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We derive expressions for pion electroproduction amplitudes in the 1=Nc expansion of QCD, and obtain

from them linear relations between the electromagnetic multipole amplitudes that hold at all energies. The

leading-order relations in 1=Nc compare favorably with available data (especially away from resonances),

but the next-to-leading-order relations tend to provide only small or no improvement.
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I. INTRODUCTION

The 1=Nc expansion of QCD [1], where Nc is the
number of color charges, has emerged as one of the prin-
cipal tools for studying low-energy hadronic processes and
hadron static observables. In the simplest construction,
baryons are assembled from a collection of Nc quarks,
each one transforming under the SUðNcÞ fundamental
representation, such that the aggregate forms a color sin-
glet [2]. While analyzing baryons using the Nc quarks’
spin-flavor and combinatoric properties has led to a large
variety of interesting results far too numerous to review
here [3], the most compelling physical picture for describ-
ing the dynamical properties of large Nc baryons (particu-
larly scattering amplitudes) is the chiral soliton approach
[4] originally motivated by the Skyrme model [5]. One of
the most intriguing properties of these studies is the emer-
gence of model-independent linear relations among
meson-baryon scattering amplitudes [6], whose origin
gradually became understood as connected to the large
Nc limit [7,8]. In fact, the existence of such relations can
be traced back to the contracted SU(4) spin-flavor symme-
try that emerges in the single-baryon sector as Nc ! 1,
which in turn is obtained by demanding consistent order-
by-order unitarity in meson-baryon scattering processes
[9–11]; the fact that the former can be derived from the
latter was first demonstrated in Refs. [12].

The large Nc scattering method [12] explains the exis-
tence of baryon resonance multiplets that share similarities
(but are not identical to) those appearing in large Nc quark
models; in particular, one can study resonances with arbi-
trarily large widths [13], exotics [14], and three-flavor
resonances [15]. In addition, the means by which the
spurious Nc > 3 states may be removed [16] has been
explored, as well as the nature of the competing chiral
and large Nc limits [17], and results for multipion pro-
cesses [18].

An essential ingredient to obtaining results useful for
Nc ¼ 3 phenomenology is understanding how to include
1=Nc corrections. The original large Nc scattering ampli-

tude relations were noted long ago to satisfy the t-channel
isospin-spin exchange constraint It ¼ Jt [8]. Using opera-
tor techniques, Ref. [19] showed that static pion-baryon
couplings with I � J are suppressed by a relative factor of

1=NjI�Jj
c , and the same techniques were used to show [20]

that nucleon-nucleon interactions with jIt � Jtj ¼ n are
suppressed by 1=Nn

c . Much more recently, the same tech-
niques were used to show [21] the analogous result for
t-channel pion-baryon scattering amplitudes. The expres-
sion of these pion-baryon constraints in terms of s-channel
observables is explored in Refs. [22].
In this paper we modify the approach for describing

meson-baryon scattering amplitudes in the 1=Nc expan-
sion, as it was applied to the case of pion photoproduction
�N ! �N [23], to provide a model-independent expan-
sion for electromagnetic multipole amplitudes of the re-
lated pion electroproduction process e�N ! e��N,
which at its essence is the virtual photon process ��N !
�N. Studies of �N ! �N using the more traditional ‘‘op-
erator’’ approach to large Nc baryons also appear in the
literature [24]. The fundamentals of hadronic electropro-
duction are reviewed in Ref. [25]. The photon squared
four-momentum q2 generalizes from zero in the photo-
production case to a nonzero value for electroproduction,
joining the center-of-momentum (c.m.) energy W of the
��N system as an independent kinematic variable for all
amplitudes. Furthermore, virtual photons possess not only
the familiar electric and magnetic transverse multipoles,
but scalar and longitudinal multipoles as well, leading to a
much richer set of experimental possibilities. Even so, the
analysis of electroproduction amplitudes in the 1=Nc ex-
pansion is almost identical to that for the case of photo-
production. In this paper we derive expressions for pion
electroproduction amplitudes at leading order (LO) and
next-to-leading order (NLO) in the 1=Nc expansion and
examine our findings using results of the MAID 2007
partial wave analysis from Universität Mainz [26].
Our purpose in this paper is to present only the results of

a strict 1=Nc analysis. While the 1=Nc expansion relates
combinations of distinct amplitudes and predicts the mag-
nitude of these differences at each value of q2 and W—an
infinite number of testable predictions—it does not predict
the shapes of their q2 or W dependences. Obtaining such
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predictions would require imposing dynamical assump-
tions that lie beyond the raw mandates of the 1=Nc expan-
sion. One may impose calculations using, for example,
chiral perturbation theory, specific quark models, or gen-
eralized parton distributions on top of the amplitude pre-
dictions of this paper (granted that they have been
generalized to allow for Nc to be arbitrary) to obtain
predictions for the detailed q2 and W amplitude shapes,
but such modifications lie outside the intentionally limited
scope of this paper. The only explicit 1=Nc dynamical
effects we discuss below arise due to the displaced pole
positions of baryon resonances in different channels.

This paper is organized as follows: In Sec. II we derive
the linear electroproduction scattering amplitude relations.
In Sec. III we confront the relations with the extensive
results of the MAID 2007 partial wave analysis, and com-
ment upon the quality of the comparisons. The numerous
plots have been greatly reduced to accommodate the
printed journal page; readers interested in finer detail are
encouraged to consult the online version or the archived
version [27]. We summarize briefly in Sec. IV.

II. DERIVATION OF LINEAR RELATIONS

Virtually all results stated in this section are a direct
reprise of those for the photoproduction case, Ref. [23]; the
differences are particularly noted. The results for either
process are obtained by starting with general meson-
baryon scattering processes of the form �1 þ B1 ! �2 þ
B2, where �1;2 are mesons and B1;2 are baryons, each pair

carrying fixed strangeness. Since the amplitude relations
[8,12] for such processes depend upon the mesons only
through their quantum numbers, the same results may be
used for electroproduction, for which�1 is a virtual photon
(or technically, a meson interpolating field with the quan-
tum numbers of a virtual photon).

The master scattering formula for the observable scat-
tering amplitudes SLiLfSiSfIJ reads [8,12]

SLiLfSiSfIJ ¼
X

K; ~Ki; ~Kf

½K�ð½Ri�½Rf�½Si�½Sf�½ ~Ki�½ ~Kf�Þ1=2

�
8<
:
Li ii ~Ki

Si Ri si

J I K

9=
;
8<
:
Lf if ~Kf

Sf Rf sf

J I K

9=
;

� �K ~Ki
~KfLiLf

; (2.1)

where subscripts i and f label initial- and final-state quan-
tities, respectively. Here, R indicates the baryon spin
(which equals its isospin for both N and �), s and i label
the spin and isospin of the meson (or photon), respectively,
L labels the orbital angular momentum of the meson (or
photon) relative to the baryon target, S labels the total spin

of the system, and ~K � iþL is a hybrid quantity that
provides good quantum numbers ~Ki and ~Kf in the large Nc

limit. The overall conserved quantum numbers I, J, and K

arise from the total isospin I � ii þRi ¼ if þRf, the

total angular momentum J � Li þ Si ¼ Lf þ Sf, and the

so-called grand spin K � Iþ J (so that K is also a good
quantum number in the large Nc limit). The braces are
conventional 9j symbols, and the multiplicity 2X þ 1 of
each SU(2) representation X is denoted by [X]. The sums
run over all values of K, ~Ki, and ~Kf consistent with the

nonvanishing of the 9j symbols, i.e., each row and column
satisfies the triangle rule. Beyond all the group-theoretical
factors lie the reduced amplitudes �, which are the unde-
termined finite dynamical quantities in the large Nc scat-
tering amplitude approach, analogous to reduced matrix
elements in the Wigner-Eckart theorem; their precise cal-
culation would be tantamount to solving QCD exactly at
leading order in the 1=Nc expansion.
Virtual photons can carry either spin one or zero (the

latter in distinction to real photons); however, the angular
momentum ‘ labeling each electromagnetic multipole is
comprised of the combination of the photon intrinsic spin
with its orbital angular momentum relative to the target
[28] (in this case, the initial baryon). In terms of Eq. (2.1),
one effectively handles photon angular momentum by
setting si ¼ 0 and Li ¼ ‘.
The photon isospin content is more complicated; pho-

tons carry both isovector and isoscalar contributions,
which couple to baryons through operators carrying differ-
ent Nc counting. Since this coupling occurs through the
photon polarization vector "�, and since transverse, longi-

tudinal, and scalar polarizations (the latter two arising only
for virtual photons) all have nonvanishing components in
spatial (� ¼ i) directions, the relevant operators represent-
ing photon couplings to baryons are

Gia � XNc

�¼1

qy�
�
�i

2
� �a

2

�
q�; (2.2)

and

Ji � XNc

�¼1

qy�
�
�i

2

�
q�; (2.3)

where � and � are Pauli matrices in spin and isospin,
respectively, and � sums over the Nc quark fields q� in
the baryon. For the ground-state baryons (e.g., N and �),
matrix elements of the isoscalar operator Ji are of course
OðN0

cÞ (since they are just components of the total baryon
angular momentum), but those of the isovector operator
Gia are OðN1

cÞ due to the collective contribution of the Nc

quarks. However, Eq. (2.1) does not incorporate this con-
straint, and therefore it must be put in by hand: The full
version of Eq. (2.1) for electroproduction is the sum of a
LO isovector (ii ¼ 1) piece and an isoscalar (ii ¼ 0) piece
carrying an explicit 1=Nc suppression factor, as expressed
below in Eqs. (2.9), (2.10), and (2.11).
The master amplitude expression Eq. (2.1) applied to

pion electroproduction off a nucleon target has si ¼ 0 and
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Li ¼ ‘ as mentioned above, as well as ii � i� 2 f0; 1g,
sf ¼ 0, if ¼ 1 (but retaining for the moment the explicit

symbol if), and Ri ¼ Rf ¼ 1
2 . The triangle rules then force

Si ¼ Sf ¼ 1
2 , and we relabel Lf ! L, which is the pion

partial wave. One finds

S‘Lð1=2Þð1=2ÞIJ ¼ 2ð�1ÞL�‘
X
K

½K�
�
J ‘ 1

2

i� I K

�

�
�
J L 1

2

if I K

�
��K‘L: (2.4)

Amplitudes for specific charge channels are obtained by
attaching the appropriate isospin Clebsch-Gordan coeffi-
cients (rounded brackets below) to Eq. (2.4). Labeling the
isospin third component of the incoming nucleon by mI

and that of the outgoing pion by �, one has

M
�Ii�
‘LJmI�

¼ 2ð�1ÞL�‘
X
K

½K�
�
J ‘ 1

2

i� I K

�

�
�
J L 1

2

if I K

�
��K‘L

if
1
2 I

� mI � � mI

 !

� i�
1
2 I

0 mI mI

 !
: (2.5)

The label � indicates the type of multipole amplitude: (‘�
L) odd gives electric (e), longitudinal (l), and scalar (s)
multipoles (the latter two being absent from photoproduc-
tion), and (‘� L) even gives magnetic (m) multipoles. The
l and s multipoles are linearly dependent due to current
conservation [25], so we choose in this analysis to elimi-
nate l multipoles in favor of s multipoles.

We now exploit the result that amplitudes with jIt �
Jtj ¼ n are suppressed by a relative factor 1=Nn

c . The first
step is to rewrite the 9j symbols in Eq. (2.1) in terms of
t-channel quantum numbers using the well-known SU(2)
relation known as the Biedenharn-Elliot sum rule [29]. In
terms of modified 6j symbols (called [6j] symbols in
Ref. [21]),�

a b e
c d f

�
� ð�1Þ�ðbþdþeþfÞ

ð½a�½b�½c�½d�Þ1=4
a b e
c d f

� �
; (2.6)

one obtains�
J ‘ 1

2

i� I K

��
J L 1

2

if I K

�
¼ X

J

ð�1Þ2J�ifþi�½J �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½if�½i��½L�½‘�

q

� if L K
‘ i� J

" #

� if
1
2 I

1
2 i� J

" #

� L 1
2 J

1
2 ‘ J

" #
; (2.7)

where the quantum number J clearly adopts the role of
both It (as seen from the second [6j] symbol) and Jt (as
seen from the third). Setting at last if ¼ 1 and defining the

t-channel reduced amplitudes by

�
t�i�
J ‘L � ð�1Þ2J�1þi�½J �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1�½i��½L�½‘�
q X

K

½K� 1 L K
‘ i� J

" #
��K‘L;

(2.8)

one obtains the multipoles for the isovector case (i� ¼ 1):

M�I1
‘LJmI�

¼ ð�1ÞL�‘ 1 1
2 I

� mI � � mI

� �

� 1 1
2 I

0 mI mI

� �X
J

1 1
2 I

1
2 1 J

" #

� L 1
2 J

1
2 ‘ J

" #
�t�1J ‘L; (2.9)

and those for isoscalar case (i� ¼ 0):

M�I0
‘LJmI�

¼ ð�1ÞL�‘

Nc

1 1
2

1
2

� mI � � mI

� �
	I;ð1=2Þ
½1�1=4

� L 1
2 J

1
2 ‘ 1

" #
�t�01‘L: (2.10)

Note the explicit 1=Nc suppression factor in the isoscalar
expression. In order to achieve relations at a consistent
order in the 1=Nc expansion, one must also include the
independent NLO isovector amplitudes, which have jIt �
Jtj ¼ 1. Generalizing Eq. (2.9) gives

M�I1ðNLOÞ
‘LJmI�

¼ ð�1ÞL�‘

Nc

1 1
2 I

� mI � � mI

� �
1 1

2 I
0 mI mI

� �

�
�X

x

1 1
2 I

1
2 1 x

" #
L 1

2 J
1
2 ‘ xþ 1

" #
�t�ðþÞ
x‘L

þX
y

1 1
2 I

1
2 1 y

" #
L 1

2 J
1
2 ‘ y� 1

" #
�t�ð�Þ
y‘L

�
;

(2.11)

where x in the first sum and y in the second represent It,

and the amplitudes �t�ð�Þ are independent of those at
leading order. The total multipole amplitude, including
LO and NLO terms to consistent order in 1=Nc, is therefore
the sum of Eqs. (2.9), (2.10), and (2.11):

M�I
‘LJmI�

¼ M�I1
‘LJmI�

þM�I0
‘LJmI�

þM�I1ðNLOÞ
‘LJmI�

: (2.12)

By including all values of J , x, and y allowed by the
triangle rules in the [6j] symbols and simplifying, one
obtains the expression
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M�mI�
‘LJ ¼ X

I

ð�1ÞL�‘
1 1

2 I

� mI � � mI

 !"
1 1

2 I

0 mI mI

 !

�
(
	‘;L�

t�1
0LL þ

ffiffiffi
2

3

s �
	I;ð1=2Þ � 1

2
	I;ð3=2Þ

�

� L 1
2 J

1
2 ‘ 1

" #
�t�11‘L þ 1

Nc

 
L 1

2 J

1
2 ‘ 1

" #
�t�ðþÞ
0‘L

þ
ffiffiffi
2

3

s �
	I;ð1=2Þ � 1

2
	I;ð3=2Þ

�
	‘;L�

t�ð�Þ
1LL

!)

þ 1

Nc

	I;ð1=2Þ
½1�1=4

L 1
2 J

1
2 ‘ 1

" #
�t�01‘L

#
; (2.13)

which is identical in form to the expression found for
photoproduction [23].

Pion electroproduction possesses four charged channels:
��p ! �þn, ��n ! ��p, ��p ! �0p and ��n ! �0n.
Assuming isospin invariance, only three of these are inde-
pendent [25], and so we choose to eliminate the channel
��n ! �0n for which all the particles are neutral. Since
the initial- and final-state nucleons carry only spin 1=2,
parity invariance constrains electric and scalar multipole
amplitudes to ‘ ¼ L� 1, while magnetic multipole am-
plitudes satisfy ‘ ¼ L. The spinless pion and spin-1=2
nucleon combine to give possible angular momenta J ¼
L� 1

2 ; it is convenient to express this information using the

combination 2ðJ � LÞ, which equals �1 for J ¼ L� 1
2 ,

respectively, and write the amplitudes asM�
‘;L;2ðJ�LÞ. Using

the conventions [25] employed by MAID, the multipole
amplitude M�

‘;L;2ðJ�LÞ (where � ¼ e, s, or m) is propor-

tional to �L;2ðJ�LÞ; for example, Ms
L�1;L;� / SL�. The

proportionality factor depends upon particle energies, �,
L, and 2ðJ � LÞ, but is not important for this analysis since
in each relation presented below it cancels out as a com-
mon factor.

Using Eq. (2.13), one obtains very similar relations for
electric and scalar multipoles:

Me=s;pð�þÞn
L�1;L;� ¼ Me=s;nð��Þp

L�1;L;� þOðN�1
c Þ

ðL � 2 for e; L � 1 for sÞ;
(2.14)

Me=s;pð�þÞn
Lþ1;L;þ ¼ Me=s;nð��Þp

Lþ1;L;þ þOðN�1
c Þ ðL � 0Þ; (2.15)

and

Me=s;pð�0Þp
L�1;L;� ¼ OðN�1

c Þ: (2.16)

The presence of an L ¼ 1 relation for s but not e ampli-
tudes in Eq. (2.14) reflects the existence of C0 but not E0
electromagnetic multipoles. Referring to Eq. (2.13), one
obtains four relations at LO because one has six observable
amplitudes, arising through three charged channels each
with two allowed values of 2ðJ � LÞ, but only two reduced

amplitudes, �te=s11;L�1;L. However, no relations survive at NLO

because four new amplitudes (�te=sðþÞ
0;L�1;L and �te=s01;L�1;L) appear

at this order. Equation (2.16) implies the vanishing of the e
and s multipole amplitudes at LO for the process ��p !
�0p, which means that they are expected to be, on average,
a factor of about Nc ¼ 3 smaller than the charged ampli-
tudes; but this is a rather qualitative statement [in particu-
lar, Eq. (2.16) does not test the equality of measurable
amplitudes], and we omit numerical analysis of such am-
plitudes below.
Using Eq. (2.13) for the magnetic multipole amplitudes,

one again has six observable amplitudes expressed at LO in
terms of only two reduced amplitudes (�tm1

1LL and �tm1
0LL),

leading to four relations:

Mm;pð�0Þp
L;L;� ¼ Mm;pð�0Þp

L;L;þ þOðN�1
c Þ ðL � 1Þ; (2.17)

Mm;pð�þÞn
L;L;� ¼ Mm;nð��Þp

L;L;� ¼ �Lþ 1

L
Mm;pð�þÞn

L;L;þ

¼ �Lþ 1

L
Mm;nð��Þp

L;L;þ þOðN�1
c Þ ðL � 1Þ:

(2.18)

Only three new reduced amplitudes (�tmðþÞ
0LL , �tmð�Þ

1LL , and

�tm0
1LL) appear at NLO, meaning that one special combina-

tion holds at both LO and NLO:

Mm;pð�þÞn
L;L;� ¼Mm;nð��Þp

L;L;� �
�
Lþ 1

L

�
½Mm;pð�þÞn

L;L;þ �Mm;nð��Þp
L;L;þ �

þOðN�2
c Þ ðL� 1Þ: (2.19)

One expects this relation to improve generically upon the
predictions of the LO relations by a factor of aboutNc ¼ 3.
Note that several of the LO relations, specifically those

of the form M�;pð�þÞn
‘;L;� ¼ M�;nð��Þp

‘;L;� [which are Eqs. (2.14)

and (2.15) and the first and third of relations in Eq. (2.18)]
follow directly from isospin symmetry and the LO domi-
nance of the isovector amplitude, as may be checked
simply from the Clebsch-Gordan coefficients in Eq. (2.9).
All of the electroproduction multipole relations presented
here also appear for the photoproduction, of course except-
ing the scalar multipole relations.

III. RESULTS

Our results consist of a comparison of the relations Eqs.
(2.13), (2.14), (2.15), (2.17), (2.18), and (2.19) to the ex-
perimental data as obtained from the MAID 2007 partial-
wave analysis [26]. The exceptionally large volume of
available information is presented as concisely as possible:
Each allowed partial wave [L can be arbitrarily large, and
Eqs. (2.14), (2.15), (2.16), (2.17), (2.18), and (2.19) provide
relations between such amplitudes, but data is typically
compiled only up to L ¼ 5] is a complex-valued amplitude
and depends upon two independent dynamical variables:
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the photon virtuality Q2 � �q2 and the ��N c.m. energy
W. In each plotW ranges from threshold to 2 GeV, and Q2

ranges from 0–5 GeV2. In all figures we present both real
and imaginary parts of the left-hand and right-hand sides
(l.h.s. and r.h.s.) of each multipole amplitude combination
appearing in Eqs. (2.14), (2.15), (2.17), (2.18), and (2.19)
(except for L ¼ 4 and 5 imaginary parts, given as zero by
MAID), and then also plot scale-independent amplitude
ratios according to the prescription

Ratio ¼ l:h:s:� r:h:s:
1
2 ðjmaxðl:h:s:Þj þ jmaxðr:h:s:ÞjÞ : (3.1)

For a LO relation, this quantity is dimensionless and
predicted to be of order 1=Nc, while for NLO relations
the prediction is Oð1=N2

cÞ. Absolute values appear in the
denominator to avoid physically uninteresting behavior
when l.h.s. and r.h.s. are both near zero and happen to be
equal and opposite. Maximally poor relationships
(jl:h:s:j 	 jr:h:s:j or vice versa) are manifested by Ratio !
�2. On the other hand, relations that truly hold toOð1=NcÞ
might be expected to lie between �1=3; however, this
conclusion neglects the order-unity coefficient implicit in
Oð1=NcÞ. We choose as a useful metric to distinguish
between Oð1=NcÞ and OðN0

cÞ quantities their geometric

mean, �1=N1=2
c 
 �0:577 for Nc ¼ 3. Similarly, we

take the largest Oð1=N2
cÞ effects to be �1=N3=2

c 

�0:192; nevertheless, the reader is free to choose their
own figure of merit upon viewing the plots.

Figure 1 tests the e multipole relations in Eq. (2.14),
which compare amplitudes with J ¼ L� 1=2, denoted as
EL� by MAID. Figure 2 does the same for SL� multipoles.
The J ¼ Lþ 1=2 amplitudes for e and s [relations in
Eq. (2.15) for multipoles ELþ and SLþ] appear in Figs. 3
and 4 respectively. The m multipole relations Eq. (2.17)
containing a �0 and relating J ¼ L� 1=2 amplitudes
(ML�) appear in Fig. 5. All of the relations presented in
these first figures are LO in the 1=Nc expansion. Figure 6
tests the m multipole relations containing ��, first for the
ML� multipoles alone [the LO relation represented by the
first expression in Eq. (2.18)] and then for the NLO relation
between ML� multipoles given in Eq. (2.19). We remind
the reader that the relations explored in Figs. 1–4 and the
LO comparisons of Fig. 6 are dominated by the isovector
component of the photon.

First observe that the limit Q2!0 corresponds to scat-
tering with an on-shell photon, i.e., real pion photoproduc-
tion. The projection of each e and m multipole on the Q2

axis gives amplitude curves obtained in Ref. [23] and ana-
lyzed there in terms of the multipole relations Eqs. (2.14),
(2.15), (2.17), (2.18), and (2.19) restricted to Q2¼0.

The most prominent features in the amplitudes are of
course the baryon resonances, which are most apparent
through large enhancements of the imaginary parts at
values of c.m. energy W equal to a resonance mass, but
also noticeable from points where the real parts vanish. The

falloff of each amplitude with increasing Q2 may be in-
terpreted as the canonical behavior of an NN� electromag-
netic transition form factor, with the on-shell photon
(Q2 ¼ 0) providing the least disruptive probe of the initial
nucleon and hence the most efficient probe for producing a
resonance. One finds, however, interesting exceptions to
this reasoning; in the imaginary part of the S2� amplitudes
(Fig. 2), one sees that the Nð1520Þ produced in ��p !
�þn (l.h.s.) peaks at Q2 ¼ 0, while that in ��n ! ��p
(r.h.s.) peaks at Q2 ¼ 0:6 GeV2.
The resonant behavior accounts for the largest source of

discrepancies of the 1=Nc relations. Often one finds reso-
nant behavior on both sides of a given relation, but with
greatly differing residues at the peak; this is the case for the
Nð1680Þ peak in each E3� amplitude of Fig. 1 or each S3�
amplitude of Fig. 2. Even the sign of theNð1720Þ residue is
different between the two E1þ amplitudes in Fig. 3, while
the Nð1720Þ appears to be absent altogether from the r.h.s.
plot for S1þ in Fig. 4 although the amplitudes otherwise
appear very similar. These are interesting anomalies aris-
ing even in amplitudes for which the value of J on both
sides of the amplitude relation are the same, so that the
same resonance (or more accurately, different members of
an isomultiplet) appears on both sides. For Fig. 5 and the
NLO relation of Fig. 6, J differs on the two sides of the
equation, meaning that distinct resonances appear. In the
L ¼ 1 amplitudes of Fig. 5, for example, the Nð1440Þ
resonance appearing in the M1� (l.h.s.) amplitude is broad
and shallow, while the �ð1232Þ forms a huge peak in the
M1þ (r.h.s.) amplitude, with just a hint of the Nð1440Þ’s
true large-Nc partner [12], the �ð1600Þ, perhaps just
visible.
In fact, the �ð1232Þ should be eliminated from a large

Nc analysis of baryon resonances, because it is actually a
degenerate partner to the nucleon whose width vanishes as
Nc ! 1, unlike the true resonances whose widths remain
finite in this limit [13]. It is only due to the numerical
accident that the chiral limit (m� ! 0) is more closely
achieved in our Nc ¼ 3 universe than is the 1=Nc ! 0
limit [17] that the �ð1232Þ in our universe decays to �N.
However, true resonant ‘‘shifted degenerate’’ pairs such as
Nð1440Þ and �ð1600Þ are particularly interesting because
their masses differ by an amount that isOð1=N2

cÞ relative to
their average [12], about 100–150 MeV. Another example
of this effect appears in the L ¼ 2 amplitudes in Fig. 5,
with the Nð1520Þ [and perhaps also the Nð1700Þ or
�ð1700Þ] appearing in the M2� (l.h.s.) and Nð1675Þ with
a much smaller residue appearing in the M2þ (r.h.s.). In
fact, precisely the pair of Nð1520Þ and Nð1675Þ are con-
sidered as degenerate resonances in Ref. [23], where it is
shown that the on-resonance couplings for the different
channels behave exactly as expected from the 1=Nc expan-
sion for Nc ¼ 3. Another ‘‘shifted degenerate’’ pair in
Fig. 5 appears to be Nð1680Þ in the M3� (l.h.s.) amplitude
and �ð1950Þ in the M3þ (r.h.s.) amplitude; the �ð1950Þ is
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FIG. 1. Electric multipole data (J ¼ L� 1
2 amplitudes EL�) from MAID 2007. The l.h.s., r.h.s., and ratio of relation (2.14) for L � 2

are presented in separate columns, with separate rows for the real and imaginary parts (except for the L ¼ 4 and 5 imaginary parts,
given as zero by MAID).
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not apparent in the plots of Ref. [23], which employs the
older MAID 2003 analysis rather than the MAID 2007
variant used here.

In the case of the NLO relations Eq. (2.19) considered in
Fig. 6, the LO terms areML� and the NLO terms areMLþ,
so entirely new resonances can appear at NLO. A curious

FIG. 2. Scalar multipole data (J ¼ L� 1
2 amplitudes SL�) from MAID 2007. The l.h.s., r.h.s., and ratio of relation (2.14) for L � 1

are presented in separate columns, with separate rows for the real and imaginary parts (except for the L ¼ 4 and 5 imaginary parts,
given as zero by MAID).
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example occurs for L ¼ 1; the broad peak appearing for
��p ! �þn (l.h.s.), probably due to the Nð1440Þ, is un-
matched by a contribution in ��n ! ��p in the M1�
amplitudes, and moreover, the Nð1720Þ appears promi-
nently in the M1þ NLO corrections. On the other hand,
the NLO contributions sometimes indicate a shifted degen-
erate pair; this effect occurs for the already-mentioned
Nð1520Þ and Nð1675Þ pair occurring at L ¼ 2 [23].

In regions away from resonances and for amplitudes not
exhibiting any obvious resonances, the agreement tends to

be rather better. This is certainly true for the L ¼ 4 and 5
amplitudes, but also for larger values of Q2 and for values
of W close to threshold as well as values at least 50–
100 MeV from resonant peaks. Of the highest quality are
the isovector-dominated relations in Figs. 1–4, for which
the same value of J appearing on either side of the equation
means that resonances appearing on the two sides of the
relation belong to an isomultiplet. On the other hand, the
benefits of the NLO correction in Fig. 6 remain ambiguous;
for example, some improvement appears in the real part of

FIG. 3. Electric multipole data (J ¼ Lþ 1
2 amplitudes ELþ) from MAID 2007. The l.h.s., r.h.s., and ratio of relation (2.15) for L � 0

are presented in separate columns, with separate rows for the real and imaginary parts (except for the L ¼ 4 and 5 imaginary parts,
given as zero by MAID).
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the L ¼ 1 relation, but the quality degrades in some kine-
matic regions for L ¼ 2, and scarcely any change due to
the NLO terms is noticeable for L � 3.

IV. CONCLUSIONS

The 1=Nc expansion, which has provided so much
qualitative and semiquantitative guidance to understanding
baryons in general, and the baryon resonance spectrum, in

particular, appears in the case of electroproduction to
produce more ambiguous results. On one hand, it gives a
natural explanation for the dominance of isovector over
isoscalar amplitudes, and it provides a definite set of linear
relations between multipole amplitudes that are expected
to hold at all values of c.m. energyW and photon virtuality
Q2. For values of W not near resonance masses as well as
for larger values of Q2, the agreement tends to be in
accordance with the expectations of the 1=Nc expansion.

FIG. 4. Scalar multipole data (J ¼ Lþ 1
2 amplitudes SLþ) from MAID 2007. The l.h.s., r.h.s., and ratio of relation (2.15) for L � 0

are presented in separate columns, with separate rows for the real and imaginary parts (except for the L ¼ 4 and 5 imaginary parts,
given as zero by MAID).

PION ELECTROPRODUCTION AMPLITUDE RELATIONS IN . . . PHYSICAL REVIEW D 80, 076006 (2009)

076006-9



Even in the resonant region, one often sees evidence of the
‘‘shifted degenerate’’ resonances carrying different quan-
tum numbers [such as Nð1520Þ and Nð1675Þ] that have

related couplings. However, just as many cases exist in
which the amplitudes in the resonant region do not entirely
conform to naive 1=Nc expectations, both at leading and

FIG. 5. Magnetic multipole (�0) data from MAID 2007. The l.h.s. (ML�), r.h.s. (MLþ), and ratio of relation (2.17) for L � 1 are
presented in separate columns, with separate rows for the real and imaginary parts (except for the L ¼ 4 and 5 imaginary parts, given
as zero by MAID).
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FIG. 6. Magnetic multipole (��) data from MAID 2007. Each L � 1 fills two complete rows, one for real and one for imaginary
parts of amplitudes (except for L ¼ 4 and 5 imaginary parts, given as zero by MAID). The l.h.s. of relation (2.18) [or (2.19)] is
indicated in the first column, while the LO term [first r.h.s. of relation (2.18)] and the (LO+NLO) combination [r.h.s. of relation (2.19)]
are presented in the next two columns, followed by the ratio computed from each in the final two columns.
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subleading order. The specific reason that a given large Nc

relation for pion electroproduction works surprisingly well
or surprisingly poorly in the resonant region remains a
challenge for future research.
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