð0:5 TeVÞ2=m2
W [4].2 It is the size of the Wilson coeffi-

cients CMFV, including its implicit loop suppression factor,
what we refer to as the ‘‘TeV-scale MFV scenario.’’ The
extension of the concept from the quark sector to the lepton
sector depends on the nature of the neutrino masses [6]. For
notational simplicity we shall focus in this work on the
quark sector. The results can easily be transferred to the
lepton sector.
In the MFV approach one immediate question raises

itself: How is the GF symmetry broken? If the symmetry
is broken spontaneously, which is what has been proposed
and investigated so far (cf. [7]), this would then give rise to
3 � 8þ 2 ¼ 26 CP-odd massless Goldstone bosons3 asso-
ciated with the breaking of Uð3Þ3 ! Uð1ÞB. In connection
with non-Abelian family symmetries such Goldstone bo-
sons are known as familons [8]; they are formally similar to
an axion arising from the breaking of an axial Uð1Þ sym-
metry. Because of the fact that they are Goldstone bosons
their interactions with SM currents take the universal form
�ð@��F=fFÞjSM� . The breaking scale fF (decay constant)

is bounded for instance from the processes Kþ ! �þ ���.

*R.Zwicky@soton.ac.uk
†T.Fischbacher@soton.ac.uk
1The further breaking of this group down to Uð1ÞB�L due to

the chiral anomaly [2] is not central to this work.

2We have to keep in mind that by quoting the scale 0.5 TeV we
implicitly assume a loop suppression factor as in the SM.
Besides loop suppression factors the actual scale of new physics
is further masked by renormalization group effects as well as
possible mixing angles of the underlying theory. Somewhat
stronger bounds can be found in a more recent investigation [5].

3Bearing in mind mass contributions from explicit breaking
and anomalous Uð1Þ factors.
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The latter competes with Kþ ! �þ�F since the familon
�F escapes detection due to its weak coupling to matter. In
the case of a global family symmetry with jSM� ¼ �s��dL
the bound fFds

> 108 TeV is rather high [9]. In MFV it

might be a bit lower because of a jVtdV
�
tsj suppression

factor. The relation of fF to the scale in the Wilson coef-
ficient CMFV is a model-dependent question, but we would
expect it to be rather higher than lower. Summarizing,
whereas direct bounds on (continuous) MFV allow for
traces of TeV-scale operators, the dynamics of spontaneous
symmetry breaking suggests the bounds are many orders of
magnitude higher and would imply that MFV flavor phys-
ics is outside (current) experimental reach.

In this paper we aim to ameliorate this situation by
replacing GF by a discrete symmetry. Spontaneous break-
ing of discrete symmetries does not lead to Goldstone
bosons (e.g. [11]). The absence of the latter in this frame-
work constitutes the primary motivation of our work.4 The
main remaining issue is then to investigate whether the
reduced symmetries (or what discrete groups) do provide
enough protection for a discrete TeV-scale MVF scenario.
Are the bounds on the coefficient CdMFV in the TeV-scale
range?

On the technical side this endeavor amounts to studying
the invariants of discrete subgroups. The reduced symme-
try unavoidably leads to further invariants as compared to
GF. This bears as a consequence that the flavor-mass basis
transformation will become observable. The crucial ques-
tion for discrete MFV is then at what level these new
invariants are coming in. In this respect we find it useful
to distinguish models where �F ¼ 2 operators arise from
two �F ¼ 1 processes, as in the SM, and those where this
is not the case.

Finally wewould like to stress two points. First, sincewe
are following the effective field theory approach there is no
obvious connection to the scheme of constrained MFV
[13], which assumes no new operators beyond those
present in the SM. Second, there is no attempt made in
this paper to explain valuable textures of the Yukawa
matrices, i.e. the question of what is flavor. The symmetry
is solely used to ensure that the Yukawa structure governs
all flavor transition. Our work is complementary to the field
of flavor models with family symmetries, revived by recent
experimental information on neutrino masses and mixing
angles [Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix]. Those models often involve discrete symmetries and
extended Higgs sectors attempting to explain the origin of
flavor hierarchies. For a recent review and references on
the subject, with emphasis on the neutrino sector, we refer
the reader to the write-up [14].

The paper is organized as follows: In Sec. II we state the
problem in a more precise form. Section III summarizes
some useful facts about groups and gives an overview of
the discrete SUð3Þ subgroups. In Sec. IV it is shown at what
level new invariants necessarily arise and which groups
have the least invariants. Section V deals with the physical
consequences of the previous findings and proposes to
distinguish flavor models according to the generation
mechanism of �F ¼ 2 operators. In the epilogue we sum-
marize our findings and reflect on the framework and its
possible extensions.

II. FORMULATION

A. Minimal flavor violation

In the SM the quark masses and the Cabibbo-Kobayashi-
Maskawa (CKM) structure originate from the Yukawa
Lagrangian

L Y ¼ �QLHYDDR þ �QLHcYUUR þ H:c:; (2)

which breaks the flavor symmetry down to Uð1ÞB; cf.
Eq. (1). The symbols UR, DR and QL ¼ ðUL;DLÞT denote
right- and left-handed SUð2ÞL singlets and doublets, re-
spectively, of up U ¼ ðu; c; tÞ and down D ¼ ðd; s; bÞ
quarks. The conjugate Higgs field is defined as Hc ¼
i�2H

�.
It is observed that the quark flavor symmetry

Gq ¼ SUð3ÞQL
� SUð3ÞUR

� SUð3ÞDR
(3)

can be formally restored by associating to the Yukawa
matrices the following transformation properties:

YU � ð3; �3; 1ÞGq
; YD � ð3; 1; �3ÞGq

: (4)

In fact the flavor symmetry can even be further enhanced
by two Uð1Þ factors by appropriately assigning Uð1Þ
charges to the quark fields and the Yukawa matrices. In
our opinion there is some freedom in choosing them.5

An effective theory constructed from the SM fields and
the Yukawa matrices is then said to obey the principle of
minimal flavor violation [4], if the higher dimensional
operators are invariant under Gq and CP.6 Operators with

�F ¼ 1; 2 then assume the following form [4]:

4Another alternative is to gauge the flavor symmetries, i.e. use
the Higgs-Englert-Brout mechanism. A dedicated analysis [10]
has been announced in Ref. [7]. This was investigated in con-
nection with family symmetries some time ago [12].

5Any pair of Uð1Þ charges for the fields QL, UR, DR, YU, and
YD which leaves (1) invariant is in principle an option. N.B. in
Ref. [7] Uð1ÞUR

�Uð1ÞDR
was chosen.

6The latter condition might be relaxed by allowing for arbi-
trary CP-odd phases in the coefficients CMFV of the effective
operators. This has been done, for example, for the minimal
supersymmetric standard model (MSSM) in Ref. [15]. One could
go even further and assume strong phases as well, which could
be due to low energy degrees of freedom, such as the ones
studied in the unparticle scenario [16]. Working in the MFV
scenario we though implicitly assume that the new structure does
not involve new light degrees of freedom.
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O�F¼10 ¼ ð �DLYUY
y
UYD� � FDRÞ;

O�F¼1 ¼ ð �DLYUY
y
U��DLÞ �DL�

�DL;

O�F¼2 ¼ ð �DLYUY
y
U��DLÞ2;

(5)

in the left-handed D sector. The symbol � � F ¼ ���F
��

denotes the contracted electromagnetic tensor, 2DL=R �
ð1� �5ÞD and wewould like to add that notation�F ¼ 10,
used here, is rather nonstandard. In the remainder of this
paper we shall omit the explicit indication of the � matri-
ces. Transitions to right-handed quarks demand substitu-
tions of the form DL ! YDDR, etc., by virtue of Gq

invariance (3) and (4), leading to the well-known phenome-
non of chiral suppression. The operators in theU sector are
simply obtained by interchanging the role of the U and D
families. Let us parenthetically note that the predictivity of
MFV [4] in the D sector is in large part due to the fact that
the top is much heavier than the other U quarks

ðYUY
y
UÞij ¼ ðVydiagðyu; yc; ytÞ2VÞij ’ y2t V

�
3iV3j; (6)

where V ¼ Uy
LDL is the CKM matrix, resulting from the

biunitary diagonalization of the

UL ! ULUL; UR ! URUR;

DL ! DLDL; DR ! DRDR;
(7)

Yukawa matrices. The masses are related to the Yukawa

couplings as
ffiffiffi
2

p
mi ¼ vyi (with v ’ 246 GeV) and it is

worth noting that in the limit of degenerate masses the
Glashow-Iliopoulos-Maiani mechanism reveals itself

through ðYy
UYUÞij ! �ij.

B. Discrete minimal flavor violation

Replacing the continuous flavor symmetry with a dis-
crete flavor symmetry requires the following additional
information or assumptions:

ðaÞ the group Dq ¼ DQL
�DUR

�DDR
	 Gq;

D 	 SUð3Þ;
ðbÞ the representation R3ðDQL

Þ ð3D irrep of familiesÞ;
ðcÞ ðpossiblyÞ Yukawa expansion YU=D ! 	YU=D;

	 2 R: (8)

Since the three families have to transform in a 3D irreduc-
ible representation (irrep) this leads us naturally to study
the discrete SUð3Þ subgroups, which we denote by the
symbolD. The irrep has to be specified since some groups
have more than one of them. The reduced symmetry (a)
leads to new invariants and therefore renders the transition
matrices (7) observable. We will argue in Sec. VA that this
gives rise to a rather anarchic pattern of flavor transitions.
This can be controlled by assuming a hierarchy in the

Yukawa expansion.7 In a perturbative-type model, for ex-
ample, the operators with several Yukawa insertions might
originate from higher dimensional operators suppressed by
some high scale� and could mean 	 ’ v=� if the Yukawa
assume a vacuum expectation value around the electro-
weak scale. A rough but conservative estimate in Sec. VB
indicates that for 	 ’ 0:2 CdMFV has the same bounds as
CMFV. In this paper we shall not discuss the Uð1Þ factors,
e.g. (1), any further. We can think of them as being re-
placed by a discrete Zn symmetry, Dq ! Dq � Zn . . . and

they do not play a role in the type of invariants we are
considering.8 Generally the embedding could play a more
subtle role. First there is freedom of embedding D into
SUð3Þ. We will discuss this issue in Sec. VA where it is
argued that the observability of the rotation matrices (7)
can be suppressed, modulo VCKM, for certain groups by a
suitable embedding. Second, we would like to draw the
reader’s attention to the assumption ofDq being embedded

as a direct product of the discrete SUð3Þ subgroups (a) into
Gq. We shall comment on it in the epilogue.

III. ON (DISCRETE) GROUPS

In this section we shall first state a few useful facts about
invariants, groups and representations, which is at the heart
of this paper. Then we shall say a few things about the
classification of discrete SUð3Þ subgroups.

A. Useful facts

Consider irreps fA;B;C; . . .g of some group, continuous
or discrete, and denote the explicit vectors of the irreps by
V ¼ far; bs; ct; . . .g. By the orthogonality theorem the
number of times that the identity appears in the
Kronecker product, denoted by n1,

A � B�C� � � � ¼ n11þ � � � ; (9)

is equal to the number of independent invariants

I n ¼ I rst...
n arbsct . . . ; n ¼ 1 . . . n1; (10)

that can be built out of the set V specified above.
Throughout this paper repeated indices are thought to be
summed over. It is this statement that we shall use shortly
for our main result. Before going on we would like to
mention another fact, peculiar to discrete groups: The
number of elements of the group is equal,

jDj ¼ X
i2irreps

dimðRiðDÞÞ2; (11)

to the sum of the squared dimensions of all irreps.

7Such a notion has, for example, been introduced in Ref. [17].
The authors use the notation 
u;dYu;d and distinguish the case

u;d 
 1 linear MFV and 
u;d �Oð1Þ nonlinear MFV. In the
latter case nonlinear �-model techniques are imperative [17,18].

8In principle though, one could think of embeddings where
they play a more subtle role; cf. the epilogue.
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B. Discrete SUð3Þ subgroups
The discrete subgroups of SUð3Þ were classified a long

time ago [19] and further analyzed as alternatives to
SUð3ÞF in the context of the eightfold way [20]. Explicit
representations and Clebsch-Gordan coefficients were sys-
tematically worked out in a series of papers around 1980
[21,22], partly motivated by the usage of discrete SUð3Þ
subgroups as an approximation to SUð3Þcolor in lattice
QCD, and further elaborated very recently [23–25] in the
context of family symmetries. That the catalog of [20] as
compared to [19] is not complete already surfaced in the
1980s [22,26] and has recently been discussed more sys-
tematically in a remarkable diploma thesis [27].

The discrete subgroups of SUð3Þ are of two kinds. The
first type consist of the analogue of crystal groups of which
we list here the maximal subgroups: �ð168Þ, �ð360’Þ and
�ð216’Þ. The factor’ can in general either be one or three
depending on whether the center of SUð3Þ is divided out or
not. For the maximal subgroups it is three.9 The second
kind are the infinite sequence of groups, sometimes called
‘‘dihedral-like’’ or ‘‘trihedral,’’ �ð3n2Þ � ðZn � ZnÞ 2Z3

and �ð6n2Þ � ðZn � ZnÞ 2S3 for n 2 Z. The symbol
‘‘�’’ stands for isomorphic and ‘‘ 2’’ denotes a semidirect
product. The largest irreps of �ð3n2Þ and �ð6n2Þ are three-
and, respectively, six-dimensional, independent of n. Note,
for all groups the number denotes the order of the group,
i.e. the number of elements. In Appendix A 2 a we argue
that the (D) groups recently emphasized in [27], or more
precisely the six-parameter Dðn; a; b;d; r; sÞ matrix
groups, are subgroups of �ð6g2Þ, where g is the lowest
commonmultiple of n, d and 2.We therefore do not need to
discuss them separately. Further aspects of some groups
and some of their invariants are discussed in Appendix A.

IV. INVARIANTS

The study of invariants I is the main ingredient of this
paper since the effective Lagrangian approach. In the
absence of the knowledge of the dynamics of the under-
lying model the effective Lagrangian assumes the follow-
ing form:

Leff ¼ X
n

Cn
dMFVðInðquarks;YukawasÞ þ H:cÞ;

Cn
dMFV ¼ cn

�dimðInÞ�4
; (12)

where the dimension of the operator (invariant) brings in a
certain hierarchy in the infinite sum above. As previously
mentioned the association of Cn with the scale of new

structure is generally obscured by loop factors, mixing
angles and renormalization group effects. Finding the in-
variants is equivalent to finding the constant tensors of the
symmetry group. All objects are either in a 3 or the
corresponding �3 representation for which we write lower
and upper indices, e.g.10

I ðm;nÞ � Ib1...bn
a1...am; (13)

as is common practice in the literature e.g. [28].

Nonconstant tensors will be denoted byT ðm;nÞ. In principle
this tensor classification is not sufficient for our general
problem since there are three different group factors (8). It
will though prove sufficient here to contract the other
indices.11 We therefore contract the DUR

index and di-

rectly write

ð�UÞar � ðYUY
y
UÞar ð� 2 T ð1;1ÞÞ: (14)

We shall often drop the subscriptU when there is no reason
for confusion. In the remainder we shall use the following
notation for left-handed down quarks:

DL ¼ ðdL; sL; bLÞ ! Di ¼ ðD1; D2; D3Þ ðDi 2 T ð1;0ÞÞ:
(15)

The operators in Eq. (5) are associated with invariants of
the form

I ð2;2Þ
n ¼ ðInÞabrs ð �Dr�a

sDbÞ; �F ¼ 10;

I ð3;3Þ
n ¼ ðInÞabcrst ð �Dr�a

sDbÞ �DtDc; �F ¼ 1;

I ð4;4Þ
n ¼ ðInÞabcdrstu ð �Dr�a

sDbÞ �DtDc
uDdÞ; �F ¼ 2:

(16)

Note that there are groups where �F ¼ 2 operators are

possible with I ð2;2Þ but those structures are definitely too
far away from MFV to be of any interest to us. The group
�ð60Þ � A5 is an example which is discussed in
Appendix A 1.

A. No. 27.—On the necessity of new invariants at the
I ð4;4Þ level

In this subsection we will present a general argument

that there are necessarily further invariants for I ð4;4Þ, cor-
responding to the generic �F ¼ 2 transition (16), as com-
pared to the SUð3Þ case. Note the �F ¼ 2 operator (5) of
Gq is obtained for ðI1Þabcdrstu � �r

a�s
b�t

c�u
d. The problem

9The further groups that are listed in [20] are all subgroups:
�ð60Þ 	 �ð360’Þ, �ð36’Þ 	 �ð72’Þ 	 �ð216’Þ for ’ ¼ 1; 3
and of course generally �ðnÞ 	 �ðn’Þ for n ¼ 36; 72; 216; 360
[20,27]. Once we have established an interesting candidates we
shall proceed to have a look at its maximal subgroups.

10In this notation the basic constant tensors of SUð3Þ are
I ð1;1Þ � �a

b, I ð0;3Þ � 
abc and I ð3;0Þ � 
abc; cf. [28].
11A refined treatment is only necessary when there are new
I ð2;2Þ invariants and those groups are not of interest to us anyway
as explained in the text.
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in Eq. (16) reduces to finding the invariants of the follow-
ing Kronecker product:

KDQL ¼ ð�3� 3� �3� 3Þs � ð�3� 3� �3� 3Þs
¼ n11þ � � � ; (17)

where s stands for the symmetric part and can be justified
as follows: Since the Kronecker product is associative we
may choose an ordering adapted to the symmetries in
Eq. (16). The most economic way is to tensor the quarks
and the Yukawas separately for which only the symmetric
part, indicated above, is needed. Let us first look at the
invariants that can be generated in the case where DQL

!
SUð3Þ:
KSUð3Þ ¼ ðð1þ 8Þ � ð1þ 8ÞÞs � ðð1þ 8Þ � ð1þ 8ÞÞs:

(18)

We shall focus on the product of the four 8’s:

KSUð3Þ ¼ ð8� 8Þs � ð8� 8Þs þ � � � � ð �DTAD� �DTBDÞs
� ðtr½�TC� � tr½�TD�Þs þ � � � : (19)

The Clebsch-Gordan coefficients of the 8 are, of course,
just the generators TA, A ¼ 1 . . . 8, of the SUð3Þ Lie alge-
bra. The Kronecker product of the 8D irrep in SUð3Þ reads
(e.g. [29])

ð8� 8ÞSUð3Þ ¼ ð1þ 8þ 27Þs þ ð8þ 10þ 10Þa: (20)

As argued above only the symmetric part is needed.
Equation (20) is telling us on the one hand that the decom-
position in (19) will lead to three different invariants but
more importantly it tells us how the discrete subgroupDQL

has to decompose in order not to generate further invari-
ants. A necessary condition for an identical decomposition
is that the discrete group contains a 27. The trihedral
groups �ð3n2Þ and �ð6n2Þ are not in this category since
their largest irreps are at most three- and, respectively, six-
dimensional. Going through the character tables in [20]
and the more recent work [27] we realize that there is no
discrete subgroup of SUð3Þ which has a 27D irrep. Note on
even more general grounds that dimð27Þ2 ¼ 729 almost
saturates the relation in Eq. (11) and leaves j�ð360’Þj ¼
1080 as the only hypothetical candidate among the crystal-
like groups.

B. Groups with no new invariants at the I ð2;2Þ (I ð3;3Þ)
level

In this subsection we investigate the structure of the

invariants I ð2;2Þ, which correspond to �F ¼ 10 transitions
(16). With the same reasoning as above this reduces to
analyzing

KDQL ¼ ð�3� 3� �3� 3Þ ¼ n1½DQL
�1þ � � � ; (21)

the number of invariants that can be formed from the

Kronecker product (21). According to Sec. III A the num-
ber of invariants in SUð3Þ equals the number of invariants
of the discrete subgroup, i.e. n1½DQL

� ¼ n1½SUð3Þ� if we
can choose a R3ðDQL

Þ such that

ð3� �3ÞDQL
¼ 1þ 8: (22)

Once more the trihedral groups �ð3n2Þ and �ð6n2Þ can be
excluded immediately since they posses maximally three-
and, respectively, six-dimensional irreps. It turns out that
all three maximal crystal-like subgroups �ð168Þ, �ð216’Þ
and �ð360’Þ (recall ’ ¼ 3) are in the category of (22) and

do therefore not generate any further I ð2;2Þ invariants.
Below we shall briefly discuss the representations and
some other relevant aspects of the candidates.
(I) �ð168Þ � PSLð2;F7Þ � GLð3; F2Þ [23] is discussed

in somemore detail in Appendix A 1 as well. In what
follows we shall permit ourselves to present the
irreps in a compact way, though not unambiguous
in a strict sense, via the relation (11):

j�ð168Þj ¼ 168

¼ j1j2 þ 2j3j2 þ j6j2 þ j7j2 þ j8j2: (23)

Explicit representation matrices can be found in [23]
and the one 3D irrep satisfies (22).

(II) �ð216’Þ.—Equation (11) reads [27]

j�ð216’Þj ¼ 3 � 216
¼ 3j1j2 þ 3j2j2 þ 7j3j2 þ 6j6j2

þ 3j8j2 þ 2j9j2: (24)

Out of the seven 3D irreps one is not faithful12 and
out of the three eight-dimensional irreps two are
complex and therefore not of interest. The other six
3D irreps come in complex conjugate pairs. In the
notation of [27]

�ð216’Þ: 32 � 36 ¼ 33 � 35 ¼ 34 � 37

¼ 11 þ 81 (25)

are the pairings à la Eq. (22).
(III) �ð360’Þ.—Equation (11) reads [27]

j�ð360’Þj ¼ 3 � 360
¼ j1j2 þ 4j3j2 þ 2j5j2 þ 2j6j2

þ 3j8j2 þ 3j9j2 þ j10j2 þ 2j15j2:
(26)

In the notation of [27] the interesting Kronecker
products are

12It is isomorphic to A4 [27], which is a popular group in
attempts to explain tribimaximal mixing (e.g. [14]).
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�ð360’Þ: 31 � 34 ¼ 11 þ 81;

32 � 33 ¼ 11 þ 82; (27)

which implies that both 8D irreps are real and both
are valid candidates for our problem.
Of course the question of whether any subgroups
of �ð168Þ, �ð360’Þ, and �ð216’Þ are in the cate-
gory (22) is a relevant question here. Some, of the
smaller groups, can be excluded on grounds of
their order since by virtue of (11); Eq. (22) de-
mands

order � 74 ¼ 82 þ 32 þ 12: (28)

The group �ð168Þ has the permutation group S4
and the Frobenius group Z7 2Z3 as maximal sub-
groups of which both can be discarded since their
order, jS4j ¼ 24 and jZ7 2Z3j ¼ 21, does not sat-
isfy (28). In the case of �ð216’Þ we are aware of
two maximal subgroups, �ð216Þ ¼ �ð216’Þ=Z3

and �ð72’Þ. The first one has a single 3D irrep
which decomposes as 3� 3 ¼ 1þ 10 þ �10 þ 2 � 3
and is therefore not suitable. The second one:

(IV) �ð72’Þ—Equation (11) reads [27]

j�ð72’Þj ¼ 3 � 72
¼ 4j1j2 þ j2j2 þ 8j3j2 þ 2j5j2

þ 2j6j2 þ j8j2; (29)

and the eight 3D irreps fall into four complex
conjugate pairs as follows [27]:

�ð72’Þ: 31 � 32 ¼ 33 � 34 ¼ 35 � 36

¼ 37 � 38 ¼ 11 þ 81; (30)

and we therefore have four choices for a pair of
irreps.

In the case of �ð360’Þ we are aware of the two maximal
subgroups �ð60Þ � A5 and �ð360Þ � �ð360’Þ=Z3 of
which the former can be excluded by virtue of (28) and
the latter does not admit a 3D irrep13 as can be inferred
from the character table (e.g. [20]) and is therefore not
suitable.

In order to count the number of invariants up to I ð4;4Þ it is
sufficient to know the 8� 8 Kronecker products. We shall
list those for SUð3Þ (20), �ð168Þ [23] �ð72’Þ, �ð216’Þ
and �ð360’Þ. The latter three have been computed from
the character tables given in Ref. [27]:

ð8� 8ÞSUð3Þ ¼ ð1þ 8þ 27Þs þ ð8þ 10þ 10Þa;
ð8� 8Þ�ð168Þ ¼ ð1þ 8þ ð2 � 6þ 7þ 8ÞÞs

þ ð8þ ð3þ 7Þ þ ð�3þ 7ÞÞa;
ð8� 8Þ�ð72’Þ ¼ ð11 þ 8þ ð12 þ 13 þ 14 þ 3 � 8ÞÞs

þ ð8þ ð8þ 2Þ þ ð8þ 2ÞÞa;
ð8� 8Þ�ð216’Þ ¼ ð1þ 81 þ ð31 þ 81 þ 82 þ 83ÞÞs

þ ð81 þ ð82 þ 22Þ þ ð83 þ 23ÞÞa;
ð81 � 81Þ�ð360’Þ ¼ ð11 þ 81 þ ð51 þ 52 þ 82 þ 91Þs

þ ð81 þ 10þ 10ÞÞa: (31)

The brackets indicate the branching rules. The a priori
unclear pairings ð82 þ 22Þ�ð216’Þ and ð3þ 7Þ�ð168Þ can be

inferred from Ref. [30]. The product ð82 � 82Þ�ð360’Þ is

obtained from the one in (31) by interchanging the sub-
scripts 1 $ 2. To this end we shall give an overview of the

number of invariants for I ð2;2Þ, I ð3;3Þ and I ð4;4Þ in Table I.
The number of 3D complex conjugate pairs are also listed.
The symmetrized tensors Ix;y are explained in the caption.

V. BACK TO PHYSICS

A. Flavor to mass basis—new invariants lead to flavor
anarchy

By switching from the flavor basis to the physical (mass)
basis we employ biunitary transformations (7) in a
Uð3ÞUL

�Uð3ÞDL
�Uð3ÞUR

�Uð3ÞDR
space. In the SM

this group is broken down to Uð3Þ3 [cf. Eq. (3)]14 by the

SUð2ÞL gauge group, rendering VCKM ¼ Uy
LDL observ-

able. By choosing a discrete symmetry Dq (8) the group is

further broken down and this will in general render the

TABLE I. Number of complex conjugate pairs and number of
invariants for tensors of type I ðn;nÞ, whose definition can be
inferred from Eq. (16). The subscripts x and y indicate symmet-

rizations of x and y pairs of 3 and �3 indices. I ð3;3Þ
2;1 and I ð4;4Þ

2;2

correspond to the (symmetric) contractions of �F ¼ 1 and
�F ¼ 2 in (16).

Group Order

Pairs

ð3; �3Þ I ð2;2Þ I ð3;3Þ I ð3;3Þ
2;1 I ð4;4Þ I ð4;4Þ

3;1 I ð4;4Þ
2;2

SUð3Þ 1 1 2 6 5 23 15 14

�ð360’Þ 1080 2 2 6 5 28 18 17

�ð216’Þ 648 3 2 7 6 40 27 23

�ð168Þ 168 1 2 7 6 44 29 25

�ð72’Þ 216 4 2 11 8 92 55 43

13The same thing happens in the continuum; the SUð2Þ=Z2 �
SOð3Þ does not admit 2D representations.

14In this section we will take a cavalier attitude towards the
question of the proper Uð1Þ factors.
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transformation matrices (7) observable15 at the order in the
Yukawa expansion where the invariants of the groups D
and SUð3Þ differ.

One can take different points of view here. From a
certain perspective the misalignment of the flavor and
mass basis is simply observable and the result has to be
accepted. We can though push the bar and take a more
active viewpoint and ask the question: Given arbitrary
Yukawa matrices is there an embedding of the discrete
group D into SUð3Þ which allows us to choose UR ’ 1,
DR ’ 1 and either UL ’ 1 or DL ’ 1? Note that UL and
DL can be interchanged via the CKM matrix. This ques-
tion is investigated in Appendix B and the answer is no for
the crystal groups but appears to be affirmative for the
trihedral group �ð3n2Þ and �ð6n2Þ for adjusted n and
choice of 3D irrep. Although this in principle allows one
to make the new angles and phases arbitrarily small it is a
fact that non-SUð3Þ invariants by themselves lead to new
flavor patterns. Let assume that UR ’ 1, DR ’ 1 and
UL ’ 1, implying DL ’ VðCKMÞ, and then the

�ð3n2Þ=�ð6n2Þ invariant (A14) and (A20) becomes

I ð2;2Þ
2 � ð �D1D1

�D2D2 þ �D2D2
�D3D3 þ �D1D1

�D3D3Þ
! ð �dðV�

udVusÞsLÞð �dðV�
cdVcsÞsLÞ þ � � �

$ L�S¼2
eff �Oð�2Þ; (32)

and becomes a �S ¼ 2 operator, at second order in the
Wolfenstein parameter [� ’ cosð�CÞ ’ 0:22], in the mass
basis, whereas in the MFV scenario this transition is gov-
erned by jV�

tsVtdj2 �Oð�10Þ. This seems rather anarchic.
New invariants therefore spoil predictivity and it seems
desirable to track or control them in some way.

B. If ð�F ¼ 2Þ � ð�F ¼ 1Þ � ð�F ¼ 1Þ,
then I ð4;4Þ ! I ð2;2ÞI ð2;2Þ

The view that in a quantum field theory any term, not
forbidden by symmetry, emerges dynamically is deeply
rooted (e.g. [31]). The crucial pragmatic question for our
approach is what are the bounds on the coefficients CdMFV.
We will find it useful to divide models in certain classes
and reflect on a few specific examples.

In the case where there is no suppression of higher order
terms, other than the Yukawa expansion itself, the results
of Sec. IVA indicate that at the �F ¼ 2 level (16) new

invariants of the type I ð4;4Þ (could) emerge. This seems
rather dangerous at first sight because the results of the
previous subsection imply that new invariants upset the
flavor structure and predictivity since the mass-flavor basis

transformation becomes observable. As hinted at above it
would appear too hasty to conclude that no discrete flavor
group is suitable. The generation mechanism of �F ¼ 2
operators has to be reflected upon. In rather general terms
we may want to distinguish the two cases where the �F ¼
2 process is generated via two subsequent �F ¼ 1 parts
and where this is not the case.16 We shall call the former
‘‘family irreducible’’ and the latter ‘‘family reducible’’; cf.
Fig. 1. The SM or the R-parity conserving MSSM (cf.
Fig. 2), as presumably many perturbative models, are of
the family reducible type. The composite technicolor
model of Ref. [1] cannot be claimed, in the absence of
the understanding of the nonperturbative dynamics of the
preon confinement, to be in the family reducible class.
The family irreducible property (cf. Fig. 1) is a sufficient

condition for a TeV-scale discrete MFV scenario if the
global flavor group Dq is built from the following

crystal-like groups:

�ð168Þ; �ð72’Þ; �ð216’Þ and �ð360’Þ: (33)

Essentially in this case the potentially dangerous invariants

factorize I ð4;4Þ ! I ð2;2ÞI ð2;2Þ and the latter have the same
invariants as the groups in Eq. (33).
Below we would like to reflect upon this rather general

statement via examples and argue that even family-irre-

FIG. 1. (Left) Family irreducible: generic �F ¼ 2 process.
(Right) Family reducible: �F ¼ 2 process can be disconnected
into two �F ¼ 1 parts. There is no horizontal or family charge
flowing from the left to the right. The family reducible property
is a sufficient property for a TeV-scale discrete MFV scenario for
any of the groups Eq. (33).

FIG. 2. Family reducible: The double wiggly lines indicate
cuts through the diagrams where there is no (horizontal) family
charge flowing. (Left) SM box diagram. (Right) An example of a
gluino contribution in the R-parity conserving MSSM.

15From another viewpoint it is the absence of the Goldstone
bosons, in the approach followed here, that leads to further
observable parameters. The latter are in one to one correspon-
dence with the reduction of observable parameters. Counting in
the quark sector, 18 � 2 Yukawa parameters minus 26 Goldstones
gives 4 CKM parameters and 6 quark masses [7].

16One is tempted to say somewhat in the spirit of the phenome-
nological superweak model for CP violation [32], bearing in
mind though that not all features such as, for example, the reality
of the CKM matrix are relevant here.
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ducible-type cases may be suitable in (many) perturbative-
type models.

(i) �ð360’Þ model independent.—The most suitable
candidate is �ð360’Þ since the first new invariants

appear only at the I ð4;4Þ level; cf. Table I. The dis-
cussion of the previous subsection [cf. Eq. (32)]
suggests that the most severe constraints could
come from s ! d transitions. We shall attempt a
rough estimate of the real part of�S ¼ 2 transitions.
In the notation of Eq. (12) the effective Lagrangian
assumes the following form:

�L�S¼2
eff ¼ 	4

�2

X
n

cnInð�ð360’ÞÞabc21stu

�ð �d�a
s�b

t�c
usLÞð �d�1

2sLÞ; (34)

where the transition matrices could be either �U or
�D (14). The symbol 	 denotes the Yukawa expan-
sion parameter (8). It appears to the fourth power
because of the four additional Yukawa matrices. We
can now ask the following question: How small does
	 need to be in order for CdMFV (12) to satisfy the
same kind of experimental bounds as for CMFV found
in Ref. [4]? The discussion of the subsection [cf.
Eq. (32)] suggests that s ! d could be induced at
first order in � as compared to order jVtsV

�
tdj � �5 in

MFV. The total �S ¼ 2 transition could therefore be
Oð�6Þ as compared to Oð�10Þ in MFV. According to
our reflection above the condition is 	4=�4 ’ 1 and
therefore 	 ’ � ’ 0:2.

(ii) MSSM soft terms and �ð360’Þ.—In the MSSM
some additional flavor structure enters through the
soft terms, e.g. the squark mass matrix ~m2

Q, which

can be considered to be a T ð1;1Þ tensor. It was
suggested a long time ago in the spirit of MFV
[33] that the nine parameters of the Hermitian ~m2

Q

could be organized into a Yukawa matrix expansion:

ð ~m2
QÞrc ¼ ~m2ða1�r

c þ bð1Þ1 ð�UÞrc þ bð2Þ1 ð�DÞrc

þ bð1Þ2 ð�U�D þ H:c:Þrc þ � � �Þ:
The first correction of the type given in Eq. (34), in
this expansion, would be given by

ð� ~m2
QÞrd ¼ bð1Þ3 Inð�ð360’ÞÞabcdrstu �a

s�b
t�c

u: (35)

Note the assumption of the Yukawa hierarchy trans-
lates into Oðb1Þ ’ Oðb2	�2Þ ’ Oðb3	�4Þ for the
coefficients.17

(iii) Family irreducible examples (cf. Fig. 3).—
(1) In the R-parity violating MSSM, which is family

irreducible [Fig. 3(left)], the fact that each vertex
has to be Dq-invariant prevents the generation of

nonfactorizable I ð4;4Þ invariants. This effectively
happens because the R-parity violating vertices
�00
ijkU

iDjDk (U and D are superfields) do not allow

for new structures because 3� 3� 3 contains the
trivial representation only once for the groups in
Eq. (33).18

(2) Lacking a concrete example, let us imagine an
effective theory with an interaction vertex Leff �
CabA
rs ð �Dr�a

sDbÞĝA. The variable A is an index of a
nontrivial representation A appearing in �3� �3�
3� 3 ¼ Aþ � � � . The symbol CabA

rs denotes a gen-
eralized Clebsch-Gordan coefficient that makes the
interaction DQL

invariant. The scalar particle ĝ is

supposed to be heavy and, when integrated out,
leads to �S ¼ 2 structure with a (new) nonfactoriz-

able I ð4;4Þ structure; cf. Fig. 3(right).

VI. EPILOGUE

Before contemplating the scenario we shall briefly sum-
marize our main results. The reduced symmetry leads
generally to further invariants and renders the mass-flavor
basis transformation matrices observable, which can also
be seen as a direct consequence of the absence of the
Goldstone bosons themselves. Moreover non-SUð3Þ invar-
iants do upset MFV hierarchies in a rather anarchic way;
cf. Sec. VA. In Sec. IV we have established, through an
argument based on the absence of a 27 for discrete SUð3Þ
subgroups, that there necessarily are new invariants for

I ð4;4Þ. The latter enter generic �F ¼ 2 transitions (16). In

FIG. 3. Family irreducible: The double wiggle lines indicate
cuts through the diagrams where there is no (horizontal) family
charge flowing. (Left) An example of a squark contribution in
the R-parity violating MSSM. Yet, this diagram does not gen-
erate new flavor structure in discrete MFV. (Right) Engineered
example which is family irreducible and does lead to new
invariants in discrete MFV.

17The assumption of a Yukawa hierarchy is not always imposed
in the literature (e.g. [34]). The finite dimension of the matrices
makes the general series collapse at order b5. Although the
expansion contains more parameters than unknowns predictivity
results from the assumption that the bi are of the same order.
Moreover CKM and mass hierarchies also help in this respect.

18To be even more concrete, in MFV the structure is given
by �00

ijk
MFV ¼ a1
ajkðYUY

y
DÞia þ a2
abcðYUÞiaðYDÞjbðYDÞkc þ� � � provided the Uð1Þ structure does not forbid them from the

start [34].
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cases where the �F ¼ 2 process is generated via two
�F ¼ 1 subprocesses, which we called family reducible,

the invariant factorizes: I ð4;4Þ ! I ð2;2ÞI ð2;2Þ. For the latter
the groups �ð168Þ, �ð72’Þ, �ð216’Þ and �ð360’Þ do
provide enough symmetry to imitate SUð3Þ at this level
and thus are valid candidates for a TeV-scale discrete MFV
scenario with Yukawa expansion parameters of the order of
	�ð360’Þ ’ 0:2. Models which are not of the family reduc-

ible type may still be viable candidates, especially if they
are perturbative. An overview of the number of invariants
is given in Table I. Below we shall add a few not neces-
sarily connected thoughts on MFV and the framework
proposed here.

(i) Origin of discrete symmetry.—One might of course
ask the question about the origin of such discrete
symmetries. They might originate from compactifi-
cations in string theory, where it was found that the
trihedral group �ð54Þ can appear [35] or they could
appear from the breaking of a continuous symmetry;
cf. [36] for a recent investigation. The latter has to
happen, presumably, at some high energy in order
not to make the so far unseen familons too visible.
Wewould like to add that whether global symmetries
originate from local ones or not can have subtle
physical consequences [37].

(ii) This and that.—Surely it is possible that the groups
D (8) are of different types. We have focused on
DQL

, which governs the DðUÞL ! DðUÞ0L transi-

tions. The groups DDR
would matter once we con-

sider DR ! D0
RðLÞ-type operators, where again the

groups (33) would provide the most protection.
Needless to say that if the question of flavor is not
linked to a scale close to the TeV scale, and the
breaking ofDq (or Gq) happens at a high scale, then

experimental bounds do not favor any particular
groups. Though in the MSSM, for example, the
implementation of MFV is related to supersymme-
try breaking through the soft terms [4,33] (35) and
this in turn suggests a link of flavor to the hierarchy
problem.

(iii) Embeddings.—The formulation (8) could be re-
fined by constructing a discrete subgroups of Gq

(3) which does not factor into direct products of
SUð3Þ subgroups, much in the same way as the
discrete subgroup �ð81Þ 	 Uð3Þ � Uð1Þ �
SUð3Þ19 cannot be written as a direct product of a
discrete SUð3Þ and Uð1Þ subgroup; �ð81Þ =2
DUð1Þ �DSUð3Þ. One might wonder what the con-

sequences for the invariants are.
(iv) Model of (d)MFV.—MFV is an empirically moti-

vated effective field theory approach. Up to now no

explicit model of MFV has been constructed,20

though the seeds of a scenario were put forward
in [7,18]. As hinted at in the introduction the rela-

tion between the MFV scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�2CMFV

p
and the

breaking scale(s) fF can only be answered model
by model. It has to be added that a model of MFV
without the input of the CKM and mass structure
seems to be at the same level of difficulty as con-
structing a theory of flavor which has proven to be a
hard problem. One should not forget that besides
being predictive and testable MFV has other ap-
pealing properties: In an R-parity violating MSSM,
MFV provides enough protection to evade bounds
on the proton decay [40]. MFV also serves as a
reference point for any model with flavor structure
and facilitates comparison of different models.

Our aim, in this work, was to point out general issues of
implementing MFV via a discrete group. We would hope
that this work would be of some help for further inves-
tigations towards more specific models, where for one
reason or another one or the other invariant does not turn
out to be as menacing as in the essentially model-
independent approach followed here.

ACKNOWLEDGMENTS

R. Z. is particularly grateful to Gino Isidori for discus-
sions which originated this work and to Christoph Luhn,
Thorsten Feldmann and Christopher Smith for very illumi-
nating conversations. Further discussion and correspon-
dence are acknowledged with Nick Evans, Jonathan
Flynn, Claudia Hagedorn, Stephen King, Sebastian Jäger,
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APPENDIX A: EXAMPLES OF INVARIANTS IN
THE FLAVOR BASIS

In this appendix we discuss characteristic invariants of
specific groups (in the flavor basis). From Sec. IVA we
already know that new invariants are present at the level of
the effective theory. The aim of this appendix is to present a
few instructive (concrete) examples. We shall use the
notation (15) for the left-handed D quarks.

1. Crystal groups �

We shall discuss �ð60Þ and �ð168Þ which are both
instructive.
The group �ð60Þ.—The representations of �ð60Þ �

A5 � Icosahedral 	 SOð3Þ have for instance been studied in
[41]. There are two real 3D irreps which we shall denote by

20Yet, in practice anomaly mediated supersymmetry breaking,
with CKM structure, is close to MFV [4].

19�ð81Þ  �ð27Þ was first introduced in Ref. [38] and dis-
cussed in further detail in Appendix B of Ref. [39].
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31 and 32. Their product representation takes the following
form:

3 i � 3i ¼ 1þ 3i þ 5; i ¼ 1 . . . 2: (A1)

The 3i on the right-hand side (RHS) of (A1), with (15),
reads

3 i � ð �D3D2 � �D2D3; �D1D3 � �D3D1; �D2D1 � �D1D2ÞT:
(A2)

Since �3i ¼ 3i the singlet is obtained by simply taking the
scalar product of the vector above

I ð2;2Þ
�ð60Þ2 ¼ �D3D2

�D3D2 þ � � � : (A3)

The group�ð60Þ does allow for a�F ¼ 2 structure even in
the absence of any Yukawa matrices. The symmetry is

simply not strong enough to constrain flavor transitions
in any way.
The group�ð168Þ.—The isomorphisms of this group are

�ð168Þ � PSLð2; F7Þ � GLð3;F2Þ [23]. The irreps can be
read off from (23) and since the first nontrivial representa-
tions have the same dimension this implies that they are
identical [23]: �3� 3 ¼ 1þ 8. The 8 is therefore real but
the difference appears at the level of product of two 8’s; cf.
Eq. (31). As a consequence of the general discussion in
Sec. IVA the absence of a 27 implies further invariants. We
may construct one of these invariants with the results given
in [23] as follows: Consider the product 3� 3 ¼ �3þ 6 and
the information that the 6D is real, i.e. �6 ¼ 6, and we may
infer that the following product 3� 3� 3� 3 ¼ 1 � 1þ
� � � contains the trivial representation once. The invariant
tensor may be read off from [23]

dabcd ¼ dabcd ¼ X
�

K
abK

�
cdC� ¼

�
1=

ffiffiffi
2

p
abcd ¼ f1113; 2221; 3332g and cyclic;

0 otherwise;
(A4)

where cyclic refers to 1113 ! 3111 ! 1311 ! 1131, etc.
The first equality sign above is to be understood on the
level of indices and not at the level of tensors. Note that the
invariant

f ¼ dabcdDaDbDcDd �D3ðD1Þ3 þD1ðD2Þ3 þD2ðD3Þ3
(A5)

just corresponds to Klein’s famous quartic invariant [42].
From (A4) we can build an invariant of the form

ðI�ð168Þ3Þabcdrstu ¼ dabcddrstu: (A6)

This invariant tensor, with field content (16), leads to terms
of the form

I ð4;4Þ
�ð168Þ3 � �D1

�D1�1
1�2

3D2D2 þ permutations; (A7)

revealing a rather anarchic structure of flavor transitions
even in the flavor basis. Moreover the seventh tensor
I ð3;3Þ
�ð168Þ7 (cf. Table I) can easily be constructed:

ðI ð3;3Þ
�ð168Þ7Þabcrst ¼ dabcid

irst: (A8)

At last we would like to remark that the tensor dab
cd ¼

dabijd
ijcd

dab
cd ¼

8<
:
1 a ¼ b ¼ c ¼ d;
1=2 a ¼ c; b ¼ d or a ¼ d; b ¼ c;
0 otherwise;

(A9)

acts, as expected, like a Kronecker symbol in the 6 space.

2. The trihedral groups �ð3n2Þ and �ð6n2Þ
The main purpose of this subsection is to give some

explicit non-SUð3Þ I ð2;2Þ invariants. In passing we would

like to mention that as long as no real representations are
generated (we have checked that for specific n, k, and l this
is the case), all flavor transitions are governed by the
Yukawa matrices in the flavor basis. This fact is interesting
but irrelevant to our work because the passage to the mass
basis changes everything; cf. Sec. VA. At last we argue
that the D groups are subgroups of an appropriate �ð6g2Þ
which is not known to the authors from any other source.
The groups �ð3n2Þ.—The group admits the following

isomorphism [22]: �ð3n2Þ � ðZn � ZnÞ 2Z3. As previ-
ously mentioned this group has only one and 3D irreps.
They are labeled by the pair ðk; lÞ, where k; l ¼ 0 . . . n� 1
but ðk; lÞ � ð0; 0Þ [and additionally ðk; lÞ � sðn=3; n=3Þ
with s ¼ 1 . . . 2 for n ¼ 3Z] and the following pairs
ðk; lÞ � ð�k� l; ; kÞ � ðl;�k� lÞ describe equivalent ir-
reps. The complex conjugate representation is obtained by
reversing the sign of k and l, i.e. �3ðk;lÞ ¼ 3ð�k;�lÞ. Anything
relevant to us can be gained from the following Kronecker
product [22,24]:

�3 ðk;lÞ � 3ðk;lÞ ¼ 3ð0;0Þ þ 3ð�2k�l;k�lÞ þ 3ð2kþl;l�kÞ; (A10)

and the branching rules for the RHS of (A10) are

3 ð0;0Þ ! 10;0 þ 11;0 þ 12;0; (A11)

and for n ¼ 3Z with k and l, l 2 Zn=3, which reduces to
ðk; lÞ ¼ ð0;�n=3Þ under equivalences

3ðn=3;n=3Þ þ 3ð�n=3;�n=3Þ
! 10;1 þ 11;1 þ 12;1 þ 10;2 þ 11;2 þ 12;2; (A12)

there are nine one-dimensional irreps. With (15) and for
ðk; lÞ ¼ ð0; n=3Þ they take on the form
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1r;0 � �D1D1 þ!�r �D2D2 þ!r �D3D3;

1r;1 � �D2D1 þ!�r �D3D2 þ!r �D1D3;

1r;2 � �D3D1 þ!�r �D1D2 þ!r �D2D3;

(A13)

and for ðk; lÞ ¼ ð0;�n=3Þ the roles of 1r;1=2 are reversed

[24]. Two of the generators, a and c, act in a nontrivial
manner [24]: a � 1r;s ¼ !r1r;s and c � 1r;s ¼ !s1r;s im-

plying 1r;s � 1r0;s0 ¼ 1rþr0;sþs0 . Note 10;0 is therefore the

only singlet. For any n and k, l there are at least five

invariant tensor at the level of I ð2;2Þ, as compared to two
for SUð3Þ; cf. Table I. For the symmetric contraction
�Da �DbDcDd the 11;0 � 12;0 invariant reads

I ð2;2Þ
�ð3n2Þ2 ¼ I ð2;2Þ

�ð3n2Þ1
� 3ð �D1D1

�D2D2 þ �D2D2
�D3D3 þ �D1D1

�D3D3Þ;
I ð2;2Þ
�ð3n2Þ1 ¼ ð �D1D1 þ �D2D2 þ �D3D3Þ2; (A14)

where we have indicated the SUð3Þ invariant I1 for nota-
tional convenience. For the sake of completeness we shall
indicate the explicit 3D irreps, which can be obtained from
Appendix D of Ref. [24], up to a single transformation of
the generator a,

3ð�2k�l;k�lÞ � ð �D1D2; �D2D3; �D3D1ÞT;
�3ð�2k�l;k�lÞ � ð3ð2kþl;l�kÞÞ�:

(A15)

From the explicit forms (A13) and (A15) it is a simple

matter to obtain the I ð2;2Þ invariants and even beyond. To
this end we shall briefly discuss two cases of �ð3n2Þ which
are popular in the literature.

(a) n ¼ 2.—�ð12Þ � A4. In fact this group was brought
into particle physics as early as 1979 [43]. There is
only one 3D irrep with ðk; lÞ ¼ ð0; 1Þ, which is real.
The latter fact can either be checked explicitly,
asserted from there being only one 3D irrep or
inferred from the fact that A4 	 SOð3Þ. The number

of I ð2;2Þ invariants is seven and the reality of the 3
allows to form an invariant

I ð2;2Þ
�ð3n2Þ4 ¼ ð �D1D2Þ2 þ ð �D2D3Þ2 þ ð �D3D1Þ2;

and I5 ¼ I�
4: (A16)

(b) n ¼ 3.—�ð27Þ is the first group that admits nine
one-dimensional irreps. The remaining one com-
pleting the relation (11) is a complex conjugate

pair of 3D irreps. There are nine I ð2;2Þ invariants,
which can easily be obtained from (A13).

The groups �ð6n2Þ.—The group admits the following
isomorphism [22]:�ð6n2Þ � ðZn � ZnÞ 2S3: The irreps are
6, 3, 2 and 1D. The 6D representations 6ðk;lÞ are labeled by

a pair ðk; lÞ, where k ¼ 0 . . . ðn� 1Þ and neither k ¼ 0, l ¼
0 nor kþ l ¼ 0modn [and additionally ðk; lÞ �
sðn=3; n=3Þ with s ¼ 1 . . . 2 for n ¼ 3Z]. Moreover the

following six pairs ðk; lÞ � ð�k� l; kÞ � ðl;�k� lÞ �
ð�l;�kÞ � ðkþ l;�lÞ � ð�k; kþ lÞ describe equivalent
irreps. There are two types of 3D irreps originating from
6k;l when kþ l ¼ 0modn and ðk; lÞ � ð0; 0Þ. The two

types of representations can therefore be labeled by 3ðlÞ1
and 3ðlÞ2 . Complex conjugate irreps are obtained by revers-

ing the sign of ðk; lÞ and (l), respectively. For n 2 3Z there
are three further 2D irreps denoted by 22, 23, and 24 [25],

which are not relevant for I ð2;2Þ invariants. The Kronecker
product for the latter reads [25]

ð�3ðlÞ1 � 3ðlÞ1 Þ � ð�3ðlÞ1 � 3ðlÞ1 Þ ¼ ð3ð0Þ1 þ 6ðl;lÞÞ � ð3ð0Þ1 þ 6ðl;lÞÞ;
(A17)

where the explicit vectors on the RHS, using the parame-
trization (15), are

3 ð0Þ
1 ¼ ð �D1D1; �D

2D2; �D
3D3ÞT;

6ðl;lÞ ¼ ð �D1D3; �D
3D2; �D

2D1; �D
1D2; �D

2D3; �D
3D1ÞT:

Our form looks slightly more symmetric than the one in
Ref. [25] because we have chosen the ðl; lÞ rather than the
ð�l; 2lÞ representative. The remaining relevant Kronecker
products are

3ð0Þ1 � 3ð0Þ1 ¼ 3ð0Þ1 þ 6ð0;0Þ;

3ð0Þ1 � 6ðl;lÞ ¼ 3 � 6ðl;lÞ;
6ðl;lÞ � 6ðl;lÞ ¼ 6ð0;0Þ þ 6ð2l;2lÞ þ 6ð3l;0Þ þ 6ð0;3lÞ

þ 6ð�l;2lÞ þ 6ð2l;�lÞ:

(A18)

The RHS remains the same when 31 is exchanged with 32
on the left-hand side [25]. The relevant branching rules are

3 ð0Þ
1 ! 11 þ 21; 6ð0;0Þ ! 11 þ 21 þ 12 þ 22: (A19)

The Clebsch-Gordan coefficient of 3ð0Þ1 and 6ð0;0Þ on the

RHS of the top Eq. (A18) are immediate from the ones of
(A17) and the ones for 6ð0;0Þ are [25]

6 ð0;0Þ � ð �D1D6; �D
2D5; �D

3D4; �D
4D3; �D

5D2; �D
6D1Þ:

We have used an obvious generalization of (15). It can be

said that at the I ð2;2Þ level there are at least three invariants
to be compared to two for SUð3Þ; cf. Table I. The Clebsch-
Gordan coefficients allow us to obtain them explicitly. We
leave it to the reader to figure out the precise association of
ðn; lÞ and the number of invariants. The question is then

how the singlets in Eq. (A18) can be obtained from 3ð0Þ1 and

6ð0;0Þ. In both cases the generators c and d act trivially and

then it remains to work out which combination remains
invariant under the two remaining generators a and b. Not
surprisingly they are obtained by summing all the entries of
the vectors. The correspondences are
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3ð0Þ1 $I ð2;2Þ
�ð6n2Þ1 ¼ �D1D1

�D1D1þ �D2D2
�D2D2þ �D3D3

�D3D3;

6ð0;0Þ $I ð2;2Þ
�ð6n2Þ2 ¼ �D1D2

�D2D1þ �D1D3
�D3D1þ �D3D2

�D2D3:

(A20)

It worth noting that both 6ð0;0Þ give rise to the same invari-

ant I ð2;2Þ
2 under the symmetric contraction �Da �DbDcDd.

Note that I�ð6n2Þ1;2 are different from I�ð3n2Þ1;2 but since

the two pairs are linearly dependent they are effectively the
same.

The (D) groups are subgroups of �ð6n2Þ
In the classic work of Miller, Blichfeldt, and Dickson

[19] the so-called (C) and (D) subgroups of SUð3Þ are
defined as matrix groups. In [27] it is shown that the (C)
groups are nothing but a special case of �ð3n2Þ. We shall
argue here that the (D) groups are nothing but subgroups of
an appropriate �ð6g2Þ.

In [27], the generators of the (D) groups have been
worked out:

H ¼
�a 0 0

0 �b 0

0 0 ��a�b

0
BB@

1
CCA; T ¼

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA;

R ¼
�r 0 0

0 0 �s

0 ���r�s 0

0
BB@

1
CCA; (A21)

where � � expð2�i=nÞ and � � expð2�i=dÞ. They give
rise to a collection of (not necessarily simple) six-
parameter subgroups Dðn; a; b; d; r; sÞ of SUð3Þ. When
viewed as a matrix subgroup of SUð3Þ in its fundamental
3 representation, the matrices belonging to these (D)
groups have exactly one nonzero entry in every row and
column. Furthermore, the nonzero entries are powers of the
gth root of unity, with g ¼ lcmðn; d; 2Þ, where lcm stands
for the lowest common multiple. The collection of all such
matrices evidently forms a group with 6� g2 elements (the
nonzero entries in the first and second rows determine the
nonzero entry in the third, and there are six ways to place
the elements). As this group must be just the �ð6n2Þ group
with n ¼ g, these (D) groups are subgroups (proper or not)
of the �ð6n2Þ groups. Hence, we can obtain their irreps by
decomposing the �ð6n2Þ irreps. As such, they cannot
possess an irreducible representation whose dimension
exceeds six. An immediate consequence is that the group
Dðn; a; b;d; r; sÞ shares the two invariants Eq. (A20) with
�ð6g2Þ. The latter assertion can also be checked explicitly
from the generators given in (A21). At last wewould like to
mention that from the viewpoint of the (algebraically

defined) �ð6g2Þ groups the (D) groups correspond to non-
faithful representations.

APPENDIX B: EMBEDDING OF DISCRETE
GROUPS INTO SUð3Þ

We would like to settle the question of whether it pos-
sible to approximate an arbitrary SUð3Þ element (a basis
transformation) by an element of a discrete group D 	
SUð3Þ suitably embedded into SUð3Þ. The embedding of
D into SUð3Þ can be varied by conjugation with an arbi-
trary SUð3Þ matrix. The problem therefore reduces to the
question of whether there exist a D 2 D and B 2 SUð3Þ
for a specific A 2 SUð3Þ such that

A ’ BDBy: (A22)

We shall argue below that for �ð3n2Þ this is possible.
Equation (A22) is true if A and D have (approximately)
the same invariants. The invariants are given by the coef-
ficients of the characteristic polynomial which are just the
trace of the matrix and the trace of the square of the matrix.
A sufficient condition for the traces to be (approximately)
the same is that the eigenvalues are (approximately) the
same. This immediately eliminates the crystal groups since
there traces, i.e. characters, only assume very specific
values. This can be inferred from the character tables.
We shall proceed our argument via the eigenvalues. An
SUð3Þ matrix has in general three eigenvalues of the form
�i ¼ ei�i with the determinant condition �1 þ�2 þ
�3 ¼ 0mod 2�. The generators of �ð3n2Þ in the represen-
tation 3ðk;lÞ read [24]

a ¼
0 1 0

0 0 1

1 0 0

0
BB@

1
CCA; c ¼

�l 0 0

0 �k 0

0 0 ��k�l

0
BB@

1
CCA;

d ¼
��k�l 0 0

0 �l 0

0 0 �k

0
BB@

1
CCA; (A23)

with � ¼ expð2�i=nÞ and it is readily seen that the pa-
rameters k, l, and n can be adjusted such that the eigen-
values, of for example c, are arbitrarily close to any pair of
unitary complex numbers. The third one is fixed in both
cases by the determinant condition. For �ð6n2Þ this is also
possible: The elements ca31d

b
31
, with generators c31 and d31

as given in [25], approximate any two eigenvalues with
arbitrary precision for suitable a; b; n; l 2 Z.
We conclude that �ð3n2Þ and �ð6n2Þ contrary to the

crystal groups can be embedded into SUð3Þ such that one
of its elements is arbitrarily close to any SUð3Þ element.
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