
Bogolyubov-Hartree-Fock approach to studying the QCD ground state

S. V. Molodtsov*

Joint Institute for Nuclear Research, Dubna, Moscow region, Russia

G.M. Zinovjev

Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
(Received 31 March 2009; revised manuscript received 10 August 2009; published 2 October 2009)

The quark’s behavior while influenced by a strong stochastic gluon field is analyzed. An approximate

procedure for calculating the effective Hamiltonian is developed and the corresponding ground state

within the Hartree-Fock-Bogolyubov approach is found. The comparative analysis of various Hamiltonian

models is given and transition to the chiral limit in the Keldysh model is discussed in detail.
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Nowadays we know that the mixing of the zero modes is
the microscopic mechanism of the spontaneous breakdown
of chiral symmetry in the instanton liquid model [1]. In this
approach the quarks are considered in a given gluon back-
ground and the spectrum of the respective Dirac operator is
calculated in order to be accompanied then by averaging
over the gluon ensemble. It is believed that at low energy
the zero modes are effectually overlapped and the eigen-
values of the Dirac operator spread over some range of
virtualities. However, up to now the behavior of low-lying
quark modes in interacting stochastic (instanton) back-
ground cannot be analyzed analytically and one is forced
to devise the suitable approximations argued by some
general theoretical reasonings. Also great care is needed
in order to obtain proper thermodynamical limit with non-
zero chiral condensate. A lot of that happens to be in
striking contrast to the Nambu-Jona-Lasinio (NJL) model
[2] which is cognate to the instanton liquid model based
actually on the similar multifermion interaction.
Superficially, the main distinction consists in the appear-
ance of some nonlocal form factors instead of the corre-
sponding coupling constant. As to the microscopic
consideration, the generation of dynamical quark mass in
the NJL model is caused by the reconstruction of the
Hamiltonian ground state and the quarks manifest them-
selves already as the quasiparticles [3] although the multi-
fermion attractive force should be strong enough, roughly
speaking. In this paper we emphasize that an instanton
model and several other models which are based on treat-
ing the stochastic ensemble of strong gluon fields become
practically identical in many aspects to the NJL model.

Such an approach is motivated by the conceptual idea of
an intricate nature of the QCD vacuum [4] having been
populated by intensive stochastic gluon fields of nontrivial
topological structure. Moreover, studying the correspond-
ing cooled lattice configurations gives evidence of this
component presence [5] and using the instantons in the

singular gauge to fit the data turns out to be very fruitful [6]
and allows one to evaluate the ensemble density (around
one topological charge per fm4) and the characteristic size
of a saturating configuration (about 1 GeV�1). Both esti-
mates are in fairly good agreement with the corresponding
results of the instanton liquid model [7]. Nevertheless, the
keen search of various confining configurations is still
going on [8–10] in parallel with collecting the convincing
evidences that the construction of a self-consistent en-
semble of such configurations is a too complicated prob-
lem (see, for example, the estimate for the (anti-)instanton
ensemble done in Ref. [11]).
Supposing the high-frequency component of the sto-

chastic ensemble of gluon fields as the dominating contri-
bution, we develop, in fact, an effective theory [12] by
applying the procedure of simplified (averaged in time)
system description which is widely used for studying the
dynamical systems. Developing the effective theories
which are discussed here has been launched to a consid-
erable extent by studying the behavior of light quarks in the
instanton gas (liquid) [13]. The zero mode approximation
has provided for the quantitative picture of spontaneous
chiral symmetry breaking [14]. However, an effective
Lagrangian of the NJL type was soon received in
Ref. [15] by the direct summation of certain leading dia-
grams and the obtained vertices of multiquark interactions
occurred rather differently from those calculated in the
zero mode approximation. Analysis of heavy quark sys-
tems behavior affected by the stochastic gluon fields [16]
has demonstrated that at constructing the respective effec-
tive theory the cluster decomposition of generating func-
tional [17] can be a very efficient tool and the specific role
of various characteristic correlation times has been clari-
fied to classify the descriptions. These results together with
the criticism of zero mode approximation [18] have con-
tributed to widening the cluster decomposition applica-
tions. This approach has been used to analyze the light
quark behavior [19] and it is interesting to note the effec-
tive Lagrangian has agreed with that obtained in [15]. In
the context of our interest here the cluster decomposition is
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called upon to describe the correlations in quantum system
inspired by an external process. In this situation, as a
matter of fact, the description of system behavior is exe-
cuted by averaging the generating functional. However, as
we show in this paper such a procedure applied to the
quantum system could be incomplete and it is more appro-
priate to base an analysis on the corresponding density
matrix. Nonetheless, we argue here that in the ‘‘white
noise’’ limit (when the time intervals of stochastic im-
pulses are very short) the procedure of averaging the gen-
erating functional occurs quite adequately.

The form of the effective Hamiltonian obtained urges us
to search the system ground state as the Bogolyubov trial
function. The corresponding dressing transformation will
be analyzed for various form factors of the effective
Hamiltonian. In such an approach the quarks are already
treated as the quasiparticles and a rather practical way to
get beyond the zero mode approximation appears.
Actually, this approach grounds on simple iterations of
corresponding integral equation solutions for the dressing
transformation which is quite stable unlike the results of
mean field approximation [15,19]. The different ensembles
are examined and their selection is stipulated by the re-
quirement that one of their asymptotic forms would be the
NJL model which plays a calibrating role in our calcula-
tions. The chiral limit of the Keldysh model with the
correlator behaving as a � function in the momentum space
is studied in detail and the singular behavior of the corre-
sponding mean energy functional is demonstrated.

I. THE HARTREE-FOCK-BOGOLYUBOV
APPROXIMATION

We consider the quark (antiquark) ensemble in the back-
ground of the strong stochastic gluon field and suppose this
field is so strong that we could neglect the gluon inter-
changing processes (quenched approximation). The sto-
chastic gluon field is characterized by a correlation
function and its particular form will be discussed and fixed
below. The Lagrangian density is the following:

L E ¼ �qði��D� þ imÞq: (1)

Here q, �q are the quark and antiquark fields with covariant
derivativeD� ¼ @� � igAa

�t
a, where Aa

� is the gluon field,

ta ¼ �a=2 are the generators of color gauge group SUðNcÞ,
andm is the current quark mass,� ¼ 1, 2, 3, 4. We work in
the context of the Euclidean field theory and �� means the

Hermitian Dirac matrices (�þ
� ¼ ��, f��; ��g ¼ 2���) in

the chiral representation. Then the corresponding
Hamiltonian description results from

H ¼ � _q�LE; � ¼ @LE

@ _q
¼ iqþ; (2)

and, in particular, for the noninteracting fields we have

H 0 ¼ � �qði�rþ imÞq: (3)

In the Schrödinger representation the quark field evolution
is determined by the equation for the quark probability
amplitude � as

_� ¼ �H�; (4)

and the creation and annihilation operators of quarks and
antiquarks aþ, a, bþ, b have no ‘‘time’’ dependence and
consequently look like

q�iðxÞ ¼
Z dp

ð2�Þ3
1

ð2jp4jÞ1=2
½aðp; s; cÞu�iðp; s; cÞeipx

þ bþðp; s; cÞv�iðp; s; cÞe�ipx�: (5)

Here the summation over index s which stands to describe
two quark spin polarizations and index cwhich should play
the similar role for a color is implied. Further we make
concrete the form of the Dirac conjugated spinor. Fixing a
spin polarization as it is known can be done by imposing an
additional constraint on spinor (see, below). However,
there is no direct analogy with the color polarization and
the particular state should be fixed by the corresponding
complete set of diagonal operators which includes the
Casimir operators as well. In fact, this complete definition
of the spinor color state is unnecessary for us here. All
observables are usually expressed by summing up the
polarization states of some bilinear spinor combinations
as the singlet and octet states and the singlet component is
obviously playing the specific role.
The density of interaction Hamiltonian can be presented

as

V S ¼ �qðxÞta��A
a
�ðt;xÞqðxÞ: (6)

The obvious dependence on time in this Hamiltonian is
present in the gluon field only. As it is mentioned above we
are planning to work with the stochastic gluon field imply-
ing the random process for which one may define only a
probability of realizing some gluon configuration. Such a
nature of gluon field urges (and allows) us to develop the
approximate procedure for describing the quark field treat-
ing (4) as a probabilistic process. Then the system states
are described by the corresponding averages (over a time or
an ensemble according to the ergodic hypothesis).
However, in the quantum theory we face one difficulty in
this way because � is a probability amplitude and an
immediate averaging of h�i can be insignificant.

Studying a mean probability density h�
�
�i looks more

promising and can be realized by complicating the proce-
dure of continual integration [20]. In Appendix A we
analyze a convincing quantum mechanical example to
illustrate the difference between two approaches. One of
those is based on constructing the corresponding density

matrix h�
�
�i, and the second approach does use the rele-

vant averaging of the functional h�i. We argue the latter
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could be practical for application in the white noise limit
with the �-like time correlation function. Adapting these
ideas to the gauge theories we should obviously strive to
operate with the gauge invariant quantities which include
an ordered exponential, at least. Unfortunately, such a
program in what concerns the ensemble consideration is
still too far to be realized. However, it is clear that applying
the averaging procedure would result in putting in an
appearance of a set of corresponding correlation functions
hA2i, hA4i, etc. [21]. Below, we will resort to formulating
the gauge background in a particular gauge; cf. Equa-
tion (13).

In the interaction representation, where � ¼ eH0t�,
Eq. (4) can be rewritten as

_� ¼ �V�; V ¼ eH0tVSe
�H0t: (7)

Now the time dependence appears in quark operators as
well. Now we recall some features of the averaging de-
scription as formulated in Ref. [17]. Presenting Eq. (7) in
the integral form as

�ðtÞ ¼ �ð0Þ �
Z t

0
d�Vð�Þ�ð�Þ; (8)

where �ð0Þ is an arbitrary initial state of ensemble and
performing another iteration one receives

�ðtÞ ¼ �ð0Þ �
Z t

0
d�Vð�Þ�ð0Þ þ

Z t

0
d�Vð�Þ

�
Z �

0
d�0Vð�0Þ�ð�0Þ:

By averaging the fast-changing component and uncoupling
the correlators one approximately approaches the long-
wavelength component h�i in the highest order (also tak-
ing into account that hVi ¼ 0) as follows:

h�ðtÞi � �ð0Þ þ
Z t

0
d�

Z �

0
d�0hVð�ÞVð�0Þih�ð�0Þi: (9)

Certainly, it is assumed the characteristic correlation time
of stochastic process is smaller than the time characteristic
for the process h�i. By differentiating Eq. (9) it is easy to
get rid of the initial condition �ð0Þ and to have

h _�ðtÞi ¼ þ
Z t

0
d�0hVðtÞVð�0Þih�ð�0Þi:

Actually this equation should describe a steady-state pro-
cess and at reversing a time the solution, in general case,
will not return to the initial magnitude�ð0Þ. Changing the
integration variable as �0 ¼ t� � one comes to

h _�i ¼ þ
Z t

0
d�hVðtÞVðt� �Þih�ðt� �Þi: (10)

It is usually supposed that because the correlations are
quickly decaying then the upper limit of integration might
be changed for1 and in order to deal with the local process
it is well justified (without a precision loss) to change the

argument of function h�i for t. Eventually, as a result we
have

h _�ðtÞi ¼ þ
Z 1

0
d�hVðtÞVðt� �Þih�ðtÞi: (11)

(The requirements to validate the factorization of the long-
wavelength component are discussed, for example, in
[17].) Implementing the approximation (11) in the quan-
tum field theory models, we run into trouble trying to get
the most general form of the correlation function if the
characteristic quark and gluon correlation times are com-
parable. Fortunately, if the quark fields are considered to be
practically constant on the gluon background the problem
receives essential simplification. The gluon field contribu-
tion may be factorized as a corresponding correlation
function hAa

�ðxÞAb
�ðyÞi [22]. Recent lattice measurements

of this correlation function provide us with a reasonable
arguments to interpret the result as gluon ‘‘mass’’ genera-
tion (� 300–400 MeV) in the momentum region of order
200 MeV [23].
It is curious to notice that the averaging over ensemble

(time) in the right-hand side of Eq. (11) is performed in
both the correlator and h�ðtÞi. It means that by resumming
and averaging a certain class of diagrams in the quantum
field theory models, one may take into account high order
correlator contributions in different ways if the form of
function h�ðtÞi is specified. Besides, the correlation func-
tions in models interesting to us should be translation
invariant and it implies that the correlator in Eq. (11) has
the following form:

hVðtÞVðt� �Þi ¼ Fð�Þ;
i.e., for example, a one-dimensional process after having
done the integration in Eq. (11) will be described by a
constant which characterizes the slow process. In quantum
field theory for the problem we are interested in, the
correlator connecting two space points

h _�ðtÞi ¼
Z

dx �qðx; tÞta��qðx; tÞ
Z 1

0
d�

Z
dy �qðy; t� �Þ

� tb��qðy; t� �Þg2hAa
�ðt;xÞAb

�ðt� �; yÞih�ðtÞi
appears instead of a constant. Assuming the correlation
function is rapidly decreasing with time we change the
time t� � dependence in the quark fields for t and perform
the inverse transformation to the Schrödinger representa-
tion. Then, introducing the function 	 ¼ e�H0th�i, we
have [24] the following equation:

_	 ¼ �Hind	;

H ind ¼ � �qði�rþ imÞq� �qta��q
Z

dy �q0tb��q
0

�
Z 1

0
d�g2hAa

�A
0b
� i; (12)
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where q ¼ qðxÞ, �q ¼ �qðxÞ, q0 ¼ qðyÞ, �q0 ¼ �qðyÞ, Aa
� ¼

Aa
�ðt;xÞ and A0b

� ¼ Ab
�ðt� �; yÞ.

In order to receive the final result we should fix the form
of the correlation function. As a guide, consider a stochas-
tic ensemble of (anti-)instantons in the singular gauge

Aa
�ðxÞ ¼

XN
i¼1

Aa
�ðx;�iÞ; (13)

and the instanton solution reads as

Aa
�ðxÞ ¼ 2

g
4�2i
2!ab ���b�

Z dq

ð2�Þ4 q��ðqÞeiqðx�zÞ;

�ðqÞ ¼ 1

q2

�
K2ðq
Þ � 2

q2
2

�
; (14)

where K2 is the modified Bessel function of imaginary
argument, 
 is the instanton size, the matrix ! appoints
the pseudoparticle orientation in color space, z is the
coordinate of instanton center, and �� stands for the
’t Hooft symbol. The distribution of the pseudoparticle
orientation in color space is supposed to be homogeneous
�d! as well as the probability to find a pseudoparticle in
the volume element is proportional�dz=V, where V is the
volume of the system under consideration. Apparently,
specifying the saturating configuration in the form of
Eq. (13) is, in a direct way, the gauge fixing procedure.
Calculating the quantum corrections for every single pseu-
doparticle in a one-loop approximation (what corresponds
to the zeroth order of the N=V expansion), and exploiting
the variation principle [7,11] allows one to ascertain the
size distribution of pseudoparticles. In this way it is pos-
sible to attach clear meaning to the wave functional and to
construct in the thermodynamical limit limV!1N=V ! n
the state possessing a negative energy density and devel-
oping a nonzero gluon condensate. (Uncertain interrelation
of perturbative and nonperturbative contributions into the
path integral [25] makes the computability of the wave
functional highly nontrivial for now.) In Eq. (12) we imply
the correlation function integrated over the time for
which we receive in the highest order in the density n of
(anti-)instanton ensemble

Z 1

0
dx4hAa

�ðxÞAb
�ðyÞi

¼ 1

2

Z 1

�1
dx4hAa

�ðxÞAb
�ðyÞi

¼ 4ð4�2Þ2
g2

�abn

4

N2
c � 1

ð�����
 � �����
Þ

�
Z dp

ð2�Þ4 p�p
e
ipðx�yÞ�ð�pÞ�ðpÞ 1

2
2��ðp4Þ:

The first equality is valid due to the symmetry properties of
the instanton solution. Then the correlation function can be
presented as

h gAa
�A

b
�ðpÞi ¼ ð4�2Þ2n
4

g2
2�ab

N2
c � 1

½IðpÞ��� � J��ðpÞ�;

IðpÞ ¼ p2�ð�pÞ�ðpÞ;
JijðpÞ ¼ pipj�ð�pÞ�ðpÞ;

J4i ¼ Ji4 ¼ J44 ¼ 0:

(15)

We generalize in what follows to a variety of stochastic
ensembles of gluon fields characterized by their profile
functions IðpÞ, J��ðpÞ and analyze the contribution of

the quadratic correlator only. The deficiency of fixing the
gauge implicitly for the truncated system in the treatment
above is compensated, in a sense, by our investigation of a
full spectrum of reasonable correlation functions (includ-
ing opposite limiting correlators when they are extrapo-
lated even into the perturbative region). Recent con-
siderable progress in studying the confining configurations
of lattice gauge theories, in particular, revealing the mono-
pole clusters and their role in confinement (see, for review
[26]) as well as detecting the specific features of quark
behavior in the uncooled configurations and the indications
that low-lying Dirac eigenmodes are localized on the ob-
jects of dimension inherent in monopoles and vortices [27]
looks entirely urging. However, these results are also
bringing the perilous tendencies because reveal some fea-
tures of lattice gauge theories common with the compact
electrodynamics, what makes almost inevitable to draw in
the singular (in the continual limit) objects and, hence, to
provide them with underlying physical meaning. Searching
the form factors (the corresponding ensembles of saturat-
ing configurations) interesting for applications one should
compare to the reasonable results for the four nonets of
light mesons obtained in the NJL model. Apparently, the
constants of effective four-quark Hamiltonian (scalar,
pseudoscalar, vector, and axial-vector channels) and the
parameters of integral saturation (cutoff) should be com-
parable. It might be carefully supposed that those singular
objects (at still an unknown scale) have to reproduce the
major features of a successful effective NJL Hamiltonian
after the corresponding averaging. In any case, the prob-
lems of finding the specific features of such singular ob-
jects which admit their experimental identification and of
analyzing the quark behavior in the ensembles of mono-
poles or vortices are of really great interest [28].
With such a form of induced four-fermion interaction we

are going to search the ground state as the Bogolyubov
probe function with vacuum quantum numbers [29–31]

j�i ¼ Tj0i;
T ¼ �p;s;c expf’½aþðp; s; cÞbþð�p; s; cÞ

þ aðp; s; cÞbð�p; s; cÞ�g; (16)

which is defined by minimizing mean energy

E ¼ h�jHj�i: (17)
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Here ’ ¼ ’ðpÞ and j0i is the vacuum of free Hamiltonian,
i.e. aðp; s; cÞj0i ¼ 0, bðp; s; cÞj0i ¼ 0. Introducing the cre-
ation and annihilation operators of quasiparticles with the
dressing T transformation (T�1 ¼ Ty for fermions)

A ¼ TaT�1; Bþ ¼ TbþT�1;

we present the operator Eq. (5) as, with the Dirac conjugate
spinor

qðxÞ ¼
Z dp

ð2�Þ3
1

ð2jp4jÞ1=2
½Aðp; s; cÞUðp; s; cÞeipx

þ Bþðp; s; cÞVðp; s; cÞe�ipx�;
�qðxÞ ¼

Z dp

ð2�Þ3
1

ð2jp4jÞ1=2
½Aþðp; s; cÞ �Uðp; s; cÞe�ipx

þ Bðp; s; cÞ �Vðp; s; cÞeipx�;

(18)

where the spinors U and V are defined as

Uðp; s; cÞ ¼ cosð’Þuðp; s; cÞ � sinð’Þvð�p; s; cÞ;
Vðp; s; cÞ ¼ sinð’Þuð�p; s; cÞ þ cosð’Þvðp; s; cÞ: (19)

with �Uðp; s; cÞ ¼ Uþðp; s; cÞ�4 and �Vðp; s; cÞ ¼
Vþðp; s; cÞ�4. Now we have to specify the choice of spin-
ors in the Euclidean variables. They obey the Dirac equa-
tions

ðp̂� imÞuðp; sÞ ¼ 0; ðp̂þ imÞvðp; sÞ ¼ 0; (20)

(with p̂ ¼ p4�4 þ p�) and an additional constraint which
fixes the spinor polarization

i�5ŝuðp; sÞ ¼ uðp; sÞ; i�5ŝvðp; sÞ ¼ vðp; sÞ; (21)

where �5 ¼ ��1�2�3�4, and the four-vector s is normal-
ized to unit and orthogonal to the four-vector p, i.e. s2 ¼ 1,
ðpsÞ ¼ 0. It could be, for example,

s4 ¼ ðpnÞ
im

; s ¼ nþ ðpnÞp
imðp4 � imÞ ;

where n is an arbitrary unit vector. If the covariant nor-
malization conditions are satisfied

�uu ¼ 2im; �vv ¼ �2im; (22)

the spinors are defined with precision up to the phase
factor. All these conditions allow us to formulate the
following matrix representation:

uðp; sÞ �uðp; sÞ ¼ p̂þ im

2
ð1þ i�5ŝÞ;

vðp; sÞ �vðp; sÞ ¼ p̂� im

2
ð1þ i�5ŝÞ:

(23)

Calculating the mean energy Eq. (17) we meet spinors with
opposite moments. We introduce the four-vector q ¼
ðp4;�pÞ in order to simplify notations. Using the projec-
tion operator we can express the spinor vðq; sÞ through the
spinor uðp; sÞ (see [32])

vðq; sÞ ¼ �
q̂� im

�2im

1þ i�5ŝ

2
uðp; sÞ: (24)

The coefficient � is fixed by the covariant normalization
Eq. (22) up to the phase factor as

�
� � � ¼ � 2m2

ðpqÞ þm2
¼ m2

p2
; j�j ¼ m

jpj :

Then summing up over the spinor states results in

X
s

uðq; sÞ �vðp; sÞ ¼ �
q̂þ im

2im
ðp̂� imÞ;

X
s

vðp; sÞ �uðq; sÞ ¼ �
� ðp̂� imÞ q̂þ im

2im
;

X
s

uðp; sÞ �vðq; sÞ ¼ �
� ðp̂þ imÞ q̂� im

2im
;

X
s

vðq; sÞ �uðp; sÞ ¼ �
q̂� im

2im
ðp̂þ imÞ:

(25)

The polarization in which the momentum p and unit po-
larization vector n are orthogonal ðpnÞ ¼ 0 turns out to be
the most convenient for handling. In such a situation both
operators p̂ and q̂ commute with �5ŝ and the polarization
directions of quark and antiquark could be taken identical
(although in general case they should be two different
directions). Then the summation over polarization of
quarks and antiquarks is performed separately in the final
equations. It allows us not to control the obligatory con-
straint to have the vacuum quantum numbers of the pairs
present in the intermediate calculations.
When calculating the mean energy Eq. (17) nontrivial

contribution bilinear in quark operators comes from the
terms of type h�jBBþj�i (remember Bj�i ¼ 0, Aj�i ¼
0). The contribution from the terms like h�jAAþj�i is
absent because of the particular representation of bilocal
operator we are using as �qq (then quadratic terms are
expressed by the spinors V, �V. Because of similar reasons
the four-quark operators develop only two nonzero contri-
butions h�jBBþB0B0þj�i and h�jBAA0þB0þj�i. The first
combination corresponds to the contribution of so-called
tadpole diagrams and the latter is related to the asterisk
[33] diagrams. As a result the four-fermion interaction
contribution can be presented in the following form:
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h gAa
�A

b
�ð0Þi

Z dpdp0

ð2�Þ6
1

4jp4jjp0
4j

�V�iðp; s; cÞtaij��
�
V
jðp; s; cÞ �V�kðp0; s0; c0Þtbkl��

��V�lðp0; s0; c0Þ

þ
Z dpdp0

ð2�Þ6
1

4jp4jjp0
4j

�V�iðp; s; cÞtaij��
�
V�lðp; s; cÞ �U�kðp0; s0; c0Þtbkl��

��U
jðp0; s0; c0Þh gAa
�A

b
�ðpþ p0Þi:

Here h gAa
�A

0b
�i is the Fourier transform of the gluon corre-

lator and the summation over spinor and color indices is
implied. The contribution of the first tadpole diagram is an
identical zero due to completeness of the spinor basis in
color space, giving a unit color matrix (in particular it is
valid for color singlet quark configuration). In electrody-
namics the considered term provides a dominant contribu-
tion. But it is interesting to remark that the singular
character of the photon propagator in the infrared region
makes this Abelian theory even more complicated to re-
search than in the non-Abelian one. In the compact Uð1Þ
electrodynamics (on a lattice) the infrared behavior of
correlation function is formed by the monopole contribu-
tions but nowadays it is still difficult to define a scale where
these effects show up themselves. In the octet channel
of non-Abelian theory we obtain the quark repulsion
�� 1=ð4NcÞ and therefore this regime might be omitted
when searching the minimum of mean energy Eq. (17).
Then, for the spinors with polarizations summed up, we
have

V �V ¼ p4�4 þ cosð�Þðp�� imÞ

� �
� þ �

2im
sinð�Þðp2 � imp�Þ;

U �U ¼ p4�4 þ cosð�Þðp�þ imÞ

þ �
� þ �

2im
sinð�Þðp2 þ imp�Þ;

where angle � ¼ 2’. In the formulas above the phase
inherent in the sum �

� þ � (a spinor is defined up to such
a phase) is still indefinite. The direct analysis of the mean
energy functional demonstrates that the most preferable
value of the phase factor (responsible for the color inter-
action of quarks) is the value when the coefficient �
appears to be a real number. For definiteness we put � ¼
þjmj=p. The curious fact is that the results of summation
are not equal [V �VðmÞ ¼ U �Uð�mÞ] and they coincide in
the chiral limit m ¼ 0 only, i.e. particles and antiparticles
formally generate the different contributions.
The direct calculations lead to the following result for

the mean energy (17):

h�jHindj�i ¼ �
Z dp

ð2�Þ3
2Ncp

2
4

jp4j ð1� cos�Þ � ~G
Z dpdq

ð2�Þ6
�
�ð3~I � ~JÞ p4q4

jp4jjq4j þ ð4~I � ~JÞ pq

jp4jjq4j
�

�
sin��m

p
cos�

��
sin�0 �m

q
cos�0

�
� ð2~I�ij þ 2~Jij � ~J�ijÞ

piqj
jp4jjq4j

�
�
cos�þm

p
sin�

��
cos�0 þm

q
sin�0

��
: (26)

Here we designated p ¼ jpj, q ¼ jqj, ~I ¼ ~Iðpþ qÞ, ~Jij ¼
~Jijðpþ qÞ, ~J ¼ P3

i¼1
~Jii, p2

4 þ p2 ¼ q24 þ q2 ¼ �m2,
�0 ¼ �ðqÞ, ~G ¼ ð4�2Þ2n
4, and as a matter of convenience
we singled out the color factor G0 ¼ 2

N2
c�1

~G. To obtain this
result we performed the regularization (subtracting the free
Hamiltonian H0). It results in the presence of a unit (to-
gether with � cos�) in the parentheses of the first integral.
Let us also recall that in the Euclidean space p2

4 is a
negative magnitude. Then with Eq. (26) available one
can find the most advantageous value of the angle � from
the condition

dh�jHindj�i
d�

¼ 0: (27)

Henceforth we characterize the different stochastic ensem-
bles of the gluon fields by their profile functions IðpÞ,
J��ðpÞ.

II. NAMBU-JONA-LASINIO MODEL

Now let us consider the example in which the correlation
function behaves in the coordinate space as the � function
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(simply we assume J��ðpÞ ¼ 0). Actually, it corresponds

to the NJL model [2]. As is well known, regularization is
required to obtain an intelligent result in this model. We
adjust the NJL model with the parameter set given by
Ref. [34], and limit the integration interval over momen-
tum in Eq. (26) with the quantity jpj<� (� ¼ 631 MeV).
Then the functional (26) is written in the following form
(unessential terms contributing the constant values are
omitted):

W ¼
Z � dp

ð2�Þ3
�
jp4jð1� cos�Þ

�G
p

jp4j
�
sin��m

p
cos�

�Z � dq

ð2�Þ3
q

jq4j
�

�
sin�0 �m

q
cos�0

��
: (28)

Here m ¼ 5:5 MeV. The equation to calculate the optimal
angle � (27) reads as

ðp2 þm2Þ sin��Mðp cos�þm sin�Þ ¼ 0; (29)

where

M ¼ 2G
Z � dp

ð2�Þ3
p

jp4j
�
sin��m

p
cos�

�
: (30)

The constant of four-fermion interaction is G ¼ 4
2Nc

~G

while expressed in the same units as the mean energy
functional in Eq. (26). For the NJL model Eq. (29) makes
it possible to contract a functional space in which the
minimum of mean energy functional can be realized.
This equation parameterizes the function �ðpÞ on the
whole interval p 2 ½0;�� of searching the solution.
Moreover, Eq. (29) itself does not impose any restrictions
on the parameter M which may be any real number. Then
the functional (28) simply becomes the function of pa-
rameter WðMÞ. Now if one expresses the trigonometrical
functions via parameter M it is possible to make the
representation of minimizing function and the result of
its integration (30) agree. As a result we receive three
extremal points, two of them correspond the minimal
points with negative and positive values of M and the
negative value conforms to the state of more stability.
The point of unstable equilibrium is located in the vicinity
of coordinate origin �m. The induced quark mass for the
parameter magnitudes fixed is M ¼ �335 MeV and the
quark condensate

h�j �qqj�i ¼ iNc

�2

Z �

0
dp

p2

jp4j ðp sin��m cos�Þ; (31)

develops the magnitude of h�j �qqj�i ¼ �ið245 MeVÞ3.
The characteristic constant of the four-fermion interaction
is equal to G=ð2�2Þ ¼ 1:34. In what follows we rely on
these quantitative results.

The situation, if the correlator J��ðpÞ is not equal to zero
and has the same form of the � function in coordinate

space, can be similarly analyzed. The numerical analysis
done teaches that its influence can be essential but we do
not show these results due to the lack of any phenomeno-
logical estimates of the correlation function magnitude.
The nonlocal version of the NJL model in which the
correlator has the separable form Iðp; qÞ ¼ KðpÞKðqÞ can
be similarly analyzed. In fact, it again displays the above
mentioned property which replaces the functional analysis
for the analysis of function dependence on some parameter.
Although one important difference does exist and it shows
that the procedure of integral cutting off is unnecessary for
the functions KðpÞ. The regularization is naturally per-
formed by the KðpÞ kernel and so strong regularization is
caused by the separable form interaction kernel. Certainly,
such a property can manifest itself in much weaker form
for more realistic correlators.

III. THE KELDYSH MODEL

Here we are going to analyze the limit in which the
correlation function has a �-function form in the momen-
tum space

IðpÞ ¼ ð2�Þ3G�ðpÞ:
This limit is an analogue of the Keldysh model which is
well known in the physics of condensed matter [35], and
the mean energy functional (26) develops the following
form in this case [36]:

WðmÞ ¼
Z dp

ð2�Þ3
�
jp4jð1� cos�Þ

�G
p2

jp4j2
�
sin��m

p
cos�

�
2
�
: (32)

The optimal values of angle � are determined by the
solutions of the following equation:

jp4j3 sin�� 2Gðp cos�þm sin�Þðp sin��m cos�Þ ¼ 0;

(33)

and we start analyzing these solutions in the chiral limit
m ¼ 0. One of the solutions corresponds to the zero angle
� ¼ 0 but the nontrivial one takes the form

cos� ¼ p

2G
: (34)

Both the positive and negative angles � are suitable as the
solutions because of the parity (positive) property of the
functional (32) and these (real) solutions (in addition to the
trivial one) exist on the limited momentum interval p <
2G. There is one real solution for the trivial angle and there
are two imaginary (complex-conjugate) solutions beyond
this interval. Analyzing the NJL model above we noticed
its very convenient property when the solution �ðpÞ is
defined on the whole interval and, in fact, the functional
is parameterized by a single number which is the integral
M. In the Keldysh model the situation is much more
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sophisticated and the phase portrait of its solutions in the
chiral limit (for example, sin� as a function of momentum
p) consists of two arches (with positive and negative sin�;
see Fig. 1) and a straight line corresponding to the trivial
solution. Thus, the semiaxis p 2 ½0;1Þ can be divided into
two parts. There are three branches (solutions) at the
interval p 2 ½0; 2G�, two of those correspond to the posi-
tive and negative angles � ¼ � arccosðp=2GÞ and the
trivial one where � ¼ 0. At the interval p 2 ½2G;1Þ
only one trivial solution � ¼ 0 exists and in order to
construct the solution on the whole semiaxis p 2 ½0;1Þ
one has to add the trivial solution on the interval p 2
½2G;1Þ to any detached branch of solutions on the interval
p 2 ½0; 2G�. It is easy to see that making use of the
imaginary branches of solutions leads to the significant
growth of energy and just because of this fact they are
uninteresting. The other potentially interesting functions
�ðpÞ for which it is reasonable to search the functional
minima could be received if the interval p 2 ½0; 2G� is
subdivided into smaller intervals and then for each interval
when continuing the function to the next interval (for
example, to the direction of the momentum p increasing)
to use two other branches as well as of the results of
continuation on the same branch. Apparently, it results in
the piecewise continuous function and, unlike the NJL
model, here we have no parameter which restricts the
function and watches its integral characteristics. In the
chiral limit all the solutions (trajectories) constructed in
such a way will acquire strictly fixed (finite) value of the
functional Wð0Þ (it will be observed that the functional
does not contain the derivatives of angle in momentum).

For example, the trajectory which is going along the top
arch at the interval p 2 ½0; 2G� and continuing longer as a
trivial solution to the whole semiaxis leads to the magni-
tude

W�ð0Þ ¼ � G4

15�2
;

(similarly for the top negative arch). The chiral condensate
(31) turns out then to be

h�j �qqj�ið0Þ ¼ iNcG
3

2�
;

(and for the solution along the negative arch we have the
opposite sign). The mean energy and chiral condensate
equal to zero for the trivial solution, i.e. (W0ð0Þ ¼ 0,
h�j �qqj�i0ð0Þ ¼ 0). Clearly, these piecewise continuous
functions will lead to the magnitudes of functional Wð0Þ
which fill up the interval ½W0ð0Þ; W�ð0Þ� densely, a similar
pattern takes place for the chiral condensate. With the
natural parameterization

sin� ¼ M�

ðp2 þM�Þ1=2
; (35)

we obtain for the mass M� which characterize the angle at
the top arch the following result:

M� ¼ ð4G2 � p2Þ1=2: (36)

It is interesting to notice that then the respective energy of

nontrivial solutions EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

�

q
becomes constant

EðpÞ ¼ 2G.
After having done the analysis in the chiral limit which

is shown by the dotted lines in Fig. 1 we would like to
comment on the situation beyond this limit, i.e. wherem �
0. The evolution of corresponding branches is available on
the same plot (Fig. 1), where the behavior of �ðpÞ as the
function of momentum p in MeV is shown for the solution
of Eq. (33). The semiaxis p 2 ½0;1Þ where we are search-
ing for the solution can be subdivided into two sectors
which are demonstrated by the vertical dashed line on the
plot. Three solutions denoted by a, b, and c are developing
at the first sector denoted in Fig. 1 by I. Besides, there are
three solutions at the second sector denoted by II, one real
solution designated as A for the negative pairing angle and
two complex-conjugate roots with the positive real parts.
The imaginary parts of solutions are plotted in Fig. 1 by the
dashed lines. The solution A in domain II develops the
behavior of ��� 2Gm

p2 with increasing momentum. As in

the chiral limit the minimum of the mean energy functional
WðmÞ can be obtained with the piecewise continuous
functions which are properly represented by the trajecto-
ries aA, bA, cA (for real solutions). The first symbol of this
complicated designation implies the branches a, b, or c at
the first sector, the second symbol corresponds to the
branch at the sector II. Thus, at low momenta we start

FIG. 1. Phase portrait of the Keldysh model, with sin� as a
function of momentum pðMeVÞ. The dotted curves correspond
to the solutions in the chiral limit m ¼ 0.
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with the solution of branches a, b, or c, then the relevant
solution passes to the branches interchanging its position in
any subinterval. But in any case there is only one way to
continue the real solution when momenta goes to infinity
and it is related with the branch Awhen the angle is going
to the zero value. Moreover, if the angle � could take a
strictly zero value in sector II then the second term of
Eq. (32) leads to the singular contribution coming from

the term m2

p2 cos
2� with the linear divergency at a large

momentum. Besides, the other terms develop the logarith-
mic divergencies as well. It is an amusing fact that the
mean energy functional out of chiral limit goes to an
infinity at any nonzero value of current quark mass m
although in the chiral limit Wð0Þ is well defined. (It is
worthwhile to remember here the current mass singularity
of zero mode approximation which was discovered in
Ref. [18].) The same conclusion is valid for the chiral
condensate [see Eq. (31)] in which the first and second
terms are developing the linear and quadratic divergencies,
respectively. We could conclude here that if the cutoff
factor is not used in the integrals when dealing with the
solutions on the whole axis the functionalWðmÞ and quark
condensate h�j �qqj�iðmÞ are ill defined.

Let us remember here that by definition the approxima-
tion (12) should describe the quark behavior in the back-
ground of the stochastic gluon field (which is averaged) at
low energies. Then it looks quite natural to introduce an

effective cutoff (in momentum) parameter ~�. The condi-
tion for factorization of gluon and quark field contributions

gets broken at the momenta above ~�. In such a situation the
dependence of mean energy and quark condensate on the
current quark mass is defined not only by the form of

integrand but by the value of parameter ~� as well. And if

this value is pretty large ~� � M (where M is the dynami-
cal quark mass) the dependence onm of all the observables

is mainly defined by the magnitude of cutoff parameter ~�
because of the singular character of integrals (for example,
for the NJL model this magnitude could be estimated as
�1 GeV). Obviously, it means in order to get the depen-
dence of observables on the current quark mass we need to
draw essential additional information.

As to the possible interpretation of the singularities
available in the mean energy functional we could assume,
for example, the mechanism similar to the Cooper pairing
which takes place at every scale of the increasing momenta
~�; ~�1; . . . . Certainly, we should correct the existing results
about the four-quark interaction potential to put the pairing
effect on realistic ground. For example, the contribution of
the stochastic configurations like the small size instantons
which is exponentially suppressed is hardly relevant to
provide an efficient pairing mechanism for the momenta

above ~�. Apparently, the hard gluon exchange looks like a
more adequate mechanism at small distances. Then the
gluon correlation function in Eq. (12) should be trans-
formed in the corresponding gluon propagator. The effec-

tive four-quark interaction we are interested in can be
derived by the quasiaverage formalism [29] which approx-
imates smoothly the infrared and ultraviolet momentum
regions although an alternative scenario could also be quite
meaningful (see, for instance, the discussion in [37]). The
fact that the Cooper attraction is still large enough despite
the coupling constant weakening could signal the domi-
nance of more fundamental fields at very small distances.
(Here it is easy to see that all the different models might be
classified by the convergence of the integral over momen-
tum with the constant of four-fermion interaction

IG ¼
Z

dpGðpÞ;

as the integrand. The model falls under the category of a
singular one if this integral diverges.)
In Fig. 2 we compare the equilibrium angles � for the

NJL model (solid line) and the aA solution of the Keldysh
model (dashed curve) as the functions of momentum p in
MeV with the current quark mass m ¼ 5:5 MeV. It is
interesting to notice that out of the chiral limit the solution
(which has a spherical symmetry) passed over zero at p ¼
0 [see, Eq. (37)]. Besides, Fig. 2 demonstrates that out of
the chiral limit the pairing process becomes essential not at
zero momentum value (as it takes place in the chiral limit)
but it is shifted to the magnitude about p� � 40 MeV for
the fitting parameters used. For example, in the NJL model
it can be obtained that

p� ¼ ½mjM�mj�1=2:

FIG. 2. The equilibrium angle � (in degrees) as a function of
momentum p in MeV. The solid line shows the result of the NJL
model and the dashed line corresponds to the most stable branch
of the Keldysh model; the current quark mass is taken as m ¼
5:5 MeV.
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The quantity r� ¼ 1=p� determines the characteristic size
of the region which is efficient for the pairing process. In
the chiral limit this region is formally extending to infinity.
The curves shown in the plot correspond to the opposite, in
a sense, limiting regimes, and it is interesting to evaluate
where the model with more realistic correlator could be
found out.

One of the important motivations to study the Keldysh
model was the question of a natural regularization which
presents for the interaction with a separable kernel. We
have seen that in the chiral limit for the kernel with the
most extensively expressed regularizing property as, for
example, the momentum � function, both the mean energy
and chiral condensate are well defined. Out of the chiral
limit the unexpected singularity appears. In Ref. [38] the
possibility of continuing the mean energy functional and
the quark condensate by performing the respective regu-
larization was discussed. As is well known, the meson
masses in the NJL model can be presented by the quark
condensate which hints that the corresponding expressions
in the Keldysh model could be singular as well and one
needs to perform another regularization to provide them
with clear physical meaning. However, despite the present
singularity of the chiral condensate the meson observables
are finite and are well matched with the experimental mass
scale (see [39]). The reason to have these meson observ-
ables as the smooth functions of current quark mass is in
the regularizing role of additional vertex form factors
which enter the meson mass formulas. Then we may
summarize that it does not make sense to debate about an
absolute value of quark condensate (in vacuum) for con-
sidered mechanism of spontaneous chiral symmetry break-
down because its magnitude depends on the particular
observable (characteristic momentum of saturation) which
is used for extracting this data. In Appendix B we compare
the results obtained in the Hartree-Fock-Bogolyubov ap-
proach for the NJL and Keldysh models with the results of
mean field approximation.

IV. THE EXPONENTIAL AND GAUSSIAN
CORRELATORS

Here we turn to a more realistic situation and analyze the
solutions possessing a spherical symmetry in the regime
where the correlation function IðxÞ is rather quickly de-
creasing with the distance increasing. Performing the in-
tegration over the azimuthal angles we can get the equation
to derive the optimal angle in the following form:

jp4j2 sin�� 4G

�

�
cos�þm

p
sin�

�ZZ 1

0
dqdx

q

jq4j
� ðq sin�0 �m cos�0ÞIðxÞ sinðpxÞ sinðqxÞ ¼ 0: (37)

Considering the solution behavior at high momentum val-
ues p we are interested in analyzing solutions in which the
angle � is going to zero magnitude. Assuming the � value

to be rather small, we expand (37) up to the terms of the �
order and have

p2�� 4G

�

Z 1

0
dqðq�0 �mÞIðp; qÞ ¼ 0:

If the function � is decreasing faster than 1=q the most
essential contribution to the integral comes from the term
proportional to m and if the kernel Iðp; qÞ is integrable the
asymptotic behavior has the following form:

� ¼ � 4Gm

�p2

Z 1

0
dqIðp; qÞ:

Let us consider now two concrete examples, with expo-
nential behavior of the correlator IðxÞ ¼ expð�ajxjÞ, and
with the Gaussian behavior IðxÞ ¼ expð�a2x2Þ. The inte-
gration over x can be performed exactly for both cases and
the kernels of integral equations look likeZ 1

0
dxe�ax sinðpxÞ sinðqxÞ

¼ a

2

�
1

a2 þ ðp� qÞ2 �
1

a2 þ ðpþ qÞ2
�
;

for the exponential correlator and asZ 1

0
dxe�a2x2 sinðpxÞ sinðqxÞ

¼
ffiffiffiffi
�

p
4a

�
e�ððp�qÞ2=4a2Þ � e�ððpþqÞ2=4a2Þ

�
;

for the Gaussian one. Now let us hold the contribution of
the first term only at large momentum values p for both
examples. Then as a result the corresponding asymptotic
behaviors are expressed by the constants which are defined
by the integrals with the kernels Iðp; qÞ. It allows us to
conclude that we have again the singular functional for the
mean energy out of the chiral limit. The parameterM� [see
Eq. (35)] and the quark condensate as functions of the
constant G for the Gaussian correlator [both obtained by
the numerical computation of Eq. (37)] are depicted in
Fig. 3. The solid line demonstrates the solution with the
current quark mass m ¼ 5:5 MeV and the dashed line is
calculated in the chiral limit as the quark condensate
presented by the points. The intrinsic change of the pa-
rameterM� generation out of the chiral limit is easily seen.
The similar features are observed for the exponential cor-
relator as well.
Unfortunately, it is a very serious problem to get all the

solutions of the nonlinear integral equation (37) and here
we are working with only one of its (the most stable)
branches. As it was demonstrated above such a situation
generates a lot of difficulties for extracting a reliable
information on the observables out of the chiral limit.
Because of this reason we calculate here the dynamical
quark mass (M ¼ �335 MeV) and chiral condensate
ðjh�j �qqj�ij ¼ ð245 MeVÞ3Þ in the chiral limit collating
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the dynamical quark mass with M� and fitting the parame-
ters a and G. The parameter a for the exponential and
Gaussian correlators reads as

aex ¼ 0:15 GeV; ags ¼ 0:16 GeV:

The most suitable values of G are equal to

Gex ¼ 0:35; Ggs ¼ 0:31

and jMex
� j ¼ 338 MeV, jh�j �qqj�iex� j ¼ ð228 MeVÞ3,

jMgs
� j ¼ 340 MeV, jh�j �qqj�igs� j ¼ ð245 MeVÞ3.

Actually we can collate the obtained value of the four-
fermion interaction constant with the packing fraction
parameter of which the basic one for the instanton vacuum

model is ~G ¼ ð4�2Þ2n
4. The result of this exercise n
4 �
10�3 is quite realistic. However, there is a pretty serious
discrepancy in the estimates of characteristic configuration
size (we should keep in mind the calculations are done in
the chiral limit).

The parameterM� as a function of momentum p in GeV
calculated with the parameters corresponding the best fit of
‘‘experimental data’’ is depicted in Fig. 4. The solid curve
is obtained for the Gaussian correlator with m ¼ 5:5 MeV
and the dashed line is calculated for the same correlator but
in the chiral limit. Here we do not mention the results
obtained for the behaving exponentially correlator because
they practically coincide with the results for the Gaussian
correlator. The parameter p� is estimated at the current
quark mass m ¼ 5:5 MeV to be as p� � 150 MeV, i.e. of

the �-meson mass order. The treatment of the correlator
with instanton profile together with the detailed analysis of
exponential and Gaussian correlators is worthy of special
paper and will be studied in the next paper.

V. CONCLUSION

In the present paper we undertake the efforts to system-
atically study the quark’s behavior in various ensembles of
stochastic gluon fields developing simple ensemble ap-
proximation which is grounded on the circumstantial
analysis of the two-particle correlation function. An ap-
proximate procedure developed enables us to calculate the
effective functional for the mean energy and to estimate the
ground state parameters within the Hartree-Fock-
Bogolyubov approach. The models with the exponential
and Gaussian behaviours of correlators are analyzed in the
chiral limit and their parameters are fitted. The results
obtained are used to estimate the characteristic region
size r� in which the possible processes of quark-antiquark
pairing might become significant. This size was estimated
to be r� � 1=40 MeV�1 for the parameters inherent in the
NJL model. For the exponential and Gaussian correlators
this estimate looks like r� � 1=150 MeV�1.
Besides, we clearly demonstrate the presence of singu-

larity in the mean energy functional outside the chiral limit.
Finally, let us emphasize the quark ensemble character-
istics discussed in the paper are not physically observable
and in order to make an intelligent conclusion about the
model effectiveness one should explore, for example, the
meson correlation function. In fact, it has been done for the

FIG. 3. The parameter M� (solid and dashed lines) and quark
condensate (without an imaginary unit, in power 1=3) in MeV
(shown by points calculated in the chiral limit m ¼ 0) as a
function of the constant G for the Gaussian correlator. The solid
line is calculated with the current quark mass m ¼ 5:5 MeV and
the dashed line is calculated in the chiral limit.

FIG. 4. The parameter M� in MeVas a function of momentum
p in GeV which corresponds to the best fit of experimental data.
The solid curve is calculated for the Gaussian correlator with
m ¼ 5:5 MeV; the dashed line is calculated for the same corre-
lator but in the chiral limit.
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Keldysh model in [39] and the result turned out to be quite
encouraging. Despite the singular character of the mean
energy of the system the meson observables are finite, quite
recognizable, and comparable with the energy scale com-
ing from an experiment.
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APPENDIX A

Here dealing with the simple quantum mechanical ex-
ample we demonstrate the difference between the descrip-
tion based on the averaging of density matrix and the
approach in which the averaging of the wave functional
is used (considering the model system in a real time).

(1) Let us suppose the particle described by the sta-
tionary Hamiltonian H0 is also affected by the
time dependent force fðtÞ. Then the particle state
is circumscribed by the Schrödinger equation

i _� ¼ H�; H ¼ H0 þ V; V ¼ fx;

where� is the corresponding wave function and we
search the perturbative solution as

� ¼ �ð0Þ þ�ð1Þ þ . . .

We expand the wave function of the zeroth order in
the eigenfunctions of Hamiltonian H0 as

�ð0Þ ¼ cne
�i�ntc n; H0c n ¼ �nc n:

The constants cn are defined by the initial condition
here, and the next perturbative orders are calculated
in the following form:

�ðjÞ ¼ dðiÞn e�i�ntc n;

where the coefficient dðiÞn is determined by the iter-
ations as

dðjÞn ðtÞ ¼ �iðc� nxc mÞ
Z t

0
d�fð�Þeið�n��mÞ�dðj�1Þ

m ð�Þ;

and ðc� nxc mÞ stands here for the matrix element

over the eigenfunctions of H0; j ¼ 1; 2; . . . ; dð0Þn ¼
cn. The energy operator after averaging over the
final state � can be presented in the form of trace

TrfH
g with the pseudodensity matrix 
 ¼ ��
�
. In

general, an energy being averaged over such a pseu-
domatrix will be time dependent but at analyzing the
quasistationary processes, for example, it might be
useful to study its averages in time as reads

TrfH
g ¼
Z T

0
dtTrfH
g=T:

For the sake of clarity we suppose for the force mean
value that �f ¼ 0. Then a nontrivial contribution into
the interaction mean energy comes from the cross
terms of the zeroth and first orders of perturbation

expansion �
� ð0Þ�ð1Þ, �ð0Þ�

� ð1Þ and we have

TrfV
g ¼ ickc
�
mðc kxc

�
nÞðc nxc

�
mÞeið�n��kÞt

�
Z t

0
d�fð�ÞfðtÞeið�k��nÞ� þ c:c: (A1)

At estimating the impact of the stochastic force its
contribution may be factorized with a help of the

corresponding correlation function fð�ÞfðtÞ �
�f2Fð�� tÞ if the characteristic frequencies �n are
smaller then the stochastic ones. In the particular
case of the white noise (when the profile function F
has the �-function shape) the time dependence in

the intermediate states c
�
n, c n in Eq. (A1) disap-

pears (see the corresponding exponentials depend-
ing on �n). Because of the assumed completeness of

eigenvalues basis of H0, i.e.
P

njc nihc
�
nj ¼ 1,

Eq. (A1) may be presented as

Tr fV
ð2Þg ’ ickc
�
mðc kx

2c
�
mÞ �f2eið�m��kÞt þ c:c:

It allows us to conclude that the resulting averaged
final state density matrix is weighed with the effec-
tive ‘‘potential’’ of form �f2x2. The similar results
can be received in the next perturbative orders. The
cluster decomposition of stochastic exponential eifx

is practical to demonstrate that the same results for
the effective potential of interaction take place for a
white noise at averaging the wave (generating) func-
tional h�i (as it is claimed in the first section of this
paper). In general consideration there appears a
certain nonlocal potential and its properties are de-
pendent on the system state.

(2) Now let us turn to the description in terms of a
density matrix only. It is defined by the following
equations:

i _
 ¼ H
� 
H0; (A2)

and the density matrix is dependent on the coordi-
nates and time 
ðx; y; tÞ. The operatorH is acting on
the coordinate x and the operator H0 is acting on the
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coordinate y. In the zeroth order of perturbative
expansion we have


ð0Þ ¼ cnme
i�ntc

�
nðyÞe�i�mtc mðxÞ;

where cnm is a Hermitian matrix which is defined by
the initial data. In the first order of the perturbation
series we present the solution in the following form:


ð1Þ ¼ dð1Þnmei�ntc
�
nðyÞe�i�mtc mðxÞ:

It is possible to have for the matrix dð1Þ the repre-
sentation as

dð1Þnm ¼ �icnkðc
�
mxc kÞ

Z t

0
d�fð�Þeið�n��kÞ�

þ ickmðc
�
kyc nÞ

Z t

0
d�fð�Þeið�k��mÞ�:

Then for the density matrix 
ð1Þ the following form
appears (in order to get it we have to interchange the
indices m and n in the second term):


ð1Þ ¼ �icnkðc
�
mxc kÞeið�n��mÞtc

�
nðyÞc mðxÞ

�
Z t

0
d�fð�Þeið�n��kÞ�

þ icknðc
�
kyc mÞeið�m��nÞtc

�
mðyÞc nðxÞ

�
Z t

0
d�fð�Þeið�k��nÞ�:

Because of the Hermitian property of density matrix

we have ckn ¼ c
�
nk the second term is complex con-

jugate with the first one at the coinciding arguments
x ¼ y. Then calculating the mean interaction energy

TrfV
ð1Þðx; y; tÞjy!xg, we are convinced that the re-

sult is identical to what we found out at the begin-
ning of this section.
Let us consider the solution for density matrix in the
operator form (and without specifying the basis
functions) as


 ¼ eiðH0
0
�H0Þt ~
;

where the matrix ~
 is determined by the solution of
following integral equation:

~
ðtÞ ¼ �i
Z t

0
d�eiðH0�H0

0
Þ�fð�Þðx� yÞeiðH0

0
�H0Þ� ~
ð�Þ

þ ~
ð0Þ;

and the effective interaction Hamiltonian is given by
the operator expression as

TrfH
g ¼ Tr

�
½H0 þ fðtÞx�ð�iÞeiðH0

0
�H0Þt

�
Z t

0
d�eiðH0�H0

0
Þ�fð�Þðx� yÞ

� 
ðx; y; �Þjy!x

�
:

(3) Further we analyze some details of the particular
exercise which admits of receiving the overt expres-
sions and consider the forced oscillations defined by
the Hamiltonian

H0 ¼ � 1

2m

d2

dx2
þm!2

2
x2:

The continual integral is exactly calculated for this
exercise [20] and the presentation of pseudodensity
matrix which we are interested in looks like

c
� ðy2; t2Þc ðx2; t2Þ ¼

ZZ 1

�1
dx1dy1K

� ðy2; t2; y1; t1Þ

� Kðx2; t2; x1; t1Þ’� ðy1; t1Þ
� ’ðx1; t1Þ; (A3)

where’ðx1; t1Þ is an initial state. The transformation
kernel is expressed by the overt formula like

Kðx2; t2; x1; t1Þ ¼
�

m!

2�i sin!T

�
1=2

eiS; (A4)

where the action is given as

S ¼ m!

2 sin!T
½cos!Tðx22 þ x21Þ � 2x2x1 þ 2x2�2

þ 2x1�1 � F�;
and the phase factor have the following form:

�1 ¼ 1

m!

Z t2

t1

d�fð�Þ sin!ðt2 � �Þ;

�2 ¼ 1

m!

Z t2

t1

d�fð�Þ sin!ð�� t1Þ;

T ¼ t2 � t1. The term F depends on the time pa-
rameters only and is immaterial because it is can-
celed in the exponential exponent of pseudodensity
matrix. We introduce the new variable x2 ¼ ~x2 þ
�1 and transform the exponential exponent in the K
kernel as

cos!Tðx22 þ x21Þ � 2x2x1 þ 2x2�2 þ 2x1�1

¼ cos!Tð~x22 þ x21Þ � 2~x2x1 þ 2ðcos!T�1 þ�2Þ~x2
þ cos!T�2

1 þ 2�1�2:

The similar transformations should be done in the

kernel K
�
with the variable y2 ¼ ~y2 þ�1. The for-
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mulas take a more convenient form if we introduce
the auxiliary factor ��1 ¼ ðcos!T�1 þ�2Þ= sin!T
which can be written down by the simple trans-
formations in the following form:

�� 1 ¼ 1

m!

Z t2

t1

d�fð�Þ cos!ðt2 � �Þ:

Making use of the well-known representation of the
kernel K for nonperturbated oscillator (f ¼ 0) ( see
[20]),

K0ðx2; t2; x1; t1Þ ¼
X1
n¼0

e�i�nTc
�
nðx2Þc nðx1Þ:

It is easy to understand that the important terms of

the pseudodensity matrix kernel K
�
K at y2 ! x2 are

represented in the similar form

K
�
K ¼ X1

n¼0

ei�nTc nð~y2Þc
�
nðy1Þe�im! ��1~y2

� eim! ��1~x2
X1
m¼0

e�i�mTc
�
mðex2Þc mðx1Þjy2¼x2 :

The following matrix element,Z 1

�1
dx2c nð~y2Þe�im! ��1~y2Hðx2Þeim! ��1~x2c

�
mðex2Þjy2¼x2 ;

will be faced with calculating the mean energy. Now

moving the exponential eim! ��1~x2 to the left and
changing the variable x2 ¼ ~x2 þ�1 in the
Hamiltonian Hðx2Þ we obtain the representation

e�im! ��1~y2Hðx2Þeim! ��1~x2

¼ H0ð~x2Þ �! ��1i
d

d~x2
þ ðm!2�1 þ fÞ~x2

þm!2

2
ð�2

1 þ ��2
1Þ þ f�1; (A5)

which allows us to see that the mean energy calcu-
lated over the final state is expressed by the diagonal
elements and matrix elements of coordinate and
momentum as well:Z 1

�1
dx2K

�
Hðx2ÞK

¼ X1
n¼0

Hn;nc nðx1Þc
�
nðy1Þ

þ X1
n¼0

Hn;n�1e
i!Tc nðx1Þc

�
n�1ðy1Þ

þ X1
n¼0

Hn�1;ne
�i!Tc n�1ðx1Þc

�
nðy1Þ;

where

Hn;n ¼
�
nþ 1

2

�
!þm!2

2
ð�2

1 þ ��2
1Þ þ f�1;

Hn;n�1 ¼ H
�
n�1;n ¼ ½m!2ði ��1 þ�1Þ þ f�

�
�

n

2m!

�
1=2

:

(4) Now we would like to analyze the example of
oscillations initiated by a periodic perturbation de-
fined as

fðtÞ ¼ F sin�t:

Then the phase factors develop the following form:

m!2�1 ¼ F
!

�2 �!2
ð�sin!T �! sin�TÞ;

m!2 ��1 ¼ F
�!

�2 �!2
ðcos�T � cos!TÞ; (A6)

(for the sake of simplicity we take the parameter as
t1 ¼ 0). As in the limit of classical mechanics these
expressions include a resonance behavior at coincid-
ing the external frequency � and oscillator fre-
quency !, and in the resonance vicinity
(� ¼ !þ " with the small deviation " from the
oscillator frequency) the motion behaves as the
beats, i.e. the small oscillations with the frequency
! and large amplitude. Now we are going to resolve
the corresponding classical equation

€x c þ!2xc ¼ �f=m;

with the initial conditions as xcð0Þ ¼ 0, _xcð0Þ ¼ 0

xc ¼ F

m!

�sin!t�! sin�t

�2 �!2
:

Comparing Eqs. (A6) and xc, _xc we are able to
express the phase factors �1 and ��1 as the classical
coordinates �1 ¼ xc and velocity ��1 ¼ _xc=!. In
particular, the correction to the diagonal element
of effective Hamiltonian (A5) can be presented in
the following form:

m!2

2
ð�2

1 þ ��2
1Þ þ f�1 ¼ m

2
_x2c þm!2

2
x2c þ fxc:

Averaging the mean energy with pseudodensity matrix
we get the quadratic form as

Tr fH
gjy2¼x2 ¼
X1

n;m¼0

c
�
nHn;mcm; (A7)

with the coefficients cn defined by the initial state and
normalized as

P jcnj2 ¼ 1. In the considered situation of
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periodic force acting for a very long (unlimited) time it
becomes clear the value of mean energy received is time
dependent (analogously to the classical description) and it
means a certain asymptotic value for mean energy (as for
other observables) simply does not exist [40]. Physical
meaning of this fact appears quite transparent. The quan-
tum system is carrying out the repeated transitions to the
upper levels of excited state and back (these transitions are
controlled by pseudodensity matrix) eventually resulting in
some quasistationary process which can be pithily charac-
terized by some observable values averaged in time. Thus,
the averaged magnitude of diagonal element of pseudoden-
sity matrix �Hn;n ¼

R
T
0 dtHn;n=T takes the form

�H n;n ¼
�
nþ 1

2

�
!þ F2

m

�2 þ 3!2

4ð�2 �!2Þ2 þ
3F2

8m

1

�2 �!2

� sin2�T

�T
þ F2

2m!2

�!

�2 �!2

�
�� 2!

��!

� sinð��!ÞT
ð��!ÞT ��þ 2!

�þ!

sinð�þ!ÞT
ð�þ!ÞT

�
:

Then it is not difficult to see that asymptotically a quasi-
stationary regime of quantum ensemble oscillations as the
whole can be set in, indeed, and now the question of
interest is to determine the minimum of functional (A7)
which corresponds to some effective ground state of the
system while under the external influence. The effective
Hamiltonian (A5)

HeffðxÞ ¼ e�im! ��1~yHðxÞeim! ��1~x;

can be presented by using the classical variables xc, _xc in
the following form:

HeffðxÞ ¼ ðp̂þ pcÞ2
2

þm!2

2
ðx̂þ xcÞ2 þ fðx̂þ xcÞ;

where pc ¼ m _xc. This quantity (at the certain conditions)
may be treated in such a way that it is practical to search
the ground state with the biased coordinate xc and momen-
tum pc. Certainly, the treatment of excited states turns out
the nontrivial problem in this situation. At every time
moment the pseudodensity matrix is a pure magnitude
because the equality 
2 ¼ 
 is identically valid.
However, it is possible to estimate the purity degree of

trial quasistationary state & ¼ Trf
2g, with the time aver-
aged density matrix and to find such states which allow us
to develop a description close to 1 in the terms of the
Schrödinger equation.

The density matrix formalism is very practical in more
general situations, for example, at studying the influence of
other quantum ensembles on a particle. It is very actively
discussed and developing (being often quite far from our
concerns) [41] but our purpose here was to illustrate the

difference in describing a system with averaging a density
matrix and averaging a wave functional.

APPENDIX B

The standard way to formulate an effective theory is to
use path integral formalism. In order to transit to such a
description we should construct the corresponding
Lagrangian action density from the effective Hamiltonian
(12)

L ¼ �qði��@� þ imÞq�G0 �qta��q

�
Z

dyI��ðx� yÞ �q0ta��q
0; (B1)

where q ¼ qðx; tÞ, �q ¼ �qðx; tÞ, q0 ¼ qðy; tÞ, �q0 ¼ �qðy; tÞ.
For the highest order in Nc the sum of the color group

generators looks like
PN2

c�1
a¼1 taijt

a
kl � 1

2�il�kj. For the sake

of simplicity we consider the correlator of the following
form only I��ðx� yÞ ¼ ���Iðx� yÞ. Using the Fierz

transformation ��

N
�� ¼ 1

N
1þ i�5

N
i�5 �

1
2��

N
�� � 1

2���5

N
���5, and holding only the scalar

contribution we receive in the mean field approximation
the following effective Lagrangian density:

L ¼ �qði��@� þ imÞq�G0 Z dyIðx� yÞh �qq0i �q0q:
(B2)

The brackets in this expression imply the calculation of the
corresponding averages. The self-consistency condition of
approximation which may be formulated as the following
integral equation:

� iMðpÞ ¼
Z dq

ð2�Þ4 G
0Iðp� qÞTr 1c

q̂þ imþ iMðqÞ ;
(B3)

allows us to calculate the quark mass. Integrating over the
fourth component of momentum

Z 1

�1
dq4
2�

1

q24 þ q2 þ ðmþMðqÞÞ2

¼ 1

2

1

½q2 þ ðmþMðqÞÞ2�1=2

we have

MðpÞ ¼ 2G0Nc

Z dq

ð2�Þ3 Iðp� qÞ mþMðqÞ
½q2 þ ðmþMðqÞÞ2�1=2 :

(B4)

With the correlator corresponding to the NJL model we
obtain the well-known gap equation
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M ¼ 2G0Nc

Z � dq

ð2�Þ3
mþM

½q2 þ ðmþMÞ2�1=2 :

For the Keldysh model we have

MðpÞ ¼ 2G0Nc

mþMðpÞ
½p2 þ ðmþMðpÞÞ2�1=2 ;

and remember that IðpÞ ¼ ð2�Þ3�ðpÞ. Then it is easy to
understand that the solution can be presented as a function
of pðMÞ for convenient handling.

In the Hartree-Fock-Bogolyubov approach the
following sum over the color matrices is used,PN2

c�1
a¼1 taijt

a
jk ¼ N2

c�1
2Nc

�ik, and then we have for the quark

mass

M�ðpÞ ¼ 2G0 N
2
c � 1

Nc

Z dq

ð2�Þ3 Iðp� qÞ jqjjq4j sin�ðqÞ:
(B5)

Comparing this expression to Eq. (B4) it becomes clear
that the four-fermion interaction constant acquires the
small correction �1=Nc which is rooted in the mean field
approximation while the higher order terms in Nc are held.
The patent formula for the Keldysh model can be simply
received in the chiral limit. In the mean field approxima-
tion we have

MðpÞ ¼ ½ð2G0NcÞ2 � p2�1=2
and in the Hartree-Fock-Bogolyubov we receive

MðpÞ ¼
��

2G0 N
2
c � 1

Nc

�
2 � p2

�
1=2

;

see also Eq. (36). At m � 0 the momentum dependencies
of masses are quite different. For the Keldysh model in the
mean field approximation at zero momentum, for example,
we have Mð0Þ ¼ 2G0Nc whereas in the Hartree-Fo ap-
proach M�ð0Þ ¼ 0. At large momenta the mass in the
mean field approximation behaves as jMðpÞj !
2G0Ncm=p and in the Hartree-Fock-Bogolyubov approxi-

mation it is jMðpÞj ! ð2G0 N2
c�1
Nc

Þ2m=p2; see also Fig. 3.

However, generally, if one takes an orientation to the
analysis of integral characteristics MðpÞ the results are
not so different. Similar relations could be obtained for
the NJL model as well. Apparently it is reasonable to
notice here that our analysis of the Hamiltonian equa-

tion (12) [Lagrangians equations (B1) and (B2)] is also
valid for the Lorentz-invariant formulation when the �
(time) integration is performed for the quark fields as
well [for the Lagrangians (B1) and (B2) the integration
over time is retained and the form factor becomes a func-
tion of four-vector Iðx� yÞ].

L ¼ �qði��@� þ imÞq�G
Z

dyIðx� yÞh �qq0i �q0q:
(B6)

The self-consistency condition Eq. (B3) acquires the co-
variant form. In particular, in the Keldysh model in four-
dimensional formulation when IðpÞ ¼ ð2�Þ4�ðpÞ the mass
gap equation reads as

M ¼ 4GNc

mþM

p2 þ ðmþMÞ2 :

It allows us to conclude that a quark never comes on the
mass shell because

p2 þ ðmþMÞ2 ¼ 4NcG
mþM

M
> 0:

This feature has already been noticed in Ref. [42]. Similar
behavior has been also observed in the analytic models of
confinement [43]. Meanwhile, an absence of bound states
in the four-dimensional Keldysh model (unlike the
Keldysh model with three-dimensional form factors) is
its shortage. There appears the additional integration over
the fourth component of auxiliary four-momentum l in
Eq. (26)Z dq

ð2�Þ3 !
Z dl4

2�

Z dq

ð2�Þ3 Iðl4Þ
1

jp4j þ jq4j � il4
;

where Iðl4Þ is the respective part of the form factor. In
particular, for the four-dimensional Keldysh model with
Iðl4Þ ¼ 2��ðl4Þ the mean energy functional can be pre-
sented in the following way:

WðmÞ ¼
Z dp

ð2�Þ3
�
jp4jð1� cos�Þ �G

p2

jp4j2
1

2jp4j
�

�
sin��m

p
cos�

�
2
�
: (51)

The singularity revealed in three-dimensional Keldysh
model manifests itself as the weaker (logarithmic only)
one in the four-dimensional consideration.
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