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The standard model Higgs boson can serve as the inflaton field of slow roll inflationary models provided

it exhibits a large nonminimal coupling with the gravitational scalar curvature. The Higgs boson self

interactions and its couplings with a standard model singlet scalar serving as the source of dark matter are

then subject to cosmological constraints. These bounds, which can be more stringent than those arising

from vacuum stability and perturbative triviality alone, still allow values for the Higgs boson mass which

should be accessible at the LHC. As the Higgs boson coupling to the dark matter strengthens, lower values

of the Higgs boson mass consistent with the cosmological data are allowed.
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I. INTRODUCTION

The inflationary paradigm has proven extremely suc-
cessful in accounting for a wealth of cosmological obser-
vations. It not only explains the large scale homogeneity
and isotropy of the present universe, but also accounts for
the generation of the nearly scale invariant primordial
perturbations responsible for structure formation [1]. The
implementation of the slow roll inflation is generally
achieved by the inclusion of an independent scalar degree
of freedom, the inflaton. It is tempting to try to identify the
inflaton with the standard model Higgs field, h, with a �h4

potential. Unfortunately, early attempts at such an identi-
fication were plagued [2] by the required flatness of the
inflaton potential which is dictated by the size of the
observed density fluctuations. This in turn necessitated
far too small a quartic self-coupling for the inflaton for it
to be identified with the Higgs scalar. However, by includ-
ing a nonminimal coupling of the Higgs doublet, H, to the
gravitational Ricci scalar curvature, R, with a large cou-
pling constant �� 103–104, it has been argued [3–15] the
resultant Higgs potential can indeed be flat enough for it to
play the additional role of the inflaton. In such a case, the
shape of the Higgs-inflaton effective potential in the infla-
tionary region allows for a range of cosmologically accept-
able values for the Higgs boson mass even after the
inclusion of radiative corrections. As such, slow roll in-
flation can be implemented without the need for additional
degrees of freedom already appearing in the minimal stan-
dard model.

The presence of nonbaryonic dark matter, however, does
require the inclusion of additional degrees of freedom
beyond those appearing in the standard model. A minimal

extension of the standard model which accounts for this
dark matter is the inclusion of a singlet Hermitian scalar
field, S, [16–19]. This simple, and clearly minimal, exten-
sion can account for the correct abundance of dark matter.
Its lack of direct [20] and indirect [21,22] detection or
observation at high energy accelerators [23–25] have al-
ready somewhat constrained the model’s parameter space,
and experiments in the near future will further probe its
validity. For a dark matter scalar mass mS near half the
Higgs boson mass, the dark matter annihilation process via
an intermediate Higgs boson line becomes resonant.
Because of this efficient process, the dark matter remains
in thermodynamic equilibrium longer (to a lower tempera-
ture) and consequently the relic density is too low unless
the Higgs boson to dark matter coupling � is quite small.
On the other hand, for scalar dark matter masses away from
one-half the Higgs boson mass, mh=2, either heavier or
lighter, there is no such resonance annihilation and thus the
Higgs boson-dark matter coupling � must be fairly large,
� >Oð0:1Þ, or else the dark matter would decouple at a
sufficiently early stage in the evolution of the universe so
that there would be more dark matter present today than
what is observed. Thus for most values of mS (mS greater
than or less than mh=2), the dark matter abundance calcu-
lation favors a higher value of �ð>Oð0:1ÞÞ.
In this paper, we study the quantum effects of dark

matter as modeled by this standard model singlet scalar
on the Higgs-inflaton effective potential. As a result of the
coupling of the Higgs boson and dark matter singlet, the
cosmological restrictions which include up to 3 standard
deviations from the measured central values, allow for
lower values of the Higgs boson mass than is the case in
the absence of such dark matter couplings. In Sec. II, the
renormalization group improved effective potential for the
physical Higgs field is determined including the effects of
its coupling to the scalar singlet dark matter as well as its
large nonminimal coupling to the gravitational Ricci sca-
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lar. Three quantities, �, �, and �2, parametrizing slow roll
inflation are given in terms of the derivatives of this Higgs-
inflaton effective potential. The Higgs nonminimal cou-
pling � to gravity is specified at the onset of inflation so as
to yield the measured value for the amplitude of density
perturbations. The scale for the onset of slow roll inflation
is set so as to provide Ne ¼ 60 e-folds of expansion before
the inflaton exits inflation at � ¼ 1. The spectral index, its
running, and the tensor to scalar ratio are then determined
quantities which depend on the Higgs boson mass as well
as the Higgs boson-dark matter coupling and the singlet
self-coupling. The numerical results for this dependence
are presented in Sec. III and are displayed in Figs. 5 and 8
in terms of cosmologically allowed and excluded regions
of parameter space. Conclusions are summarized in
Sec. IV. Appendix A provides the one-loop renormaliza-
tion group � functions for the gravitationally nonmini-
mally coupled model. Appendix B contains the triviality
and vacuum stability constraints for the scalar coupling
constants.

II. HIGGS-INFLATON EFFECTIVE POTENTIAL

A minimal way of accounting for the presence of non-
baryonic dark matter is by modeling said matter by a stable
Hermitian standard model singlet, scalar field S. The
stability of this scalar is guaranteed through the imposition
of an unbroken Z2 discrete symmetry under which the
scalar is odd. Focusing on the scalar and gravitational
sector of this model the tree level action in the Jordan
frame including all terms through mass dimension four is
specified by

�Tree ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�þ 1

2
m2

PlRþ ðD�HÞyg�	D	H
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where the Higgs potential is

VðHyHÞ ¼ �

�
HyH � v2

2

�
2

(2)

with the Higgs multiplet parametrized by

H ¼ 1ffiffiffi
2

p 
þ
ðvþ hÞ þ 
0

� �
: (3)

Here 
�, 
0 are the standard model erstwhile Nambu-
Goldstone bosons and h the physical Higgs boson field.
The ellipses in Eq. (1) refer to the usual remaining standard
model Yang-Mills and fermion kinetic terms and Yukawa
couplings. Note that this action includes the nonminimal

coupling of the Higgs doublet to the gravitational
Ricci scalar R with coupling �. m2

Pl is the reduced Planck

mass m2
Pl ¼ 1=8�G � ð2:43� 1018Þ2 GeV2 and v ¼

246:2 GeV is the scale of electroweak symmetry breaking.
The various cosmological parameters governing the

slow roll inflation are secured in terms of derivatives of
the effective potential with respect to the Higgs-inflaton
field evaluated during the inflationary phase when (only)
the physical Higgs field has a large expectation value, h�
mPl=

ffiffiffi
�

p � v. Thus it is necessary to determine the renor-
malization group improved effective potential as a function
of h. The nonminimal gravitational interaction of the Higgs
doublet couples the gravitational and Higgs fields’ equa-
tions of motion. This results in a modified form for the high
energy behavior of the Higgs and gravitational field propa-
gators or, in the external gravitational field case focused on
here, a modified Higgs propagator [14]. At the tree level,
the nonminimal Einstein equations obtained from (1) are

�
1þ �h2

m2
Pl

��
R�	 � 1

2
Rg�	

�
¼ � 1

m2
Pl

ð��	 þ S�	Þ; (4)

where the new, improved energy-momentum tensor is
��	 ¼ T�	 þ �ð12 ðr�r	 þr	r�Þ � g�	r2Þh2 with

T�	 the standard model canonical energy-momentum ten-

sor. S�	 are terms involving the dark matter field S and its

coupling to itself, the gravitational field, and the standard
model Higgs field. Focusing on the gravitational and Higgs
fields only as they are dominant in the inflationary region,
the trace of Eq. (4) results in

�
1þ �h2

m2
Pl

�
R ¼ �1

m2
Pl

�
6�hr2hþ 6

�
�þ 1

6

�
rh � rh

� 4VðhÞ
�
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Substituting this into the Higgs field equation yields

r2hþ V0ðhÞ ¼ �hR

¼ �6�2h2=m2
Pl

ð1þ �h2=m2
PlÞ

r2h

� �hð6ð�þ 1=6Þrh � rh� 4VðhÞÞ
ðm2

Pl þ �h2Þ :

(6)

Expanding about the background Higgs field h ! hþ �,
produces the field equation

1

sðhÞ r
2� ¼ �V0 þ � � � ; (7)

where (primes denote differentiation with respect to h)

sðhÞ ¼ 1þ �h2=m2
Pl

1þ ð1þ 6�Þ�h2=m2
Pl

: (8)
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Thus the nonminimal coupling to the gravitational field
introduces a modification to the Higgs field propagator by a
factor of sðhÞ. The one-loop renormalization group im-
proved effective potential for h can now be computed using
standard techniques. The only modification to the standard
model calculation arises from the noncanonical Higgs
kinetic term. Thus for large nonminimal gravitational cou-
pling constants, �, and for the sizeable, but still sub-
Planckian, inflationary backgrounds h�mPl=

ffiffiffi
�

p
, this

leads to a suppression of the physical Higgs field propa-
gator [4,12,14]

i=p2 ! is=p2: (9)

Note that sðhÞ takes its canonical value sðhÞ ! 1

when �h2

m2
Pl

� 1 while in the other extreme, sðhÞ ! 1
6�

when �h2

m2
Pl

� 1.

It then follows, for these large field values, the Higgs
field is no longer an unconstrained high energy degree of
freedom. This will result in a violation of unitarity and an
(as yet unknown) ultraviolet completion of the model will
be necessary for a thorough understanding of the dynamics
in the inflationary region [26]. Moreover, although h is
sub-Plankian in the inflationary region, the variableffiffiffi
�

p
h=mPl is large and the issue of contributions from

higher dimensional operators needs further scrutiny. As
discussed in Ref. [13], the Higgs suppression could indi-
cate the onset of a new strongly interacting phase of the
Higgs sector of the standard model. To account for this, the
perturbative low energy standard model renormalization
group running of the coupling constants was matched onto
their running in a nonlinearly realized electroweak sym-
metry model effective in the range mPl=� < h <mPl=

ffiffiffi
�

p
where the Higgs field contributions to processes are absent
[13]. Here we adopt a somewhat pragmatic approach and
following in the spirit of Ref. [12], we employ the sup-
pressed Higgs effective standard model, now with the
inclusion of the dark matter scalar, and explore the depen-
dence of the measured cosmological density spectrum
parameters on the Higgs and dark matter coupling con-
stants for the inflationary scales h�mPl=

ffiffiffi
�

p
, albeit possi-

bly at the limits of its domain of validity. Hence, Feynman
integrands involving Higgs propagators will have a sup-
pression factor s for each such line with sðhÞ evaluated at
the scale of the background Higgs field h. In particular the
renormalization group functions will include a suppression
factor for each physical Higgs line contributing to the
function.

Isolating the explicit dependence on the dominant large
Higgs field background terms, while the ellipses refer to
the remaining subdominant singlet and standard model
terms, the one-loop renormalization group improved effec-
tive action takes the form

� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�þ 1

2
m2

PlfðtÞRþ 1

2
G2ðtÞ@�hg�	@	h

� VðtÞ þ � � �
�
: (10)

In the inflationary region, the Higgs-inflaton field has a
large background value and the dominant forms of the
renormalization group improved effective action coeffi-
cients are

VðtÞ ¼ �ðtÞ
4

G4ðtÞh4ðtÞ ¼ �ðtÞ
4

G4ðtÞm4
t e

4t

fðtÞ ¼ 1þ �ðtÞG2ðtÞh
2ðtÞ
m2

Pl
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2
t

m2
Pl

e2t;

(11)

where

GðtÞ ¼ e�
R

t

0
dt0ðt0Þ; (12)

with ðtÞ the Higgs field anomalous dimension. Here we
have introduced the scaling variable t ¼ tðhÞ ¼ lnðh=mtÞ
so that hðtÞ ¼ mte

t and have normalized the Higgs field
and all running couplings at the top quark mass. The
various t dependent running coupling constants of the
effective interaction terms are given by their renormaliza-
tion group equations so that, for example,

d�ðtÞ
dt

¼ ��ðtÞ; d�ðtÞ
dt

¼ ��ðtÞ: (13)

The one-loop � functions and Higgs field anomalous di-
mension including the suppression factors are compiled in
Appendix A.
Cosmological quantities can most readily be calculated

in the Einstein frame which is obtained by rescaling the
metric by gE�	 ¼ fðtÞg�	. The one-loop renormalization

group improved effective action then takes the form

� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�gE
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þ 1
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1
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�
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where

�sðtÞ ¼ fðtÞ
G2ðtÞfðtÞ þ 3

2m
2
Plf

02ðtÞ : (15)

Defining a canonically normalized field � ¼ �ðhÞ, the
Einstein frame effective action reads

� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�gE

p �
�E þ 1

2
m2

PlRE þ 1

2
@��g

�	
E @	�

� VEð�Þ þ � � �
�
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where the dominant part of the one-loop renormalization
group improved effective potential in the inflationary re-
gion in the Einstein frame is
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VE ¼ VðtÞ
f2ðtÞ (17)

with the canonically normalized Higgs-inflaton field de-
fined through

�
d�

dh

�
2 ¼ 1

f �s
¼ G2fþ 3

2m
2
Plf

02

f2
: (18)

A Higgs field wave function renormalization suppres-
sion factor is now defined as

ZðtÞ 	 G2ðtÞ�sðtÞ ¼ G2ðtÞf
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where

c 2ðtÞ ¼ �ðtÞG2ðtÞh2ðtÞ=m2
Pl ¼ �ðtÞG2ðtÞe2tm2

t =m
2
Pl (20)

is a renormalization group invariant dimensionless field.
Note that fðtÞ ¼ 1þ c 2ðtÞ. As a function of c ðtÞ, the
Higgs-inflaton effective potential takes the simple form
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The renormalization group invariant slow roll inflation-
ary parameters are defined by (once again prime denotes
differentiation with respect to h)
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where all quantities are evaluated at the onset of inflation.
The power spectrum of density perturbations in k space is
given by

PsðkÞ ¼ �2
R

�
k

k�

�
nsðkÞ�1

; (23)

where the amplitude of density perturbations is expressed
as

�2
R ¼ VE

24�2m4
Pl�

��������k�
(24)

and is secured by the combination of experimental
results from WMAP5, baryon acoustic oscillations, and
supernovae as �2

R ¼ ð2:445� 0:096Þ � 10�9 at k� ¼
0:002 Mpc�1 [27]. Slow roll inflation predicts the spectral
index, ns, its running, � ¼ dns=d lnk, and the tensor to
scalar ratio, r, to be

ns ¼ 1� 6�þ 2� � ¼ �24�2 þ 16��� 2�2

r ¼ 16�:
(25)

The WMAP5, baryon acoustic oscillations, and superno-
vae experimental evidence gives ns ¼ 0:960� 0:013 and
r < 0:22 (95% C.L.) with an insignificant running spectral
index, � ¼ �0:028� 0:020 [27].

III. NUMERICAL RESULTS

The renormalization group equations for the various
running couplings are solved numerically starting from t ¼
0 which corresponds to the top quark mass. The top
Yukawa coupling at t ¼ 0 is fixed by the central value

deduced from the top quark mass mt ¼ ytð0Þv=
ffiffiffi
2

p 	
171:2 GeV, while the gauge coupling constants are nor-
malized at mt as �1ð0Þ ¼ 0:010 271 8, �2ð0Þ ¼
0:033 441 2, and �3ð0Þ ¼ 0:108 635 [28]. The value of
�ð0Þ is determined so that at the initial point of the slow
roll inflation, ti, the nonminimal coupling constant �ðtiÞ is
such that the calculated value of the amplitude of density
perturbations, Eq. (24), agrees with the measured result.
The Higgs-inflaton exits inflation at the final point tf when

the first slow roll parameter is 1: �ðtfÞ ¼ 1. The number of

e-folds of expansion between ti and tf is

NeðtiÞ ¼ 1ffiffiffi
2

p
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Z �i

�f

d�0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðhð�0ÞÞp

¼ 1ffiffiffi
2

p
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Z hi

hf

dh0ffiffiffiffiffiffiffiffiffiffiffi
�ðh0Þp

�
d�0

dh0

�

¼
Z ti

tf

dt
c 2

4�Z

1

ð1� þ ��

4� þ c 2ð��

4� � ��

2�ÞÞ
: (26)

The initial point of inflation is defined so that NeðtiÞ ¼ 60.
These three criteria are then implemented recursively for

each choice of initial Higgs mass, mh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�ð0Þp

v and
scalar coupling constants �ð0Þ, �Sð0Þ, and �Sð0Þ. The stan-
dard model without dark matter coupling corresponds to
�ð0Þ ¼ 0 ¼ �Sð0Þ.
As evident from Figs. 1 and 2, the shape of the effective

potential in the inflation region depends not only on the
Higgs boson mass [12–14], but also changes as the Higgs-
inflaton to dark matter coupling and dark matter self-
coupling varies. The high energy suppression of the
Higgs propagator also effects the running of the scalar
coupling constants as seen in Figs. 3 and 4. The suppres-
sion factor is plotted along with the coupling constants
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whose � function dependence on the suppression factor
manifests itself in the abrupt change of running.

The fractional rate of change of the effective potential is
obtained from the renormalization group equations.
Recalling that

d

dt
ln
�

�2
¼ 4

�
��

4�
� ��

2�

�

d

dt
ln

c 4

ð1þ c 2Þ2 ¼ 4

�1� þ ��
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ð1þ c 2Þ
�
;

(27)

it follows that

d

dt
lnVE ¼ 4

ð1þ c 2Þ
�
1� þ ��

4�
þ c 2

�
��

4�
� ��

2�

��
:

(28)

For larger values of �ð0Þ and hence more massive Higgs
bosons, the term in the square bracket can cancel the
remaining bracketed terms since c 2��=2� is getting large.

Thus there will be some t value at which the effective
potential reaches a maximum value, the wrong way roll
point, before turning over and decreasing as the scale is
increased. For a Higgs-inflaton model to be viable, it is thus
necessary that the inflation must initiate at ti values less
than that of this relative maximum or else the inflaton rolls
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FIG. 1 (color online). The Einstein frame renormalization
group improved effective potential as a function of the canoni-
cally normalized Higgs-inflaton field. The magnitude and shape
of this potential in the inflationary cosmological state varies with
the strength of the Higgs-inflaton and dark matter coupling
constant �. The thickened portion of the potential curve corre-
sponds to the Ne ¼ 60 e-folds of inflation with onset and exit
values of � as shown.
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FIG. 2 (color online). The Einstein frame renormalization
group improved effective potential as a function of the canoni-
cally normalized Higgs-inflaton field. The magnitude and shape
of this potential in the inflationary cosmological state varies with
the strength of the dark matter self-coupling constant �S as
compared to Fig. 1 for the different Higgs-inflaton to dark matter
coupling �. The thickened portion of the potential curve corre-
sponds to the Ne ¼ 60 e-folds of inflation with onset and exit
values of � as shown.
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15 000

20 000
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FIG. 4 (color online). The running of the nonminimal gravita-
tional coupling constants for the scalar fields. The initial con-
ditions for the coupling constants correspond to the effective
potential plot of Fig. 2 with �ð0Þ ¼ 0:2, �ð0Þ ¼ 8; 315, and
�Sð0Þ ¼ 0:0. In this case the onset of inflation occurred at the
scale ti ¼ 35with exit at tf ¼ 32:7 after 60 e-folds of expansion.
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FIG. 3 (color online). The running coupling constants for the
scalar fields. The initial conditions for the coupling constants
correspond to the effective potential plot of Fig. 2 with �ð0Þ ¼
0:2, �ð0Þ ¼ 8; 315, and �Sð0Þ ¼ 0:0. In this case the onset of
inflation occurred at the scale ti ¼ 35with exit at tf ¼ 32:7 after

60 e-folds of expansion.
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to mPl and beyond. The scale at which this cannot be
accomplished sets an upper limit on the Higgs mass con-
sistent with the inflationary cosmology model. It is typi-
cally below that of the suppressed triviality bound which is
mapped out in Appendix B. Hence, an additional region of
parameter space previously allowed by the suppressed
triviality constraint, as seen in Fig. 10, will be ruled out
due to the wrong way roll condition. Likewise, for smaller
values of �ð0Þ that lead to a running close to the vacuum
stability bound, ��=� is negatively large enough so that a
relative maximum forms in the effective potential. Thus
once again, there is a region of parameter space not ruled
out by vacuum stability but excluded by the wrong way roll

condition. Moreover, since the effective potential has a
maximum before vacuum instability and the onset of in-
flation are reached, the wrong way roll excluded area
covers that previously ascribed to vacuum instability. The
wrong way roll criterion more severely restricts the pa-
rameter space of the model than the requirement of abso-
lute vacuum stability up to the onset of inflation. For that
matter, even if the absolute stability constraint is aban-
doned in favor of vacuum metastability [29] with a lifetime
longer than the age of the observable universe, then the
additional range of Higgs boson masses allowed by this
less stringent condition are ruled out by the imposition of
the wrong way roll constraint. Hence for both low and high
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FIG. 5 (color online). The wrong way roll constraints for parameter space are added to those of vacuum stability and triviality
(compare to Fig. 10). These are displayed for typical initial nonminimal gravitational couplings of �ð0Þ ¼ 104 and �Sð0Þ ¼ 0:0. The
grey colored areas mark the wrong way roll excluded regions of parameter space. The constraints apply to scales up to those typical of
the onset of inflation, ti ¼ 34:5.
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Higgs masses, additional regions of parameter space are
excluded as they do not support slow roll inflation. For
typical values of the scalar parameters the wrong way roll
excluded region of parameter space is displayed in Fig. 5.

For �ð0Þ ¼ �Sð0Þ ¼ 0, the allowed range of Higgs bo-
son masses after the imposition of the wrong way roll
constraint is roughly 155 GeV<mh < 182 GeV. This is
a slightly smaller range than that allowed without the
additional constraint which is 153 GeV<mh <
190 GeV (see Appendix B). Still considering �Sð0Þ ¼ 0,
as �ð0Þ increases, the smallest allowed mh value consistent
with the various constraints is approximately 130 GeV,
which is roughly the same as without the wrong way roll
constraint. This occurs when �ð0Þ ’ 0:3. For larger values
of �ð0Þ, the allowed parameter space vanishes. Once again,
this is akin to the case without the wrong way roll con-
straint. As �Sð0Þ increases from zero, the allowed parame-
ter space starts to shrink as a smaller range of �ð0Þ values
are permitted, while there remains a finite range of allowed
Higgs boson masses. Finally, for �Sð0Þ> 0:25, the allowed

�ð0Þ range vanishes for a finite range of allowed Higgs
boson masses. Hence the allowed parameter space disap-
pears. While Fig. 5 corresponds to particular value of �ð0Þ,
the generic features continue to hold for a range of large
�ð0Þ values.
The viable region of parameter space is further restricted

by the requirement of yielding a value of the spectral index
within its experimentally determined range. Once the ef-
fective potential is determined, the cosmological quantities
are calculated using Eqs. (22) and (25). The spectral index,
its running, and the tensor to scalar ratio are plotted versus
the Higgs boson mass in Figs. 6 and 7 for various initial
values of the Higgs-inflaton to dark matter coupling and for
two initial values of the dark matter self-coupling. The
green area shown in Fig. 8 corresponds to model values of
ns that are within 1 standard deviation of the experimental
central value for the spectral index, ns ¼ 0:960 [27]. The
yellow area is determined by the predicted value of ns
being between 1 and 2 standard deviations of its central
value. The orange regions correspond to ns predicted val-
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FIG. 6 (color online). The spectral index ns, its running � and the tensor to scalar ratio r are plotted against the Higgs mass mh for
various values of the Higgs-inflaton to dark matter coupling constant �ð0Þ for the fixed initial value of the dark matter self-coupling
�Sð0Þ ¼ 0:0. Curve endpoints are determined by the wrong way roll, triviality, and vacuum stability conditions. The dashed horizontal
lines in the spectral index plot denote its central value, 0.960, and 1 and 2 standard deviations from it.
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ues to be within 2 to 3 standard deviations from the central
value. Finally the red regions indicate a predicted spectral
index greater than 3 standard deviations beyond the central
value. The grey regions are excluded by triviality, vacuum
stability, and the wrong way roll conditions.

In general, as the Higgs boson to dark matter coupling
strength, �ð0Þ, increases, lower values of the Higgs mass
will still support a stable vacuum as well as avoid the
wrong way roll condition. However, a tension begins to
arise between the experimentally allowed values of the
spectral index and the model values of the index at low
Higgs mass. It follows from Figs. 6–8 that, consistent with
the triviality, vacuum stability, and wrong way roll con-
straints, agreement with the central measured value of ns
favors a Higgs boson mass in the range 155–180 GeVand a
smaller value of �ð0Þ. As �ð0Þ grows to values ’ 0:3, the
computed value of ns lies between 1 to 3 standard devia-
tions above the central measured value and occurs for
smaller Higgs boson masses of order 130–145 GeV. Thus

a discovery of a Higgs boson mass in this range favors both
a larger spectral index and a larger coupling to dark matter
as is also preferred by the dark matter abundance calcu-
lations provided the dark matter is either lighter or heavier
than �mh=2. Note that there is no additional constraint
arising from r and � as their computed values lie well
below the present experimental limits.
As noted previously, the parameter space available

shrinks as the dark matter self-coupling increases as dis-
played in Fig. 8 for different �Sð0Þ slices. This self-
coupling is largely unconstrained by dark matter experi-
ments and observations. For small dark matter mass (less
than�1 GeV) a correlation between the self-coupling and
mass may soften current discrepancies between the ob-
served dark matter halo structure and numerical simula-
tions of the structure formation process [30,31]. Overall
there is ample parameter space available for a consistent
minimal standard model with the Higgs boson acting as the
inflaton and interacting with scalar dark matter.
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FIG. 7 (color online). The spectral index ns, its running �, and the tensor to scalar ratio r are plotted against the Higgs mass mh for
various values of the Higgs-inflaton to dark matter coupling constant �ð0Þ for the fixed initial value of the dark matter self-coupling
�Sð0Þ ¼ 0:1. Curve endpoints are determined by the wrong way roll, triviality, and vacuum stability conditions. The dashed horizontal
lines in the spectral index plot denote its central value, 0.960, and 1 and 2 standard deviations from it. Note that the curves
corresponding to �ð0Þ ¼ �0:1 and �ð0Þ ¼ 0:0 cannot be distinguished up to the thickness of the lines.
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IV. CONCLUSIONS

The influence of the inclusion of dark matter on slow roll
inflation models where the inflaton is identified with the
standard model Higgs boson was explored. To achieve this,
the standard model was modified by the inclusion of an
Hermitian scalar standard model singlet field, which ac-
counts for the observed abundance of dark matter and the
lack of its direct detection, and a large nonminimal cou-
pling of the Higgs doublet to the Ricci scalar curvature.
The model parameter space thus included the Higgs boson
and singlet scalar masses, the scalar self-coupling and the
coupling between the Higgs doublet and the dark matter in
addition to the nonminimal gravitational couplings of both
the Higgs doublet and the singlet scalar. In the inflationary
region where the physical Higgs field develops a sizeable

classical background, the presence of the large Higgs
doublet nonminimal gravitational coupling results in a
highly suppressed physical Higgs field propagator.
Accounting for this, the one-loop renormalization group
improved effective potential was computed and the con-
straints on the model parameter space were delineated. In
addition to the usual triviality and vacuum stability bounds,
we focused on the cosmological constraints arising from
the identification of the Higgs boson with the inflaton.
Since, in general, the one-loop effective potential develops
a maximum, it was necessary to insure that the onset of
inflation occurred such that the inflaton rolling was toward
the origin and not towards the Planck scale. The implica-
tion of this wrong way roll constraint is displayed in Fig. 5
and is seen to eliminate even more of the parameter space
than the vacuum stability (or metastability) constraint.
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FIG. 8 (color online). The spectral index cosmological constraints on slices of parameter space for different dark matter self-
coupling �S as determined by the degree of agreement with the experimental value of the spectral index, ns ¼ 0:960. These constraints
are applied to the potentially allowed (green) areas displayed in Fig. 5. Here the green regions indicate the volume of parameter space
that predicts spectral index values within 1 standard deviation of the central value. The yellow regions correspond to calculated values
between 1 and 2 standard deviations of the central value, while the orange regions correspond to 2 to 3 standard deviations from it. The
red areas indicate parameters that predict spectral index values more than 3 standard deviations from the central value. Finally the grey
region is excluded by triviality and vacuum stability bounds along with the wrong way roll condition. For �Sð0Þ � 0:25, there is no
allowed region of parameter space.
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Various parameters characterizing the slow roll inflation
were computed with the spectral index, ns, providing the
most stringent constraint on the coupling constant space.
As is seen in Fig. 8, the region of parameter space allowed
after the imposition of wrong way roll, triviality, and
vacuum stability constraints, is further partitioned into
various sections whose agreement with the measured spec-
tral index is only at a varying number (1–3) of standard
deviations above the central value. Larger values of the
coupling of the Higgs-inflaton to dark matter, as is pre-
ferred by the dark matter abundance calculation, lead to a
lower allowed range of Higgs boson masses. In addition,
there are the various Higgs mass bounds from accelerator
experiments. The direct LEP search [32] gives a lower
bound of 114.4 GeV, while a fit to electroweak precision
data prefers [33] a mass mh < 182 GeV. Finally, a com-
bined CDF and DO analysis of Tevatron data [34] excludes
the range 160 GeV<mh < 170 GeV. While our analysis
has been limited to the one-loop radiative corrections, we
anticipate that the general features of our results will con-
tinue to hold when two and higher loop corrections are
included. Thus there will be a range of lower allowed
Higgs boson masses with increasing Higgs boson-dark
matter coupling. Moreover, we expect that the changes to
the wrong way roll constraint arising from the inclusion of
two-loop effects will restrict the parameter space in an
analogous fashion to the two-loop changes in the vacuum
stability and triviality bounds. For the model in the absence
of any dark matter (�ð0Þ ¼ �Sð0Þ ¼ 0), the two-loop result
yields a larger allowed range of Higgs boson masses than
does the one-loop result [13]. Thus we conclude that even
after the inclusion of the dark matter, there still remains a
range of LHC attainable Higgs boson mass values that are
consistent with the cosmological parameters of slow roll
inflation when the Higgs scalar is identified as the inflaton.
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APPENDIX A: RENORMALIZATION GROUP
EFFECTIVE COUPLING CONSTANTS

To secure the one-loop renormalization group � func-
tions including the Higgs field suppression factors, we
employed the analysis of [35]. Isolating those graphs con-
taining a physical Higgs field propagator, we included a
suppression factor sðtÞ for each such line. In addition, the
various combinatorial factors were appropriately modified.
No suppression factors were included for the erstwhile
Nambu-Goldstone fields nor any other propagators

[19,36]. So doing, we find

ð4�Þ2 dg1
dt

¼ g31

�
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The Higgs field propagator suppression factor in the infla-
tionary background, where hðtÞ ¼ mte

t, is given by

sðtÞ ¼ 1þ �ðtÞm2
t e

2t=m2
Pl

1þ ð1þ 6�ðtÞÞ�ðtÞm2
t e

2t=m2
Pl

(A2)

and the Higgs field one-loop anomalous dimension  is (in
Landau gauge)

ð4�Þ2 ¼ 3y2t � 3

4
g21 �

9

4
g22: (A3)

The suppression factors in these renormalization group
equations differ somewhat from those inserted in the one-
loop terms of the beta functions presented in Ref. [12]. The
resulting differences in numerical values are small. Our
results also differ from those obtained by Ref. [13]. The
origin of this difference is discussed in Sec. II.

APPENDIX B: TRIVIALITYAND VACUUM
STABILITY

The effective coupling constants can be determined by
integrating the one-loop renormalization group equations
detailed in Appendix A. The constraints due to absolute
vacuum stability of the scalar sector provide lower bounds
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on the initial values of the coupling constants. Vacuum
stability requires that � � 0, �S � 0 and for � < 0 the
relation ��S � �2 must hold for all values of t in the range
of applicability of the effective theory. For the theory to
remain in the perturbative sector of the model, the scalar
coupling constants must not reach their respective Landau
singularities for all values of t in the range of applicability
of the effective theory. Thus we require the so-called
triviality bounds that the coupling constants to be less
than 4�, � < 4�, �S < 4�, and � < 4�.

In the following two sets of figures, the allowed parame-
ter space, after the imposition of these vacuum stability and
triviality constraints, is mapped out as a function of the

various t ¼ 0 couplings (mh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�ð0Þp

v). The triviality or

vacuum stability bound that is violated for the various
regions of the parameter space is indicated. In Fig. 9, the
parameter space constraints are applicable up to t ¼ 38
which corresponds to a scale slightly larger than the re-
duced Planck mass and with no suppression of the Higgs
propagator [sðtÞ ¼ 1].
A two-loop analysis of the vacuum stability and trivial-

ity bounds on the Higgs boson mass in the standard model
without the singlet scalar was performed in Refs. [37]. The
adoption of two-loop beta functions in conjunction with
implementation of one-loop Higgs and top quark pole-
mass definitions in those studies is seen to lower the lower
limit on the physical Higgs boson mass by about 25 GeV
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FIG. 9 (color online). The vacuum stability and triviality constraints are applied to the parameter space [i.e. �ð0Þ, �ð0Þ, �Sð0Þ] of the
scalar sector of the minimal standard model in perturbation theory. The nonminimal coupling to the gravitational field has been kept
small with no suppression of the Higgs propagator, sðtÞ ¼ 1:0. The constraints obtained apply up to t ¼ 38which is slightly larger than
the reduced Planck mass. No allowed parameter space remains for �Sð0Þ � 0:23.
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when compared with the one-loop result in the special case
�S ¼ 0 and � ¼ 0 presented here.

In the next panel, Fig. 10, the parameter space con-
straints are determined for the case where the Higgs propa-
gator is suppressed and the vacuum stability and triviality
bounds are imposed up to the typical scale for the onset of
inflation, t ¼ 34:5. Here the regions were determined with
an initial value of the nonminimal gravitational coupling
�ð0Þ ¼ 104 and �Sð0Þ ¼ 0. The size of the regions were
found to be insensitive to the value of � for a range of
values 103  �ð0Þ  104. The standard model without

dark matter coupling corresponds to the �ð0Þ ¼ 0 abscissa
in the �Sð0Þ ¼ 0 plot. There are only minor differences in
the allowed parameter space for the two different cases
depicted in Figs. 9 and 10 which can be directly traced to
either the nonpropagation of the Higgs field for larger t
values or to the fact that the constraints are applied to a
larger t value in the unsuppressed Higgs propagator case.
Thus, with a suppressed Higgs propagator, somewhat
larger values, mh ’ 190 GeV, are allowed (as compared
to �180 GeV with no suppression factor).
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FIG. 10 (color online). The vacuum stability and triviality constraints are applied to the parameter space of the scalar sector of the
minimal standard model with large nonminimal coupling to the gravitational field, �ð0Þ ¼ 104. The Higgs propagator is suppressed
with the suppression factor given in Eq. (A2) and the constraints apply to scales up to those typical of the onset of inflation, t ¼ 34:5.
No allowed parameter space remains for �Sð0Þ � 0:25.
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