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In this paper we investigate supersymmetric effects to the threshold production cross section of top-

quark pairs in electron positron annihilation. In particular, we consider the complete one-loop corrections

from the strong and weak sector of the minimal supersymmetric standard model.
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I. INTRODUCTION

One of the main goals of a future electron positron
collider is the precise measurement of the top-quark pro-
duction cross section in the threshold region. The compari-
son to the theoretical prediction allows for a precise
extraction of the top-quark mass, its width, the strong
coupling and—in case the Higgs boson is not too
heavy—the top-quark Yukawa coupling.

The next-to-next-to-leading order (NNLO) QCD correc-
tions to the total cross section �ðeþe� ! t�tÞ has been
completed several years ago [1]. One observes large per-
turbative corrections from the second order terms which
make a precise prediction difficult. In the recent years a big
effort has been undertaken to complete the third-order
corrections to �ðeþe� ! t�tÞ [2–12]. First numerical esti-
mates [13] indicate that the convergence of the perturba-
tion theory is improved after the inclusion of the NNNLO
terms. In addition to the third-order corrections also the
resummation of the NNLL terms is studied [14–16].

In order to profit from precise experimental measure-
ments it is desired to reach an uncertainty below approxi-
mately 3% from the theory side [17]. Radiative corrections
of this order can easily be reached by effects from theories
beyond the standard model (SM). An attractive extension
of the SM is Supersymmetry and, in particular, the minimal
supersymmetric standard model (MSSM) which answers
several open questions of the SM. For example, it stabilizes
the Higgs boson mass at the electroweak scale, provides a
dark matter candidate, and allows for the unification of the
couplings. For this reason we consider in this paper the
MSSM where the complete one-loop corrections both in
the strong and electroweak (nonphotonic) sector of the
theory are considered. Furthermore we confirm the results
from Refs. [18–21] obtained in the framework of the SM
and two-Higgs-doublet model (THDM) of type II,
respectively.

It is convenient to perform the calculation of the pro-
duction cross section in the framework of an effective
theory where the produced top quarks are described by a
nonrelativistic two-particle Green’s function. All effects
connected to energy scales above � � mW are contained
in coefficient functions which represent the new couplings
in the effective Lagrangian. Since the masses of the super-

symmetric particles are above the electroweak scale they
only influence the matching coefficients of the effective
operators. For the top-quark production we have to con-
sider the vector current in the full and effective theory
which constitutes a building block for all threshold phe-
nomena involving the coupling of the initial electron and
positron via photon, Z boson or box diagrams to heavy
quarks.
The remainder of the paper is organized as follows: In

the next section we provide the formulas which are neces-
sary for the evaluation of the threshold cross section.
Afterwards we discuss the numerical effects from the
strong and weak sector of the MSSM in Secs. III and IV
and present our conclusions in Sec. V.

II. FRAMEWORK

Nonrelativistic QCD (NRQCD) allows for a consistent
separation of the hard corrections connected to energy
scales of the order of the weak gauge bosons or higher
from the soft scales which are involved in the top antitop
bound state. Within NRQCD we can normalize the pro-
duction cross section to �ðeþe� ! �þ��Þ ¼
ð4��2Þ=ð3sÞ and denote the ratio by R

RðeþL e�R ! t�tXÞ ¼ 8�

s
Im½ðhR;VÞ2HV þ ðhR;AÞ2HA�; (1)

where s is the square of the center-of-mass energy. In
Eq. (1) left-handed positrons and right-handed electrons
are considered; for eþR e�L in the initial state a similar
expression is obtained by replacing R by L in Eq. (1).
Note that the initial states eþR e�R and eþL e�L are suppressed
by a factor ðme=MWÞ2 � 10�10 and are thus negligible.
hR;V and hR;A are so-called helicity amplitudes which

absorb the matching coefficients representing the coupling
of the effective operators. They take care of the hard part of
the reaction. The first subscript of h refers to helicity of the
electron, and the second one to the vector (J

�
V ¼ �c��c )

or axial-vector coupling (J�A ¼ �c���5c ) of the gauge

bosons to the top-quark current. In this paper we evaluate
corrections to hR;V and hL;V .
The bound-state dynamics is contained in the so-called

hadronic part formed by current-current correlators within
NRQCD. They are denoted by HV and HA in Eq. (1) and
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will not be considered further in this paper. At threshold the
contribution from the axial-vector current is suppressed by
two powers of top-quark velocity thus we only consider the
vector current J�V in this work. Its counterpart in the
effective theory reads jiV ¼ c y�i�.

It is convenient to separate the photon and Z contribu-
tion in htreeI;V and write

htreeI;V ¼ h�;treeI;V þ hZ;treeI;V : (2)

Here the tree-level contributions are given by (I ¼ L, R)

h�;treeI;V ¼ QeQt; hZ;treeI;V ¼ s�e
I�

t
V

s�M2
Z

;

�t
V ¼ �t

R þ �t
L

2
; �f

I ¼
ðT3ÞfI � s2wQf

swcw
;

(3)

where the �f
I is the coupling of a fermion (f ¼ e, t) to the

Z boson, sw is the sine of the weak mixing angle (c2w ¼
1� s2w ¼ m2

W=m
2
Z), and electric and isospin charges for

top quark and electron are given by

Qe ¼ �1; Qt ¼ 2=3; ðT3ÞtL ¼ 1=2;

ðT3ÞeL ¼ �1=2; ðT3ÞfR � 0:
(4)

In the following the abbreviation Tf
3 � ðT3ÞfL will be used.

Let us note that hI;A can be obtained by substituting �t
V by

�t
A ¼ ð�t

R � �t
LÞ=2 in formula (3). The loop corrections

are taken into account via

hI;V ¼ htreeI;V þ hXI;V; (5)

where X stands for QCD, SQCD (supersymmetric QCD),
SM, THDM,1 or MSSM. The numerical effects are dis-
cussed for the quantity

�X ¼ �RX

RLO
¼ 2htreeL;V ReðhXL;VÞ þ 2htreeR;V ReðhXR;VÞ

ðhtreeL;VÞ2 þ ðhtreeR;VÞ2
; (6)

where the sum over all helicity states of the incoming
electron and positron has been performed. Let us note
that in our case for the evaluation of hI;V one has to set s ¼
4m2

t . Furthermore the external top quarks are on their mass
shell. In addition we are only interested in hard corrections
resulting from the real matching condition. Corrections to
the cross section stemming from imaginary part of the
matching coefficient, which takes into account the finite
lifetime of the top quark, are discussed for SM in Ref. [22].

For the generation of the Feynman diagrams we use the
Mathematica program FeynArts [23]. The ampli-
tudes are further processed with the help of the programs
FormCalc [24] and FeynCalc [25] which take the

traces, map the occurring integrals to a standard basis
and reduce the tensor integrals to a minimal set of scalar
integrals usually denoted by A0, B0 and C0. Since we have
a quite particular momentum configuration it is not pos-
sible to use the above mentioned packages as black boxes
but apply some modifications. In fact, the choice s ¼ 4m2

t

allows for a partial fractioning in the denominators of the
loop integrands appearing in t�t�=Z-vertex and box dia-
grams which effectively reduces the number of external
legs by one. Consider, e.g., the integrand of a generic three-
point function (omitting the i	 prescription)

1

ðp2þ2q1p�M2
1þm2

t Þðp2�2q2p�M2
2þm2

t Þðp2�M2
3Þ
;

(7)

where p is the integration momentum and q21 ¼ q22 ¼ m2
t

are the squared momenta of the top quarks. After choosing
q1 ¼ q2 ¼ q=2 and applying a partial fractioning one
arrives at

2
M2

1
þM2

2

2 �M2
3 �m2

t

�
1

p2 � M2
1
þM2

2

2 þm2
t

� 1

p2 �M2
3

�

�
�

1

p2 þ q � p�M2
1 þm2

t

þ 1

p2 � q � p�M2
2 þm2

t

�
:

(8)

As a consequence the result can be expressed in terms of
only two-point functions. In a similar way one can express
the box diagrams in terms of three-point functions.

III. SUPERSYMMETRIC QCD

In this section we consider the effects from supersym-
metric QCD (SQCD) to the top-quark threshold produc-
tion. There are only four contributing Feynman diagrams
which are shown in Fig. 1. The one-loop QCD corrections
are known since long [26] and the corresponding matching
coefficient is defined via the relation

JiV ¼ ð1þ cð1Þv ÞjiV ¼
�
1� 2CF

�s

�

�
jiV: (9)

This effect can be incorporated in the helicity amplitude by
a simple rescaling of the tree-level contributions

hQCDI;V ¼ h�;treeI;V a�g þ hZ;treeI;V aZg: (10)

Using the explicit expressions for htreeI;V , one can already see

that the contribution of aZX to the relative correction �X of
the cross section is in general suppressed by factor 0.08
compared to the one resulting from contribution of a�X. For

the QCD the coefficients a�=Zg read

a�=Zg ¼ cð1Þv : (11)

Since we work in a supersymmetric framework we re-

peated the calculation of cð1Þv within dimensional reduction

1In this paper we use the THDM type II where u=d-type
quarks couple to different Higgs doublets Hu=Hd. Note that
the Higgs sector of the MSSM corresponds to the Higgs sector
of THDM type II.
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[27]. Although both the one-loop vertex corrections and
the result for the wave function counterterm are different
from their counter parts in dimensional regularization we
observe that the result given in Eq. (9) does not change.
This is expected since at tree-level the strong coupling
constant is absent.

The SQCD corrections can also be cast in the form of
Eq. (10)

hSQCDI;V ¼ h�;treeI;V a�~g þ hZ;treeI;V aZ~g ; (12)

with

a�~g ¼ ��
V;~g þ �Zt

V;~g;

aZ~g ¼ �Z
V;~g þ �Zt

V;~g �
3

8s2w � 3
�Zt

A;~g;
(13)

where ��=Z
V;~g represents the gluino contribution to the vector

part of the one-loop vertex normalized by the correspond-
ing tree-level coupling. The wave function renormalization
constant Zt

V=A;~g ¼ 1þ �Zt
V=A;~g is defined in the on-shell

scheme and renders the �t�t and Zt�t vertex finite. The
definition of both counter terms can be found in
Appendix A, where they are expressed in terms of vector-
(V) and axial-vector part (A) of the top-quark self-energy.
The subscript ~g reminds that only the diagrams involving a
gluino are considered in each expression. Since the results
are quite compact we present the analytical formulas for
the individual contributions of the right-hand side of
Eq. (13). The contributions to the wave function counter-
term reads

�Zt
V;~g ¼

X2
s¼1

�s

6�m2
t

f�2m2
t ½�2m~gmtð�s1s2 þ�s2s1Þ þ ðm2

t þm2
~g �m2

~ts
Þð�s1s1 þ�s2s2Þ�B0

0ðm2
t ; m

2
~g; m

2
~ts
Þ þ ð�s1s1

þ�s2s2Þ½A0ðm2
~ts
Þ � A0ðm2

~gÞ� þ ðm2
~g �m2

t �m2
~ts
Þð�s1s1 þ�s2s2ÞB0ðm2

t ; m
2
~g; m

2
~ts
Þg;

�Zt
A;~g ¼

X2
s¼1

�s

6�m2
t

ð�s1s1 ��s2s2ÞfA0ðm2
~gÞ � A0ðm2

~ts
Þ � ðm2

t þm2
~g �m2

~ts
ÞB0ðm2

t ; m
2
~g; m

2
~ts
Þg;

(14)

and the vertex corrections are given by

��
V;~g ¼

X2
s¼1

�sð�s1s1 þ�s2s2Þ
9�m2

t ðm2
t þm2

~g �m2
~ts
Þ
�
2m2

t ðm2
t �m2

~ts
ÞB0ð4m2

t ;m
2
~ts
;m2

~ts
Þ þ 1

2
ðm2

t þm2
~g �m2

~ts
Þ½A0ðm2

~gÞ �A0ðm2
~ts
Þ þ 2m2

t �

� 1

2
½m4

~ts
� 2ðm2

t þm2
~gÞm2

~ts
þ ðm2

~g �m2
t Þ2�B0ðm2

t ;m
2
~g;m

2
~ts
Þ
�
;

�Z
V;~g ¼

X2
s;u¼1

�s½4s2wð�s1u1 þ�s2u2Þ � 3�s1u1�ð�u1s1 þ�u2s2Þ
9�m2

t ðm2
~ts
þm2

~tu
� 2m2

~g � 2m2
t Þð8s2w � 3Þ

��
þ½m4

~ts
� 2ðm2

t þm2
~gÞm2

~ts
þ ðm2

~g �m2
t Þ2�B0ðm2

t ;m
2
~g;m

2
~ts
Þ

þ ½m2
~ts
þm2

~tu
� 2ðm2

t þm2
~gÞ�

1

2
½A0ðm2

~gÞ �A0ðm2
~ts
Þ þ 2m2

t ð1þB0ð4m2
t ;m

2
~ts
;m2

~tu
ÞÞ� þ ½m2

t ðm2
~ts
þm2

~tu
þ 2ðm2

~g �m2
t ÞÞ

� 1

4
ðm2

~ts
�m2

~tu
Þ2�B0ðm2

t ;m
2
~ts
;
1

2
m2

~ts
þ 1

2
m2

~tu
�m2

t Þ
�
þ fs$ ug

�
: (15)

In Eqs. (14) and (15) we introduced the abbreviations
�ijkl ¼ UijU

?
kl where Uij are the elements of the top

squark mixing matrix (cf. Appendix B). The conventions
for the functions A0 and B0 are adapted from Refs. [24,28]
where explicit results can be found. Further B0

0 is the

defined as derivative of B0 with respect to the first argu-
ment. Our analytic formulas are in agreement with

Ref. [29] where the result has been expressed in terms of
a one-dimensional integral assuming a real mixing matrix
for the top squarks.2

FIG. 1. QCD and SQCD diagrams. (a): Gluon contribution at the t�t�=Z-vertex. (b): Gluon contribution to the top-quark self-energy.
(c): Gluino contribution at the t�t�=Z-vertex. (d): Gluino contribution to the top-quark self-energy.

2The SQCD corrections for the hadronic Z boson decay and
the quark pair production in electron positron annihilation have
been considered in Refs. [30,31], respectively.
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It is instructive to consider the limit where all SUSY
particles have a common mass mSUSY. In this limit the
above formulas are simplified significantly. In particular,
the result becomes independent of the matrix elements Uij

and �Zt
A;~g ¼ 0. We furthermore have a~g ¼ a�~g ¼ aZ~g which

reads

a~gðm2
SUSYÞ ¼

4�s

9m2
t �

�
1

2
m2

t � 3

2
m4

t B
0
0ðm2

t ; m
2
SUSY; m

2
SUSYÞ

þ ðm2
SUSY �m2

t Þ½B0ðm2
t ; m

2
SUSY; m

2
SUSYÞ

� B0ð4m2
t ; m

2
SUSY; m

2
SUSYÞ�

�

¼ �s

45�

�
y2 þ 16

21
y3 þ 1

2
y4 þ 76

231
y5 þOðy6Þ

�
:

(16)

After the second equal sign we have expanded the result in
terms of y ¼ m2

t =m
2
SUSY.

Let us in the following discuss the numerical effects of
the one-loop QCD and SQCD corrections. For mt ¼
173:1 GeV and �ð6Þ

s ðmtÞ ¼ 0:108 the QCD corrections

amount to �QCD ¼ 18:3% (corresponding to �ð5Þ
s ðmZÞ ¼

0:1176) and thus constitute the largest contribution.

200 250 300 350 400
0.000

0.001

0.002

0.003

0.004

0.005

0.006

mSUSY GeV

SQ
C

D
m

SU
SY

FIG. 2. �SQCD ¼ 2a~g computed from Eq. (16) as a function of
mSUSY. The solid line represents the exact result and the dashed
curve the expansion including terms up to order ðm2

t =m
2
SUSYÞ5.

FIG. 3 (color online). �SQCD as a function of m~t2 and m~g (normalized to the top-quark mass) form~t1 ¼ mt and different values of the
mixing angle 
~t.
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In the simplified scenario described by Eq. (16) one
obtains the SQCD corrections as shown in Fig. 2. From
the figure one can see that for mSUSY > 200 GeV the
expansion agrees well with the exact result showing a
relative deviation below 10%. For all mSUSY >mt the
relative correction to the threshold cross section stays
below 0.6%. The size of the SQCD corrections in a non-
universal SUSY mass scenario is shown in Fig. 3 where
�SQCD is plotted as a function of m~t2 and m~g for m~t1 ¼ mt.

Since our results are �-periodic in 
~t we have chosen for
illustration the four values 
~t 2 f0; �4 ; �2 ; 3�4 g. The figures

show, that only for light masses of the second top squark
(m~t2 & 2mt) �

SQCD can have a strong dependence on m~t2 .

In general one observes corrections below 1% which
become negligible for large masses of the SUSY particles.

A correction factor above 1% is only observed for 
~t ¼
�=4 and relatively light gluino masses of the order of the
top-quark mass which are excluded within the MSSM [32].

IV. ELECTROWEAK CORRECTIONS IN THE
THDM AND THE MSSM

QCD corrections only affect the �t�t=Zt�t vertex. On the
other hand, electroweak corrections require also the inclu-
sion of the eþe��=eþe�Z vertex and furthermore of
gauge boson self-energy and box contributions which are
necessary in order to arrive at a finite and gauge parameter
independent result. Typical Feynman diagrams contribut-
ing to the individual building blocks are shown in Fig. 4 for
the SM and in Fig. 5 for the MSSM. Because of the

FIG. 4. Typical Feynman diagrams contributing to �SM.

FIG. 5. Typical Feynman diagrams contributing to �MSSM.
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renormalization procedure (we follow Refs. [33,34]) also
W boson and fermion self-energy contributions have to be
computed which are also shown in Figs. 4 and 5. They are
used in order to render the four building blocks individu-
ally finite which is quite convenient to deal with.

In a first step we have used our setup in order to compute
the SM contribution. We find complete agreement with
Refs. [18,19,21]. Afterwards the THDM model has been
considered and the results from Ref. [20] have been repro-
duced.3 Let us note that for vanishing bottom quark mass
the corrections in the THDM model can easily be obtained
from the analytical results for Higgs- and Goldstone boson
contribution calculated in the SM by adjusting the coupling
factors and boson masses in the loop diagrams.

Results for the MSSM are not yet available in the
literature. However, it is possible to compare our results
for the vector boson self-energies with Ref. [35] where the
top-quark production has been considered above the
threshold. As far as the box contribution is concerned,
new kind of diagrams occur in the MSSM where the
electron and positron in the initial state are not part of
the same fermion line (and similarly for the top quarks in
the final state), cf. Fig. 5(a). Because of the different tensor
structure, originating from the Majorana character of char-
ginos and neutralinos, it is not straightforward to process
these contributions with our setup. On the other hand, it is
possible to extract the relative correction to the cross
section at the threshold by taking the limit s ! 4m2

t since
these diagrams only involve heavy particles inside the
loop. However, due to the numerical properties of the
loop functions [24] the limit can not be taken naively.
Instead we evaluate the result of Ref. [35] for the box
contribution above threshold and extrapolate to s ¼ 4m2

t .
In this way we obtain the threshold contribution for the
new box diagrams with three significant digits which is
sufficient for the phenomenological analysis. We have
applied the same procedure for the SM box contributions
which provides both a cross check on our analytical cal-
culation and the very procedure for extracting the threshold
contribution.

Because of the occurrence of many different masses and
mixing angles the remaining general expression is quite
lengthy in the case of theMSSM. Thus, in the following we
will only discuss the numerical effects. In Ref. [36] a
package is provided which allows the numerical evaluation
of the corrections described in this paper. It uses
Mathematica as front-end and calls Fortran for the
time-consuming parts of the calculation. In addition an
interface to SPheno [37] is provided, which generates
numerical values for the masses and mixing angles on
the basis of a certain SUSY breaking scenario.

In the numerical discussion we will restrict ourselves to
the SUSY breaking scenario based on minimal supergrav-
ity (mSUGRA) and use the snowmass points and slopes
(SPS) [38,39] in order get an impression of size of the
corrections. In addition to the five mSUGRA parameters
m0, m1=2, tan�, A0 and sgnð�Þ (cf. Table I) which serve as

input for the spectrum generator we use the following input
values for the remaining SM parameters [40–42]4

mW ¼ 80:40 GeV; mZ ¼ 91:1876 GeV;

c2w ¼ m2
W=m

2
Z; mt ¼ 173:1 GeV;

mb ¼ 4:2 GeV; ��1 ¼ 137:036;

��ð5Þ
hadðmZÞ ¼ 277:45� 10�4;

��lepðmZÞ ¼ 314:97� 10�4: (17)

In a first step our Mathematica program transfers the
input values to the spectrum generator SPheno [37] which
produces numerical values for all unknown MSSM pa-
rameters relevant for our analysis. The output is automati-
cally imported into Mathematica and afterwards used in
order to evaluate the THDM or MSSM corrections. More
details about the functionality of our package is provided
via the usual Mathematica internal documentation and
example files which in addition automatically generate the
plots and tables shown in this paper.
The numerical impact of the corrections in different

mSUGRA scenarios can be seen in Table II where
�SM EW,�THDM EW and�MSSM EW are evaluated for several
SPS points.5 Note that �SM EW varies since the SM Higgs
boson is identified with the lightest MSSM Higgs boson.
The SM corrections amount to a sizeable shift of about

15% which get reduced by roughly 5% to 6% in the case of
the THDM. The main reason for this reduction is the
smaller coupling of the top quark to the light Higgs boson.
At the same time only numerically small contributions

TABLE I. Input values for the SPS scenarios as defined in
Refs. [38,39]. All masses are given in GeV and sgnð�Þ ¼ 1.

Points Slopes

Label m0 m1=2 A0 tan� m0 A0

SPS1a’ 70 250 �300 10 - -

SPS1a 100 250 �100 10 0, 4m1=2 �0, 4m1=2

SPS1b 200 400 0 30 - -

SPS2 1450 300 0 10 2m1=2 þ 850 0

SPS3 90 400 0 10 0, 25m1=2 � 10 0

SPS4 400 300 0 50 - -

SPS5 150 300 �1000 5 - -

3In Ref. [20] the expression for aZ
Zh0

is proportional to cosð��
�Þ which should be replaced by sinð�� �Þ.

4Following Ref. [43] we replace light fermion contributions to
the derivative of the photon vacuum polarization function by
��ð5Þ

hadðmZÞ and ��lepðmZÞ.
5We add EW to the superscript in order to make clear that only

electroweak and no strong corrections are considered.
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arise from the diagrams involving heavy Higgs bosons. In
Table II one observes only a marginal difference between
the THDM and the MSSM. It is thus instructive to have a
closer look at the dependence on m1=2 as suggested by the

SPS scenarios. For illustration we show in Fig. 6 the
comparison of �SM EW, �THDM EW and �MSSM EW for
SPS1 and SPS2. In both cases we observe only small
corrections beyond the THDM, i.e. from the neutralino
and chargino sector of the MSSM. Larger deviations of
the order of 0.5% are only observed for those values of
m1=2 where the corresponding chargino masses are close to

the top-quark mass. This becomes clear in Fig. 7 where we
show the correction of the finite building blocks separately
for the case of SPS1a. One can see a relatively strong
variation in the dashed curve which shows the contribu-

tions from the charginos. It is interesting to note that the
peak around m1=2 � 150 GeV in �Box is clearly visible in

Fig. 6(a) whereas a cancelation among the various parts
occurs for the peak close to m1=2 � 250 GeV. For com-

parison we plot in Fig. 7(d) the contribution from SQCD
(dashed-dotted). Form1=2 * 150 GeV it is smaller than the

chargino contribution. Corrections above 0.5% are only
reached for relatively small values of m1=2 which corre-

sponds to small values of the gluino mass. Let us finally
mention that we performed our calculation in the THDM
and MSSM for finite bottom quark mass and investigated
possible large corrections for higher values of tan�.
However, even for the mSUGRA scenario SPS4 where
tan� ¼ 50, the result for massless bottom quark is
�MSSM EW

mb¼0 ¼ 0:099, thus the effect of finite bottom quark

mass adds 0.002 to �MSSM EW
mb¼0 (see Table II).

V. CONCLUSIONS

In this paper we investigated the complete weak and
strong one-loop corrections within the MSSM to the
threshold production of top-quark pairs at a future eþe�
linear collider. For the SM, THDM, QCD and SQCD
corrections we confirmed the results in the literature, the
genuine supersymmetric electroweak corrections are new.
As far as the numerical importance is concerned, the

electroweak SM corrections amount up to þ15% for light
Higgs masses. After extending the Higgs sector we observe
for the SPS scenarios a screening of about�5% to�6% in
the THDM (type II). The pure supersymmetric corrections
from the chargino, neutralino and the strong sector are
below 1% in most of the parameter space.

ACKNOWLEDGMENTS

We would like to thank Christian Schappacher for shar-
ing his program and knowledge about FormCalc,
Thomas Hahn for his support, and J. H. Kühn for valuable
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APPENDIX A: ON-SHELL COUNTERTERMS

In this appendix we discuss the definition of the counter-
terms appearing in Eq. (13). In order to define the fermi-
onic on-shell counterterms one needs the coefficient
functions of the tensor decomposition from the corre-
sponding fermion self-energy:

�ðq;mÞ ¼ m�sðq2; mÞ þ q6 �vðq2; mÞ þ q6 �5�aðq2; mÞ:
(A1)

They can be extracted with the help of the following
projections:
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SM
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FIG. 6 (color online). �X EW for X 2 fSM;THDM;MSSMg as
function of the unified mSUGRA gaugino mass m1=2 for

(a) SPS1a and (b) SPS2.

TABLE II. Numerical values for �X EW X 2
fSM;THDM;MSSMg for various SPS scenarios.

SPS1a SPS1a’ SPS1b SPS2 SPS3 SPS4 SPS5

�SM EW 0.152 0.151 0.149 0.149 0.149 0.150 0.149

�THDM EW 0.097 0.096 0.093 0.091 0.093 0.099 0.094

�MSSM EW 0.096 0.096 0.093 0.089 0.093 0.101 0.094
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�sðq2; mÞ ¼ 1

4m
trf�ðq;mÞg; (A2a)

�vðq2; mÞ ¼ 1

4q2
trfq6 �ðq;mÞg; (A2b)

�aðq2; mÞ ¼ 1

4q2
trf�5q6 �ðq;mÞg: (A2c)

The wave function counterterms are then given by

�Zf
V ¼ ��vðm2

f;mfÞ � 2m2
f

@

@q2
½�vðq2; mfÞ

þ�sðq2; mfÞ�jq2¼m2
f
; (A3)

�Zf
A ¼ �aðm2

f; mfÞ: (A4)

APPENDIX B: MIXING MATRICES

Let us for definiteness provide in this Appendix the
definition of the mixing matrix U~f ¼ ðUijÞ used in

Eqs. (14) and (15). We work with flavor diagonal sfermion

mixings, where the left and right-handed sfermion fields ~fL
and ~fR are connected to the mass eigenstates ~f1 and ~f2 via

~f1
~f2

 !
¼ U~f

~fL
~fR

 !
: (B1)

The 2� 2 mixing matrix U~f diagonalizes the mass matrix

of the corresponding sfermion ~f:

U ~fm
2
~f
Uy

~f
¼ m2

~f1
0

0 m2
~f2

 !
: (B2)

In the case where the mass matrix m2
~f
contains only real

entries, one can choose U~f to be orthogonal. For its pa-

rametrization only one angle 
~f is needed and the trans-

formation from mass to gauge eigenstates can be written as
follows:

~f 1 ¼ ~fL cos
~f þ ~fR sin
~f;

~f2 ¼ ~fR cos
~f � ~fR sin
~f:
(B3)
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FIG. 7 (color online). Contributions of the building blocks to �MSSM EW in the MSSM as function of the unified gaugino mass m1=2

for SPS1a: (a) electron vertex, (b) vector boson self-energies, (c) box and (d) top-quark vertex. In (d) the SQCD corrections are shown
for comparison.
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