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Supersymmetry and CP violation in B’- B mixing and B! — J/ ¢ decay
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Supersymmetric contributions to time independent asymmetry in B — J/ i ¢ process are analyzed in
view of recent Tevatron experimental measurements. We show that the experimental limits of the mass
difference AMp and the mercury electric dipole moment significantly constrain the supersymmetric
(SUSY) contribution to B%-B° mixing, so that sin23, < 0.1. We also point out that the one loop SUSY
contribution to BY — J/ i ¢ decay can be important and can lead to large indirect CP asymmetries which
are different for different polarization states. These new physics effects in the decay amplitude can be

consistent with CP measurements in the B, system.
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I. INTRODUCTION

Recently, the CDF and DO collaborations have an-
nounced the observation of CP violation in BY-B? mixing.
The following results, for the B? mixing CP violating
phase, have been reported [1,2]:

2B, = 0.57%539(stat) *302(syst) (DO), (1)

2B, €[0.32,2.82](68%) (CDF). 2)

These results indicate that the phase B, deviates more that
3¢ from the standard odel (SM) prediction [3]. Therefore,
the experimental observation of CP violation in BY mixing,
along with the Belle and BABAR measurement for direct
and indirect CP asymmetries of B, decays, opens the
possibility of the probing new physics effect at low energy.

It is a common feature for any physics beyond the SM to
possess additional sources of CP violation besides the SM
phase in the quark mixing matrix. In supersymmetric ex-
tension of the SM, the soft supersymmetric (SUSY) break-
ing terms are in general complex and can give new
contributions to CP violating processes. The SUSY CP
violating phases can be classified as flavor independent
phases, like the phases of the gaugino masses and w term,
and flavor-dependent phases, like the phases of the off
diagonal A-terms. The flavor independent phases are strin-
gently constrained by the experimental limits on the elec-
tric dipole moment (EDM) of the electron and the neutron.
However, the flavor-dependent phases are much less con-
strained. This may imply that SUSY CP violation has a
flavor off diagonal character just as in the standard model.
In this case, the origin of CP violation is closely related to
the origin of the flavor structures rather than to the origin of
SUSY breaking [4].

The SUSY flavor-dependent phases can induce sizeable
contributions to direct and indirect CP asymmetries of By,
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decays [5-7], as in B, — ¢Kg, B, — n'Ky, and B; —
K, which show some discrepancy with the SM expecta-
tions. In this paper, we revisit the supersymmetric contri-
butions to BY-BY mixing. We investigate the possibility that
SUSY may be responsible for the large observed value of
the B, mixing phase without enhancing the mass difference
AM  over the measured value. In addition, we analyze the
one loop SUSY contribution to BY — J/ ¢ decay, which
turns out to be important and can lead to large indirect CP
asymmetries.

The paper is organized as follows. In Sec. II, we analyze
the possible new physics contributions to BY-BY mixing
and the indirect CP asymmetries of B — J/ i ¢, taking
into account the constraints imposed by the experimental
measurements of the mass difference AMjp and the mer-
cury EDM. In Sec. III, we discuss the supersymmetric
contributions to the effective Hamiltonian for AB = 2
and AB =1 transitions. In Sec. IV, we show that the
mercury EDM imposes stringent constraints on the super-
symmetric contribution to the phase S, such that the B?
mixing phase can not exceed 0.1. In Sec. V, we analyze the
supersymmetric contribution to the B — J/ ¢ decay.
We emphasize that the one loop SUSY contribution to
BY — J /¢ can be important and can lead to large indi-
rect CP asymmetries which are in general different for
different polarization states. Finally, we give our conclu-
sions in Sec. VL.

IL. B’-B? MIXING AND CP ASYMMETRY
IN B! — J/ ¢

In the BY and BY system, the flavor eigenstates are given
by B? = (bs) and B? = (b5). The corresponding mass
eigenstates are defined as B, = pBY — gB? and By =
pBY + ¢qBY, where L and H refer to the light and the heavy
mass eigenstates, respectively. The mixing angles g and p
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are defined in terms of the transition matrix element
M, = (BYHAE=2|BY), where HAE=? is the effective
Hamiltonian responsible for AB = 2 transitions:

a4 _ (M

p Mlz’

3)

where we have assumed that AI'; < AMp and AT’ <
'@l The strength of BY-B) mixing is described by the
mass deference,

AMBs - MBH o MBL = ZRe[%MU] = 2|M12(Bs)|
4)

The decay BY — J/{/¢ involves vector-vector final
states with three polarization amplitudes. Therefore, an
angular distribution is necessary to separate out the three
polarizations for a measurement of indirect CP violation
without dilution. The amplitudes for the decay of BY — f
and BY — f are given by AMf) = (fIHAE='|BY) and
ANS) = (fIHGE™'1BY) with

A 1
AN )

Here, A is the polarization index. Therefore, the source of
CP violation in decays to CP eigenstates with oscillation
are: oscillation if ¢/p # 1, decay if p*(f) # 1, both os-
cillation and decay if {gq/p, p*(f)} # 1. The time-
dependent CP asymmetry of B — J/ ¢, for each polar-
ization state A, is given by

TABY) — T/ ) —THBYW) — T/ p)

pAf) =

(&)

Al 1) = > ’
J/l/fd)( ) FA(B(S)(t) — J/¢¢) + F"(B(s)(t) _ J/¢¢)

— C}\/d/q& cosAMp t + Sj‘/w sinAMg t, (6)

where C/ Jypand S 4 /4 Tepresent the direct and the mixing

CP asymmetry, respectively, and they are given by

_ /)P -1

A —

R Py o)
) 2[4 5M0/ )]

Sijpe =1

AT/l + 17

where n* is = depending on the polarization states. In the
SM, the mixing CP asymmetry in the B — J /s ¢ process
is the same for all polarization, to a very good approxima-
tion, up to a sign. Hence we will omit the polarization index
when discussing the SM results. We have in the SM

Sin2B; = Sy/y4- (8)

If p(J/¢p) = 1, which is the case in SM, then B, is
defined as 28, = arg[ M ,(B,)].
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In the SM, the mass difference is given by

G> N
AMM = 6_7:2 npmg(Bp Fp )My |V i[> So(x).  (9)

One may estimate the SM contribution to AMj_through
the ratio AMM/AMRM, where the uncertainties due to the

short-distance effect cancel. More importantly, theoretical
uncertainties from nonperturbative dynamics are also ex-
pected to cancel in the ratio. Hence, one has

AMIS?];VI _ MBS BBsf%?X |VIS|2

- . (10)
AMP Mg, By, f3, [Vil?

We assume that AMRM = AMT ~0.507 ps~'. Thus, for
the quark mixing angle y =~67°, one finds AMM ~

15 ps~!, which is consistent with the recent results re-
ported by CDF and DO [8,9]:
AMy = 17.77 = 0.10(stat) + 0.07(syst) (CDF),
(11
AMp = 18.53 = 0.93(stat) = 0.30(syst) (D0). (12)

On the other hand, the SM contribution (p(J/ ¢ ¢p) = 1)
to the CP asymmetry S/, 4 is given by

S]/¢,¢ = SiHZBEM,

=

with
_ *

Ve, Vo
7’7) ~ 0(0.01),
Vtsvtb

(13)

where V;; are the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix. This result clearly
conflicts with the experimental measurements reported in
Egs. (1) and (2). Therefore, a confirmation of these mea-
surements would be a clear signal for new physics beyond
the SM.

In a model independent way, the effect of new physics
(NP), with p(J/# ¢) = 1, can be described by the dimen-

sionless parameter r2 and a phase 26, defined as follows:

. Myu(B,) MNP(B,)
202000 = — 28 — ] 4 12 s 14
BT T sy ey Y

Therefore, AMp = 2| MM (By)|Ir; = AMZMr3. In this re-
spect, 2 is bounded by r? = AM%’ZP/AM}_%IJV[ =< 1.2. This
constrains the ratio between the NP and SM amplitudes
defined as R = |Axp/Agm| as follows:

|1 + Reifre| < 1.2. (15)

Note that for vanishing NP phase, i.e., Oyp = 0, one finds
that R = 0.2. However, for Oyp # 0, the constrain on R is
relaxed as shown in Fig. 1. It is clear that R can be of order
one if the NP phase is tuned to be within the range 7/2 <
Onp < 7.

In the presence of NP contribution, the CP asymmetry in
BY — J /i ¢ is modified and now we have
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FIG. 1 (color online). The constraint on R = |Axp/Agm| in
case of @ = 7/10, /4, 7/2, and 37/4.

SJ/¢¢ = Sil’lQ,Beff = SIH(ZESSM + 203), (16)
where
20, = arg(1 + Re'ow). 17)

Therefore, in order to enhance the NP effects, large values
of R are required. Now we consider the effect of NP that
leads to p(J/r¢p) # 1. Let us write the amplitude as

AMI/Y ) = AU /) + AlpU /), (18)
and define
A)‘(J/L//(ﬁ) _ S)\ ,gA
AU/ )

where 64 is a weak phase, A is the polarization index, and
we have assumed that the strong phases in the amplitude
ratio cancel. One can now write p(J/ i ¢) as

(19)

pU/ ) = e 2%, (20)
Thus, one obtains
B ) = e B, @)
|
- |A’\P|e"'9ﬁll’

|A1NP| Slnt91NP + |A§\NP| Sin‘%\Np

tanfpp, =

|A1NP| CosglNP + |A§\NP| COSH?NP’
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In this case, the CP asymmetry B — J/ ¢ is modified
and now we have

S)\

A pe = *sin2BM + 20, +20)). (22)

However, as pointed out in Ref. [5], this parametrization is
true only when the strong phase of the full amplitude is
assumed to be the same as the SM amplitude. In fact, as
discussed in Ref. [10], the NP strong phases can be differ-
ent and is generally smaller than the SM strong phase thus
invalidating the assumption about strong phases made in
Eq. (19). In general, the SM and NP amplitudes can be
parametrized as

AéM = |A§\M|€i5§M, AI/EIP = Z'A?‘NP|€’91]\NP€ e, (23)
i

where 8Ap are the strong phases and @A, are the CP
violating phases. If there is one dominant NP amplitude
then we can parametrize the NP amplitude as

Adp = |Aplei®eeidte, (24)

Thus, the CP asymmetry S;/,4 can be approximately
written as

SA

Yo = sin(2BM + 26,) + 2rd cos(28M + 26,)

X sinffp cosd?, (25)

where r} = |Afp/Ady | and §* = 82, — 8%p. Here A rep-
resents the various polarization states of the vector-vector
final state.

In the SUSY case considered in this paper, there will be
two dominant operators. In this case we can write the new
physics amplitude as

|A1NP e’e?NPe“SmP + |A§Nplei0§NPe 52NP (26)
Now using the result in Ref. [10], we will neglect the NP
strong phases and hence the new physics amplitude can be
rewritten as an effective single NP amplitude

Adpl = \/(lAlelsmelNP + |Ajpl sinfp)” + (IAfpl cosOinp + [Adxpl costip)’. 27)

Hence, the expression in Eq. (25) can still be used provided we set the NP strong phases to zero.

III. SUPERSYMMETRIC CONTRIBUTIONS TO AB =2 AND AB = 1 TRANSITIONS

In this section, we analyze the SUSY contribution to the B{-BY mixing and B} — J/s¢ decay. As pointed out in
Ref. [11], gluino exchanges through AB = 2 box diagrams give the dominant contribution to B%-BY mixing, while the
chargino exchanges are subdominant and can be neglected. The general HeAff =2 induced by gluino exchanges can be
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expressed as

HGP~ z_zC(M)Q(P«)"‘ZC(M)Q(,U«)‘FHC

(28)

where C;(w), Ci(w), 0:(w), and Q;(u) are the Wilson
coefficients and operators, respectively, normalized at the
scale wu, with

Q1 = 58y, bi5,y,bY, (29)
Q, = 5ibisRbL, (30)
Q; = SgblsRby, 31)
Q, = 52be5P bk (32)
Qs = SgbPs/ b, (33)

In addition, the operators Q~1,2,3 are obtained from Q, ;3 by
exchanging L « R. The results for the gluino contributions

PHYSICAL REVIEW D 80, 075006 (2009)

and the average squark mass, respectively. The expressions
for the functions f¢(x) and f4(x) can be found in Ref. [12].
The Wilson coefficients C 12,3 are obtained by interchang-
ing the L < R in the mass insertions appearing in C, 3.

Note that the mass insertions (8%;);;(8%;)zz may give
the dominant contribution to the transition matrix element,
due to its large coefficient in Cj. In order to connect
C/(My) at the SUSY scale Mg with the corresponding
low energy ones, C;(w) with u ~ O(m,,), one has to solve
the renormalization group equations for the Wilson coef-
ficients. The matrix elements of the operators Q; can be
found in Ref. [13].

Now, we turn to the supersymmetric contribution to the
amplitude for B, — J/¢p. It turns out that the gluino
exchanges through the AB = 1 penguin diagrams give
the dominant contributions to this process. The effective
Hamiltonian for the AB = 1 transitions through the pen-
guin process can, in general, be expressed as

to the above Wilson coefficients at the SUSY scale, in the - 6 5 . ~
framework of the mass insertion approximation, are give H eff = Z Ci0; + C,0, + Z Ci0; + Cy0y (39)
by [12] i=3 i=3
p a? where
C] = 216 2 [24xf6(x) + 66f6(x)](522 L (34) 5 5
O3 = sgy*bicryuct, 40)
2
5 a;
C5 = ~ 5 l6m 204xf6(x)(523 R (35) 5 g
O4 = SEy*brcryuct, 41
2
5 ay
C§ = 36xf (x)(8%)%,, (36)
T 2aemy TR 05 = SEYbEeRY ek, (42)
a2
g _ _
C4 216 2 {[504xf6(x) 72f6(x)](6 )LL(3 )RR 06 — 52”)’“1?551@7#01%, (43)
- 132f6(x)(5 )LR(5 )RL} (37) A
8s v O‘B BrA
i 2 0, = my,s§ o brG (44)
€3 = = Figm (245/o0) + 12076(0)(35:)11.(8% e ©osm !
At the first order in the mass insertion approximation, the
— 180f 6(x)(523)LR(523)RL}’ (38)  gluino contributions to the Wilson coefficients C; ¢ at the
where x = m% / mé with m; and m; being the gluino mass ~ SUSY scale M are given by [12]
|
a? d 1 5 1
Cy(My) = —5 (871 )n| 5 Bi(x) + 5 Balx) + 2o Pi(x) + 5 Pz(x)
m; | 9 9
a2 d 7
CulMg) = 25 (01, ) 5310 = 3B = £ Po() = 3 Pa() ]
q -
a? d - 10 1
Cs(Mg) = 5 (01, )~ B13) = 15 Bal0) + 15 Py ) + 3 P20 | @5)
q L.
a2 T2 3
ColMg) = 55 (01, 53100 = £ Bo) = £ P10 = 3 P2 |
m,7 2
mg
c,5) =27 (54 Lm( M) + 3M4<x>) (0 s (38100 + 30,00) |

q
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The absolute values of the mass insertions (64 ),3, with
A, B = (L, R) are constrained by the experimental results
for the branching ratio of the B — X,y decay. These con-
straints are very weak on the LL and RR mass insertions
and the only limits we have come from their definition,
[(6¢, rg)2sl < 1. The LR and RL mass insertions are more
constrained and, for instance with m; = m; ~ 500 GeV,
one obtains [(8¢ p; )23l = 1.6 X 1072 [7,12]. Note that
although the LR(RL) mass insertion are constrained se-
verely, their effects to the decay are enhanced by a large
factor mg/my, as can be seen from the above expression for
Cg (MS)

In light of the discussion above, the phases of (8¢ ,),3,
(84, )13, and (8%y),3 are the relevant CP violating phases
for our process. In the next section, we discuss possible
constraints imposed on these phases by the mercury EDM.

IV. MERCURY EDM VERSUS LARGE B!-B?
MIXING PHASE

It has been pointed out [14,15] that large values of
(84;)rg may enhance the chromoelectric dipole moment
of the strange quark, which is constrained by the experi-
mental bound on the EDM of mercury atom H,. In this
section, we show that the H ¢ EDM imposes a constraint on
Im[(8¢,)3(8%R)23], which may limit the supersymmetric
contribution to the BY-BY mixing.

Using the T-odd nucleon-nucleon interaction, the mer-
cury EDM is given by [14],

dy, = —e(d§ — dS —0.012d¢) X 3.2 X 1072 (46)
The chromoelectric EDM of the strange quark d¢ is given
by

s Mg
d§ =825 28 1m(54,), x My (), S
d

47 m

where x = m3/m3, g, is the SU(3)¢ gauge coupling, and
the function M,(x) can be found in Ref. [12]. For m; =
500 GeV and x = 1, the experimental limit on H, EDM

leads to the following constraint on (8%;); x:
Im (84,),2 < 5.6 X 1075, (48)

The mass insertion (8‘2’2)LR may be generated effectively
through three mass insertions as follows:

(8%) 1k = (843)10.(8%) k(6% kR (49)

where (8%;)5 = W =~ O(1072). Therefore, the

d
H, EDM imposes the following constraint on the LL and
RR mixing between the second and the third generations:

Im[(84),,(84) k] = 5.6 X 1074, (50)

If one assumes that (8%;);; ~ A% with negligible weak
phase, then one gets the following bound on the (8%;)zz
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mass insertion:

(893 rr] sin(arg[(85;)gg]) = 1072, (51)

Therefore, in case [(8%;)gzl ~ 0(0.01), the associated
weak phase is essentially unconstrained. However, if
[(84;)gr| ~ ©(0.1), the weak phase is constrained to be
of order 0.1. In both cases, this will limit the SUSY con-
tributions to the BY-BY mixing phase. It is worth noting that
in the above estimation we consider the p parameter to be
of the order of the average down squark mass due to the
implementation of the radiative electroweak symmetry
breaking conditions. If one assumes that wtanB > mj,
then (8%;),r is of order O(0.1) and hence a stronger con-
strain is imposed on [(84;)zx| [16].

We start our analysis for SUSY contribution to sin2 3,
by assuming that the B%-B? mixing may receive a signifi-
cant SUSY contribution, while the decay of B — J/ s ¢ is
dominated by the SM. Therefore, we have
Im[p(J/yp)] =0 and the induced CP asymmetry is
given by Sy, = sin(2B$™M + 26,). As an example for
the SUSY contribution, we consider m; = 500 GeV and
x =1, which leads to the following expression for R =
| MSUSY / M| [11);

R = |1.44[(8%)7, + (8%)%p] + 27.57[(8%;)7 x + (8%)%.]

- 44~76[(6L213)LR(8(213)RL] - 175'79[(5(213)LL(66213)RR]|‘
(52)

From this equation, it is noticeable that the dominant
contribution to the B%-BY mixing is due to the mass in-
sertions (84;);1(8%;) k-

If one assumes that (8$;);; is induced by the running
from the high scale, where left-handed squark masses are
universal, down to the electroweak scale, then one finds
(843)1L ~ A% ~ 0.04. With a small source of nonuniversal-
ity in the right-handed squark sector, one can easily get
(843)rg of order @(0.1). Therefore, one gets R ~ 0.7.
However in this case, the H, EDM implies that
arg[(8%,)23] =< 0.1, which limits significantly the SUSY
effect for enhancing sin2 3.

In Fig. 2, we present our results for the B?-B? mixing
phase 28, as a function of arg[(8%;)gz] for [(6%;)zrl =
0.025, 0.05, and 0.1. At these values, the ratio R is of order
= 0.17, 0.35, and 0.7, respectively. As can be seen from
this figure, the values of the BY mixing phase, which are
consistent with the H, EDM constraints, are typically of
order =< 0.1. Therefore, one concludes that the SUSY
contribution to the BY-BY mixing implies limited enhance-
ment for sin2B3, and thus cannot account for the new
experimental results reported in Egs. (1) and (2).
Moreover, a salient feature of this scenario with large RR
mixing is that it predicts a reachable mercury EDM in the
future experiments.
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FIG. 2 (color online). The BY-B? mixing phase as a function of
the arg[(84;)rx] (in radians) for [(8%;)zx| = 0.025, 0.05, and 0.1.

V. SUSY CONTRIBUTION TO B! — J/ ¢ DECAY

In this section, we will consider SUSY contribution to
the decay BY — J/ . However, let us discuss the com-
plexities in analyzing new physics effects in the decay
amplitude for vector-vector final state [17].

Consider a B — V;V, decay which is dominated by a
single weak decay amplitude within the SM. This holds for
processes which are described by the quark-level decays
b — &c5, which is the underlying quark transition in BY —
J/ ¥ ¢. In this case, the weak phase of the SM amplitude is
zero in the standard parametrization [18]. Suppose now
that there is new physics in the decay amplitude, with
different weak phases. The decay amplitude for each of
the three possible helicity states may be written, following
Eq. (27), as

A, = Amp(B — V| V,), = a,e'% + bye'®,

_ _ . : (53)
A/\ = Amp(B — Vl Vz)/\ = Cl)‘eléx + b)‘eiuﬁ’\,
where a, and b, represent the SM and NP amplitudes,
respectively, ¢, are the new physics weak phases, the 54
are the strong phases, and the helicity index A takes the
values {0, ||, L}. Using CPT invariance, the full decay
amplitudes can be written as

ﬂ_ == Amp(B i V1V2) == Aogo + A”g” + iAJ_gJ_,

_ _ _ _ . (54)
A = Amp(B— V|V,) = Aogo + Ajg) — iALg1,
where the g, are the coefficients of the helicity amplitudes
written in the linear polarization basis. The g, depend only
on the angles describing the kinematics [19]. Equations
(53) and (54) above enable us to write the time-dependent
decay rates as [17],

LBYUt)— ViVy) = eI Z (A g = 2 s cos(AM?)

A=0o

+ Parosin(AM1))g g, (55)

PHYSICAL REVIEW D 80, 075006 (2009)
Thus, by performing a time-dependent angular analysis of
the decay B(r) — V,V,, one can measure 18 observables.
These are
1 24014 |2 ! 2_ 14 |2
A :§(|A,\| +1AP), 2 :§(|AA| —|A,1%),
Ayi=—Im(A A] A A),
EJ_I' = —II’I'I(AJ_Aj< +AJ_A?),

Ajjo=Re(A)A; + A A7),
S0 =Re(AA; — AjAp),

Pli =Re<%[A’j_A, +ATAJ_]): PlLL :Im(%AiAJ—)’

pro=—tm( L4340 + A1), pi=—tm(L4;7),
4 p
(56)

where i = {0, ||}. In the above, ¢/ p is the weak phase factor
associated with BY-B? mixing. For BY meson, ¢/p =
exp(—2iB;). Note that B, may include NP effects in
BY-B? mixing. Note also that the signs of the various p,,
terms depend on the CP parity of the various helicity
states. We have chosen the sign of pg, and p to be —1,
which corresponds to the final state J/ i ¢.

Not all of the 18 observables are independent. There are
a total of six amplitudes describing B — V,V, and B —
V1V, decays [Eq. (53)]. Thus, at best one can measure the
magnitudes and relative phases of these six amplitudes,
giving 11 independent measurements.

The 18 observables given above can be written in terms
of the 13 theoretical parameters: three a,’s, three b,’s, 8,,
¢,, and the strong phases 64. In the presence of new
physics, one cannot extract the phase B,. There are 11
independent observables, but 13 theoretical parameters.
Since the number of measurements is fewer than the num-
ber of parameters, one cannot express any of the theoretical
unknowns purely in terms of observables. In particular, it is
impossible to extract B, cleanly.

In the absence of NP, the b, are zero in Eq. (53). The
number of parameters is then reduced from 13 to 6: three
a,’s, two strong phase differences, and 3. It is straightfor-
ward to show that all six parameters can be determined
cleanly in terms of the observables. This is exactly what is
done in the experimental measurements to measure 3, the
value of which appears to be inconsistent with the SM.
This might indicate a new non-SM phase in B; mixing or
NP in the decay amplitude in which case the general
angular analysis in Eq. (55) should be used. In the presence
of NP, the indirect CP asymmetries for the various polar-
ization states may no longer be the same as it is in the SM
(up to a sign).

In this section, we will consider the scenario where
SUSY gives significant contributions to both B%-BY mixing
and the decay of BY — J/ s ¢. In this case, the induced CP
asymmetry is given by Eq. (25). As shown in Fig. 3, in the
SM the decay of BY — J/ir¢ takes place at tree level
through the b — c¢ transition. While the dominant SUSY
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FIG. 3. SM tree level (left) and SUSY one loop (right) contributions to B — J/ i ¢ decay.

contribution to this decay is given by the one loop level
gluino exchange for b — s transition. It is interesting to
note that the SM amplitude is proportional to Gp X
VeV ~ 1077, while the SUSY amplitude is given in
terms of a5/mZ((8{ )2 X mgz/m,). Therefore, although
the SUSY contribution is at the loop level, it can be
important relative to the SM one. Hence, it is important
to consider the impact of this contribution on the induced

CP asymmetry S? Sy S the phase of the mass insertion

(89 )23 is not constrained by the EDM measurements.

Let us now write down the SM and SUSY contribution
to B%(p) — J/(ky, €;)dp(k,, €,), where we have labeled
the momentum and polarization of the final-state particles.
To proceed with our calculation, we will first specify the
momentum and the polarization vectors of the final-state
particles. We will work in the rest frame of the BY meson.
We define the momentum and polarization of the vector ¢
meson as [20]

1
ky = (E4, 0,0, —k) gy (0) = —(—k0,0,Ey)
my

0 (537

NG

The momentum and polarization vectors for J/¢ are de-
fined as

k'il' = (EJ/‘//O’ 0, k)
1
V2

The general amplitude for BY(p) — J/ i (ky, &,)d(ks, £5)
can be expressed as [21]

eh (%) =—=(0,*1,—i0).

el (0) = ﬁ(k, 0,0, E;/y),

mj/

ey (%)

0, 1, —4,0). (58)

n = Lk * b_ * *
A=aej-e5+—5(p-e)(p-e3)
mp.

. C %
+ 1m—26#,,p(,p’*q”81p‘9;”, (59)

where g = k| — k,. For angular analysis it is useful to use
the linear polarization basis. In this basis, one decomposes
the decay amplitude into components in which the polar-
izations of the final-state vector mesons are either longitu-
dinal (Ag) or transverse to their directions of motion and
parallel (A)) or perpendicular (A;) to one another. One

writes [22,23]

i

- = ) I - . . = T O o
A=A08TL-8§L——A||8TT-8§T— Als’l”TXf:éT-p,

V2 V2
(60)
where p is the unit vector along the direction of motion of
V, in the rest frame of Vy, e = &f - p, and &; = &} —

eilp. Ay, Ay, A are related to @, b, and ¢ of Eq. (59) via

myn,
m2

b(x2 —1),
(61)

where x = k; * k,/(m;m,). [A popular alternative basis is
to express the decay amplitude in terms of helicity ampli-
tudes A,, where A = 1,0, —1 [22,24]. The helicity ampli-
tudes can be written in terms of the linear polarization
amplitudes via A = (A = A))/~\2, with A, the same
in both bases.]

We will now proceed to calculate the polarization de-
pendent CP asymmetry given in Eq. (25). We will use
factorization to calculate the ratio r} = |Ap/Adyl. In
factorization there are no strong phases and we will keep
them as a free unknown parameter in the expression for
S}‘/W in Eq. (25). The amplitude for the process B,(p) —

J/(ky, €1)p(ky, €5) in the SM is given by

- G
AlB, — J/ ¥ p]l = —EXL,,,, (62)

V2
with

X =V, Via,— > VyVilal +al +ad + ad),

q=u,c,t
Lyjy =my 810" (pl5y,.(1 — vs5)b|By), (63)
where a, = ¢, + - and for i > 2, a; = ¢; + 5, with ¢;

being the Wilson’s coefficient. Here g/, is the J/ ¢ decay
constant defined in the usual manner.

We can simplify X using several facts. First a, is much
larger than af with i =3, 5, 7, 9 [25]. Second, in the
penguin contributions in Eq. (63), we have included the
rescattering contributions from the tree operators. However
these are small and the contributions a5 and a5 “ due to
perturbative QCD rescattering vanish because of the fol-
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lowing relations:
cys = —cye/N. = Py°/N,, (64)

where N, is the number of color. The leading contributions
to Pi are given by Pi = (g2)c, (% + G(m;, p. ¢%)) with i =
u, c. The function G(m, u, ¢*) is given by

1 2 — 1 — 2
G(m, u, ¢>) = 4[ x(1 —x) In X 3 g d
0 n

(65)

The rescattering via electroweak interactions are given
by [26],

oy =P i =0 (66)

with P, = (§2)(Nc, + c)(g + G(m;, w, ¢%).  These
contributions are again much smaller than the dominant
tree contributions and can be neglected.

In light of the above facts, we can conclude that the
dominant contributions in X in Eq. (63) come from the tree
level terms where ¢; = 1.081 and ¢, = —0.190 are the
relevant Wilson coefficients [25]. This leads to

X =V, Via, =017V, V%, (67)

At this point, we will discuss the validity of the factori-
zation approximation in BY(p) — J/y(ky, €))p(ky, €5).
One can compare this decay with B%(p)—
J/ W (ky, €))K*(k,, €,). Both decays are related to one an-
other in the SU(3) limit. The decay B’(p)—
J/y(k,, €))K*(ky, €;) was studied in QCD factorization
in Ref [27]. Naive factorization is unable to explain the
branching ratio and the various polarization fractions in
this decay. Using various models of form factors, one can
extract a, from the experiment [27], which is found to be
helicity dependent. It should be remembered that by the
addition of new physics contribution to the decay ampli-
tude the extracted values of a, in Ref [27] will be affected.
Nonetheless, the extracted value of a, in Ref [27] for the
different helicity amplitudes are not greatly different from
the value in Eq. (67). We do not expect the situation to
change much by including the new physics contribution to
the decay amplitude. For our purpose, the use of a, in Eq.
(67) is justified because the parameters in our new physics
models are not precisely known. Hence our calculation
should be understood as an estimate rather than a precise
calculation.

The matrix elements in Eq. (63) above can be expressed
in terms of form factors. This can be done as follows [28]:

PHYSICAL REVIEW D 80, 075006 (2009)

2V( )( ) VP oo
<V2(k2)|q y#blB (P)) me,uvpap kye
(Va(ko)|G"y ,ysb|B(p)) = (mg + mz)A(lz)(Vz)
eier
x[ o3, 250 ] - A2 0)
g5 r
2 (p ko)
2 .2 *
My~ M 2 i r#:l + 2im, 82}’2 Ty
X AD(r2), (68)
where r = p — k,, and v@, A(lz), A(Zz), and Agz) are form
factors.

Using Eq. (68) in Eq. (63) one obtains

_ G
asm = — \Tgmj/ng/l//x(m& + m¢)A(12)(m_2,/¢)X,

A Gr msg, @)
bsw =5 2m1u 8170 (g, + my) 842 (m3 )X,

- Gr mpg,
Csm — — Emj/ng/w mmst(z)(m3/¢)X

(69)

Let us turn now to the SUSY contribution. We will
consider only the dominant chromomagnetic operators.
The gluon in these operators can split into a charm-
anticharm (c¢c¢) quark pair, thereby contributing to b —
scc. We begin with a discussion on the matrix elements
of the chromomagnetic operators O, and Og. These are
given by

(J/ ¢ $l0,1B)=(0,)

amb

<J/<zf¢>|( 50yl +75>—Bbﬁ)
A
x(-pw%c )|B>
U/ 10,1By=(0,)

amb

L R A T
x(c yﬂz )IB) (70)

where g* is the momentum carried by the gluon in the
penguin diagram. In our case g* coincides with the four
momentum of the J/ .

After a color Fierz identity, we can write the operator O,
as
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2 (. 4 I

0,=Y, A Say’“m_b(l + v5)b, |(Cgytcg) + ... |
C

~ 2 (. B
0, = YgI:—F(sa'y#mib(l — 'yS)ba)(cﬂyl“cﬁ) + ],

a,m?

Y = —

¢ (71)

5
dm; Ju

In the above we have only retained terms that contribute to
the decay B,(p) — J/(ky, £1)d(ky, 5). In factorization,
after using equation of motion, we can write the matrix

element of O, as

(0)=T,+T, +T;,
2
Tl = Cng[_]VLLJ/”b]’

Lj/l/; = m1/¢g1/¢87#<¢|57’ﬂ(1 - 75)b|Bs>r

m 2
= Cngm_Z[_N_CRJ/l//]’
Ry = m1/¢g1/¢87“<¢|57#(1 + y5)b|By),
26tk 2
e )
Sy =mysy81/u{PI5(1 + v5)b|By). (72)

In the above equation, my, are the strange and the bottom
quark masses.

In the above equation, it is clear that T, is suppressed
relative to T by :1_11, and we will neglect it. From the
structure of the polarization vectors in Eq. (57), it is also
clear that the * polarizations do not contribute to 75.
Hence for the = polarizations, we can obtain a clear
prediction for r4 defined below Eq. (25), as the form
factors and other hadronic quantities cancel in the ratio.

For the matrix element of the operator Og, focussing

only on the transverse amplitudes we can write
|

PHYSICAL REVIEW D 80, 075006 (2009)
(0,) = Yg[_ iRJ/l//])
N, (73)
Ryjy =my 806" (Pl5y, (1 + ys5)b|By).

Hence, again focussing only on the transverse ampli-
tudes we can write, using Eq. (68) in Egs. (72) and (73)

_ G .
dsusy = _T;mf/l/lgl/gh(ml;\. + m¢)A(12)(m3/l,,)(Y -Y),
_ G mp ~
Csusy = _T;mj/lpgj/lp mm& V(z)(mi/w)(Y +7),
R[] 1]
Gr L N.J Gr L N.J
2
Yo=——2"h (74)
47ij/w

Combining the SM and SUSY contributions we can now
compute,

(Y - 1)

A = abo/all = |52 |
(Y +7) 7
+

k= ao/adul = | S |

Using the values of V., and V., from Ref. [18], we obtain
X =~ 0.0069. Furthermore, with m; = m; = 500 GeV,
my(m;) = 4.5 GeV, we obtain

-2
~= 21315(5%R)23[F Yg] = 00477(5ZR)23’
- (76)

c

We can then write, using Eq. (75),

I \/(|(5ZR)23|)2 + (18%,)23D% = 21(8¢ )23 11(84, )23 ] cos(Ox — Orp)
ry = 0.07

0.01 77)
ri =~ 0.07 \/(|(52R)23|)2 + (|(8;§L)23|)2 + 2|(5ﬁR)23||(5§1eL)23| cos(0,r — Orr)
AT 0.01 ’
[
where 6,z and 6y, are the phases of (8¢;),; and (6%;)»;.  If we neglect the contribution from mixing then Sji/ o €N
We will set (87 g)asl = J(aﬁia)zﬂ = 0.01 and we can then  reach a value of up to +0.3 for sinf, ~ =1 and
now consider the following cases': . cosst ~ 1.Case b: (5iR)23 _ _(551“)23. In this case we
Case a: (894)23 = (8%, )»3. In this case we obtain obtain
: I — S S
Su/¢¢ = Sln(2ﬁ§M + 20s)’ SJ/I,[/({) - SIH(ZBA\'M + 263) +0.28 COS(2BSM + 20\)
STy = sin2BM +260,) + 0.28 cos2BM + 26,) (78) X sinflp cossl, (79)
X sinfp cosd?L. STy = sin2BM +26,).
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Again, if we neglect the contribution from mixing, then

u/w) can reach a value of up to +0.3 for sinHﬂ,P ~ *1land

cosd!l ~ 1. Finally, we can consider the case where either
(894)23 or (8%,),; is zero. For the case (894),; # 0,
(84,)23 = 0, we obtain

sl = sin(2BM + 26,) + 0.14 cos(28M + 26,)

I/
X sinf!l cosdll,
NP 50
Sty = sin@BM +20,) + 0.14 cos25M + 26,)
X sinfgp cosSt.
For the case (SZR)B =0, (5;1%L)23 # 0, we obtain
SY )y = Sin@BM +26,) — 0.14 cos(25M + 20,)
% sinfl, cossl,
NP )
S0 = SHEN +20) + 014cos26 + 20)

X sinfxp cosdt.

Now one may wonder how NP in b — scc transitions
affect CP measurements in the B, system. Let us first
consider the indirect CP asymmetry in the golden mode
B, — J/{K,. Note, this is a vector-pseudoscalar decay
and so the strong phases involved here can be quite differ-
ent from the ones involved in vector-vector decays. In other
words, NP effects in different final states can be very
different. More interestingly, it can be easily checked that
for case b in Eq. (79) the contribution to the indirect
asymmetry in B; — J/ K cancels. However, the indirect

PHYSICAL REVIEW D 80, 075006 (2009)

CP asymmetry in the vector-vector mode does not cancel
for all polarization states. In other words, the range of NP
effects obtained in the decay B, — J/ ¢ are consistent
with sin28 measurements in B; — J/ K, [29-31] for the
various reasons discussed above.

The decay B, — J/yK* is related to BY — J/¢¢ by
SU(3) flavor symmetry. Hence we should potentially see
NP effects in B; — J/ ¢ K", up to SU(3) breaking effects.
The CP measurements in this decay are not yet precise [29]
and hence this decay also is an ideal place to look for new
physics effects in the decay amplitude.

VI. SUMMARY

In summary, we have analyzed the SUSY contribution to
BY-BY mixing in light of the recent experimental measure-
ment of the mixing phase. We showed that the experimen-
tal limits of the mass difference AMjp and the mercury
EDM constrain significantly the SUSY contribution to
BY-BY mixing, so that sin23, < 0.1. We then studied the
one loop SUSY contribution to the B — J/ s ¢ decay and
found that new physics contribution to the decay amplitude
can lead to significant indirect CP asymmetries which are
in general different for different polarization states.
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