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We study the stability of the Higgs potential in the framework of the effective Lagrangian beyond the

minimal supersymmetric standard model (MSSM). While the leading nonrenormalizable operators can

shift the Higgs boson mass above the experimental bound, they also tend to render the scalar potential

unbounded from below. The destabilization is correlated with the Higgs mass increase, so that if quantum

corrections are small the problem is severe. We show that a supersymmetric subleading correction

stabilizes the potential within the domain of validity of the effective theory. Constraints on MSSM

parameters as well as on higher dimensional operators are derived, ensuring that our vacuum has a lifetime

longer than the present age of the Universe. In addition we show that when effective operators are

responsible for evading the LEP bound, stability constraints imply an upper bound on the scale of new

physics in the few TeV range.

DOI: 10.1103/PhysRevD.80.075004 PACS numbers: 12.60.Jv

I. INTRODUCTION

The Higgs tree level quartic couplings in the minimal
supersymmetric standard model (MSSM) are completely
dictated by gauge interactions. This fact stands at the heart
of theoretical and phenomenological difficulties, perhaps
foremost among them the tree level prediction that the
lightest Higgs boson be lighter than the Z, a prediction
ruled out by collider experiments [1,2]. In order to evade
the experimental bound on the Higgs mass, large quantum
corrections are required in the MSSM, implying a substan-
tial hierarchy between the electroweak (EW) scale and the
scale of supersymmetry (SUSY) breaking. In particular, at
least one of the top superpartners is required to be much
heavier than the top such that some amount of fine-tuning
is needed [3–6]. The fine-tuning becomes even more pro-
nounced if the model is expected to provide explanations
for present cosmological data. While the MSSM possesses
all of the ingredients needed in order to account for both
the dark matter and the baryon asymmetry of the Universe,
analyses reveal that difficulties associated with the Higgs
mass bound are rooted in the cosmological arcade, too (see,
for example [7–9]).

The restricted structure of the Higgs sector also makes it
susceptible to small corrections from new physics beyond
the MSSM (BMSSM). If the scale associated with the
BMSSM physics lies well above MSSM particle masses,
an effective field theory approach becomes useful. The
effective theory framework of the BMSSM was previously
studied, e.g., in [10–13]. The authors of [12] showed that
the effective expansion takes on a rather simple form. In
fact, under mild assumptions the leading nonrenormaliz-
able corrections to the Higgs sector are captured by only

two operators, one supersymmetric and the other associ-
ated with hard SUSY breaking (see also [14]). It was
further demonstrated that these operators may lead to a
sizable shift of the Higgs mass at the classical level.
Besides potentially solving the difficulties mentioned
above [15–18], this result is of considerable experimental
importance as it opens up a zone of SUSY phenomenology
in which both stops may be very light, possibly just around
the corner for collider experiments.
However, examining the vacuum structure of the effec-

tive theory reveals that when the leading nonrenormaliz-
able operators are taken to account for a significant shift for
the lightest Higgs mass, they also destabilize the quartic
couplings. Naively, this might be considered a severe set-
back to the picture drawn above. In the presence of a
negative quartic coupling, stability relies on the higher
order terms of the theory, which could a priori complicate
the analysis considerably as well as introduce UV sensi-
tivity. Nevertheless, we find that the effective theory ex-
hibits a remarkable property: a single higher order operator
arising at dimension six automatically cures the runaway
initiated by the leading dimension five terms. Under mild
assumptions, this operator is the only one relevant to the
question of stability, and, furthermore, is directly corre-
lated with the dimension five set. We find that the entire
study of potential stability can be conducted and resolved
within the range of validity of the effective approach. As a
result, vacuum stability can be ensured by imposing simple
relations between MSSM parameters and dimension five
BMSSM operators, without the need to explicitly invoke
the potentially far more complicated dimension six struc-
ture. In addition, we show that an upper bound on the scale
of new physics may arise in the BMSSM, as well as derive
the viable range for the lightest Higgs mass.
The interplay between the negative quartic and the

higher dimensional operator often leads to the formation
of a remote vacuum, in the presence of which the EW
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vacuum is only metastable. The existence of the remote
vacuum was noticed by the authors of [19], where it was
suggested that EW symmetry breaking may in fact lead our
Universe to reside in this new configuration dominated by
nonrenormalizable operators. An intriguing feature of this
scenario is that in this case, EW breaking may occur even
in the SUSY limit. However, the structure of the effective
theory implies that the EW scale be given in this case by
the geometric mean of the new physics scale M and the
SUSY � parameter,1 v� ffiffiffiffiffiffiffiffiffi

�M
p

. Null searches for chargi-
nos, for instance, highly restrict this possibility. In this
paper we adopt a more conservative approach. We discuss
the possibility that while the leading effective operators act
to destabilize the potential, the usual EW breaking vacuum
is either stable or of a lifetime longer than the present age
of the Universe.

The outline of this paper is as follows. In Sec. II we
review the BMSSM Higgs sector, emphasizing the corre-
lation between the lightest Higgs mass and the appearance
of directions in field space where the potential is un-
bounded from below at leading order. We then study the
next set of higher dimensional operators, showing that they
can stabilize the potential up to the cutoff scale of the
effective theory. In Sec. III we present analytical and
numerical prescriptions ensuring the (meta)stability of
the EW vacuum. Section IV discusses the phenomenologi-
cal implications of the stability constraints. Our conclu-
sions are gathered in Sec. V. Appendix A addresses the
issue of charge breaking and CP violating field configura-
tions; Appendix B elaborates on the quantum tunneling
computation; and Appendix C presents constraints on the
heavy cutoff scale arising from electroweak precision
measurements.

II. HIGGS SECTOR IN THE MSSM AND BEYOND

In the bulk of this paper we analyze the vacuum stability
of the BMSSM theory, namely, the MSSM Higgs sector
augmented by nonrenormalizable operators. It is useful to
adopt the nomenclature of [12] and to classify the non-
renormalizable operators according to their scaling dimen-
sion, which is the total mass dimension of the fields
contained in an operator, and their effective dimension,
counting the powers of 1=M which suppress it. For in-
stance, an operator such as ð�=MÞhuhdjhuj2 þ H:c: is of
scaling dimension four but effective dimension five.

In Sec. II Awe briefly discuss the renormalizable MSSM
Higgs sector, and highlight the main features which guide
us in the study of nonrenormalizable corrections to it. In
Sec. II B we review BMSSM operators of effective dimen-
sion five. These operators alone suffice to lift the lightest
Higgs mass above the LEP bound. However, as we show,

these operators can destabilize the scalar potential at large
field values which are still within the domain of validity of
the effective theory. In that case, naively, the effective
theory truncated at this order is not consistent; higher order
operators must cure the instability. The next set of opera-
tors consists of effective dimension six, and we study it in
Sec. II C.

A. MSSM setup

The scalar Higgs potential of the renormalizable MSSM
can be written as follows2:

VMSSM ¼m2
1jhdj2 þm2

2jhuj2 þ ðm2
12huhd þH:c:Þ

þ g2Z
8
ðjhuj2 � jhdj2Þ2 þ g2

2
ðjhuj2jhdj2 � jhuhdj2Þ;

(1)

where m2
1 � m2

Hd
þ j�j2, m2

2 � m2
Hu

þ j�j2, m2
12 � B�

and g2Z ¼ g2 þ g02 with g, g0 the SM gauge couplings.
One can always choose a basis for the fields such that
m2

12 is real and positive, and we shall keep to such a basis
consistently throughout the paper. We parameterize the
expectation values as follows:

hhuiT ¼ ð0; �2Þ; hhdiT ¼ ð�1 þ i�; �Þ: (2)

Gauge freedom is used to render hhþu i ¼ 0 and �2 real and
positive, while the real component �1 is allowed to obtain
negative values.3 In the BMSSM, as we shall see, more
than one vacuum configuration may develop. We will
analyze paths of minimum potential energy which connect
these vacua. Along such paths, in principle, it may become
energetically favorable for nonvanishing values of � or �
to turn on. This may occur even when all Lagrangian
parameters are real, as we shall assume in this paper. In
this case, we have found that ignoring the CP violating
(CPV) and charge breaking (CB) background fields � and
� is typically well justified in the study of potential stabil-
ity. Therefore, for clarity, we set � ¼ � ¼ 0 in most of the
paper. In places where deviations from this assumption
become relevant we refer the reader to the discussion in
Appendix A.
In the framework we study, SUð2ÞL � Uð1ÞY breaking

into Uð1ÞEM occurs as usual by an interplay between the
quadratic and quartic terms in the scalar potential. (For an
alternative scenario, see [19].) The resulting vacuum is
parameterized by

1The emergence of an intermediate scale of similar formal
form was previously considered in [20], where it was discussed
in the context of much higher energy phenomena.

2We write the superfield components as H ¼ ðh; c ; FÞ, the
MSSM � term as

R
d2��HuHd, and our convention for SU(2)

contraction is HuHd ¼ Hþ
u H

�
d �H0

uH
0
d.

3Note that, in the renormalizable MSSM, the minimization
conditions lead to � ¼ � ¼ 0. In that case one may write the
scalar potential using non-negative �1 and �2.
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v2 ¼ �2
1 þ�2

2 ’ ð174 GeVÞ2; tan� ¼ �2=�1: (3)

We call this vacuum the EW vacuum.
Being exclusively dictated by gauge superfield D-terms,

the quartic couplings in (1) are proportional to the electro-
weak gauge couplings, making the Higgs sector sensitive
to small corrections. In particular, quantum corrections
arising from loops of MSSM fields with a large amount
of SUSY breaking are usually conceived to account for a
sizable shift in the lightest Higgs mass. In a similar manner,
the quartic Higgs structure is also sensitive to nonrenorma-
lizable operators, which need only compete with couplings
of order g2 in order to modify the spectrum.

Moreover, the quartic terms of (1) vanish along the D-
flat directions, specified by jhhuij ¼ jhhdij. At tree (and
renormalizable) level, this gives rise to a constraint on the
quadratic terms,m2

1 þm2
2 > 2m2

12, which must hold for the
potential to be bounded from below. When nonrenormaliz-
able operators are considered, the relative flatness of the
renormalizable potential along the D-flat directions makes
it important to verify that the higher dimensional operators
do not destabilize the vacuum.

B. Operators of effective dimension five

Effective dimension five operators composed purely of
Higgs fields enter the Lagrangian via the superpotential.
Including F-term SUSY breaking, there are two such op-
erators [12]:

1

M

Z
d2�ð�1ðHuHdÞ2 þ �2ZðHuHdÞ2Þ þ H:c: (4)

Here Z � mS�
2 is a dimensionless chiral superfield spu-

rion. One could also contemplate the existence of operators
arising from D-term SUSY breaking, in which case addi-
tional effective dimension five operators arise. In this
paper, however, we assume that the effect of D-term break-
ing is somehow suppressed or nonexistent [12,21].

We assume that the new physics generating the effective
operators is approximately supersymmetric, mS � M. We
are interested in the imprint which the effective dimension
five operators have on both the spectrum and the stability
of the scalar potential, as we now discuss. At effective
dimension five, the correction to the scalar potential result-
ing from (4) reads:

�V5 ¼ 2	1huhdðjhuj2 þ jhdj2Þ þ 	2ðhuhdÞ2 þ H:c:; (5)

where we have defined 	1 � �1�
�=M and 	2 �

��2mS=M. Expanding to order Oð	Þ, the following shift
is obtained for the light (CP-even) Higgs boson mass:

�	m
2
h ¼ 2v2

�
	2r � 2	1r sin2�

� 2	1rðm2
A þm2

ZÞ sin2�þ 	2rðm2
A �m2

ZÞcos22�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

A �m2
ZÞ2 þ 4m2

Am
2
Zsin

22�
q �

;

(6)

where 	kr denotes the real part of 	k. As explained in [12],
only the real parts of 	1;2 enter the spectrum at leading

order while the imaginary parts contribute to interactions
and mixing. In this paper we make use of the fact that the
spectrum is relatively insensitive to the imaginary parts of
	1;2 and consider, for simplicity, only the case where there

exists a basis for hu, hd in which 	1;2 are real andm
2
12 is real

and positive. Henceforth we drop the r subscript and
assume that 	1;2 are real.
The contribution of the nonsupersymmetric term to the

mass shift is suppressed compared to the supersymmetric
one. For example, in the limit m2

A � m2
Z we have

m2
h

m2
Z

¼ cos22�þ 4	2sin
22�

g2Z
� 16	1 sin2�

g2Z
þO

�
m2

Z

m2
A

�
:

(7)

It follows that j�	2m
2
h=�	1m

2
hj � j	2=	1j sin2�=4, and so

	2 > 4j	1j is needed in order for both terms to give a
comparable mass shift. In Fig. 1 we report the size of
both the SUSY preserving and breaking operators, as
required for mh ¼ 115 GeV, illustrating that the former
can easily lift the Higgs mass classically at this order, while
existence of only the latter calls for large quantum correc-
tions as in the MSSM. For moderate tan� a negative 	1 of
magnitude j	1j * 10�2 � ð1� r�2Þ tan�, with r �
mA=mZ, can lift the Higgs mass above the LEP bound at
tree level, without the need for quantum corrections. The
large tan� limit is more involved. For tan�> j1=	1j, the
leading contribution of effective dimension five operators
is suppressed to the level of the next order in 	 and, as a
result, becomes comparable to that of effective dimension
six terms.
Apart from affecting the local properties of the vacuum

(e.g., particle spectrum and interactions) the effective di-
mension five operators also influence the potential at large
field values. Along the D-flat directions4 the potential is
only bounded from below as long as 4j	1j< 	2. If this
relation does not hold, the potential eventually becomes
unstable and a runaway occurs along the direction �1 ¼
signð	1Þ�2. In the interesting case where 	1 < 0, corre-
sponding to a positive shift to the lightest Higgs mass, a
saddle point emerges at field values

4Note that there are now two such directions as in our con-
vention �1 can be negative.
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��1 ¼ �2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þ 2m2

12

8ðj	1j � 1
4 	2Þ

vuut ; (8)

after which the potential decreases indefinitely. An impor-
tant property of the runaway is that it occurs at field values
�2 �m2=	�mM, where m refers to a combination of
relevant quadratic mass parameters (presumably of elec-
troweak scale) and M is the heavy scale. Therefore, the
runaway develops at � � M, rendering the EW vacuum
unacceptably short-lived.

Given the discussion above, one might naively conclude
that the inequality 4j	1j< 	2 must be enforced as a physi-
cal constraint on the relative magnitudes of the supersym-
metric vs the SUSY breaking corrections [13]. In
particular, in the supersymmetric limit wherein 	2 ¼ 0,
also 	1 ¼ 0 would be required. However, as we show
below, the supposed runaway is an artifact of the truncation
of the effective expansion at OðM�1Þ [22]. This expansion
cannot be trusted at large field values, even though it is
consistent in the local vicinity of our vacuum [19]. Indeed,
effective dimension six operators generate positive scaling
dimension six contributions of the form �6=M2. Such
terms eventually win over the negative quartic terms at
field values�2 �mM, precisely the region of field space at
which the instability starts to develop. Thus, effective
dimension six operators are as important as the effective
dimension five ones around the instability and may stabi-
lize the potential before the UV threshold of the effective
theory. Below we inspect the structure of effective dimen-
sion six operators in order to determine which ones are
relevant to the stability problem. Compared to previous
studies [16,23], we find that focusing on the physical
problem at hand simplifies the analysis considerably.
Delightfully, we are able to show that over a broad range
of parameters only one such operator exists, and even this
operator not strictly independent from the dimension five
set.

C. Operators of effective dimension six

We begin by considering effective dimension six opera-
tors which involve SUSY breaking. At order 1=M2, there
are no scaling dimension six operators which arise from
SUSY breaking terms in the Lagrangian. The reason is that
each term arising from SUSY breaking spurion must be
accompanied by the appropriate power of the SUSY break-
ing mass scale. At scaling dimension six, this implies that
the first (pure Higgs) operators are of order 1=M3.
We do find effective operators associated with SUSY

breaking spurions at scaling dimension four. These are of
the form ðm=MÞ2h4, where we extend the definition ofm to
include the SUSY breaking scale, also of order the elec-
troweak scale in this framework. Along the D-flat direc-
tions such contributions are suppressed by an additional
power of m=M in comparison to the effective dimension
five terms of �V5. Away from the D-flat directions, MSSM
D-terms guarantee stability provided that we impose

	2 &
g2Z
8

� 1

15
(9)

as a parametric inequality, where 	2 � ðm=MÞ2 represents
the magnitude of the dimensionless coefficient of such
operators. Henceforth we restrict the discussion to the
scenario in which Eq. (9) is satisfied. We shall see that
this assumption simplifies the problem considerably.
Moreover, it stands in accordance with requiring the effec-
tive theory expansion in powers of 	 to remain valid,
regardless of the stability analysis. Referring to Fig. 1 we
find that, at least for moderate tan�, Eq. (9) does not pose
any real limitation on the role of the 	1 correction in lifting
the Higgs mass above the current experimental bound.
Nevertheless, in general, the scaling dimension four, effec-
tive dimension six operators do not display any particular
tan� dependence and so they can have a comparable
influence on the spectrum in the large tan� regime, where
the leading dimension five contributions are suppressed.
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FIG. 1. Contour plots of the values of �	1 (left panel) and 	2 (right panel) corresponding to a fixed Higgs mass mh ¼ 115 GeV. In
each panel only the considered operator is nonzero.
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Because of the multiplicity of independent coefficients, the
analysis of the spectrum is involved in this case and we do
not pursue it further in this paper.

From the discussion above we conclude that it is enough
for our purpose to study effective dimension six operators
in the supersymmetric limit. Squaring the 1=M piece of the
F-term equations of motion, arising in the presence of the
supersymmetric effective dimension five operator gives

�V6 ¼ 4

��������	1
�

��������2jhuhdj2ðjhuj2 þ jhdj2Þ: (10)

The contribution (10) is positive definite and nonvanishing
along the D-flat directions. Thus it plays an important role
in stabilizing the potential. Note that, for a given value of
the � parameter, the coefficient of this contribution is
correlated with the Higgs mass through Eq. (6).

Superpotential operators which involve gauge super-
fields contribute to the scalar potential at effective dimen-
sion six, and must contain D-term components. Kähler
operators which arise at order 1=M2 can only affect the
scalar potential through either F-terms or D-terms, by
gauge invariance. Considering F-terms, we immediately
see that these cannot contribute to effective dimension six,
scaling dimension six operators, since they are linear in h
at leading order in 1=M. F-terms do contribute to effective
dimension six, scaling dimension four operators. However,
following Eq. (9) and the related discussion, such contri-
butions are parameterically suppressed and we need not
pursue them further. Considering D-terms, and ignoring
subleading scaling dimension four operators, we find scal-
ing dimension six operators which are of the general form

~g2

M2
h4ðjhuj2 � jhdj2Þ (11)

where ~g2 stands for some bilinear combination of g and g0.
We learn that, apart from the operator (10), all other

scaling dimension six contributions to the scalar potential
are gauge coupling suppressed and—most importantly—
vanish along the D-flat directions of the MSSM. Therefore
at large field values (but still� M) and along the would-be
runaway direction described in the previous section, the
potential is in fact driven by the positive definite scaling
dimension six �V6 given in (10). Thus the same super-
potential operator responsible for lifting the Higgs mass
classically also ensures that the scalar potential does not
exhibit a runaway. The phenomenology of this correlation
we aim to address in the next section.

III. VACUUM STABILITY

In what follows we analyze the stability of the scalar
potential including the dimension six operator identified in
the previous section, namely, V ¼ VMSSM þ �V5 þ �V6.
Simple analytical and numerical criteria which ensure the
stability of a given potential configuration are formulated.
These criteria can be put in terms of relations between the

electroweak scale parameters and effective dimension five
operators.

A. Analytical approximation

It is useful to first analyze the potential along the MSSM
D-flat directions. While soft terms, quantum corrections
and the presence of the EW vacuum all play a role in
shifting the potential features somewhat away from
jhhuij ¼ jhhdij, all of the insights are contained and, fur-
thermore, it turns out to be a reasonable approximation to
study the profile of the potential at these well-defined
directions in field space. We begin by performing this
analysis at tree level, assuming vanishing � and � values.
Then, having obtained the principal results we extend the
discussion to include all of the complications mentioned
above.
At tree level, the effective potential along the MSSM D-

flat directions take the form

VD-flatð�Þ ¼ 1

2
ðm2

2 þm2
1 	 2m2

12Þ�2 þ 2

�
	2
4
	 	1

�
�4

þ
��������	1
�

��������2

�6; (12)

with
�1 ¼ �2 � �=
ffiffiffi
2

p
. If the quartic coupling in (12) is

negative, the potential may develop another vacuum away
from the electroweak scale. Thus a simple way to guaran-
tee stability is to impose 	2 > 4j	1j. However, from Fig. 1
we learn that typical values for j	1j, consistent with the
bound on the lightest Higgs mass are in the range j	1j �
0:05–0:1. The simple condition for an always-positive
quartic is therefore in some tension with the need to assure
that higher order terms are under control [see Eq. (9)].
Hence we attend to the more interesting case where the
quartic coupling is negative. It is useful to define the
quantities m2 � m2

2 þm2
1 	 2m2

12 and ~	 � 	2=4	 	1.
Using these quantities we see that the nonzero extrema of
the potential, corresponding to the remote vacuum and
saddle point are located, respectively, at

�2 ¼ � 2j�j2
3~	

�
~	

	1

�
2
�
1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3m2

8j�j2
�
	1
~	

�
2

s �
: (13)

Manipulating Eqs. (12) and (13) we arrive at the following
criterion, designed to ensure that the remote minimum
along the D-flat direction is at most degenerate with, but
never deeper than the potential at the origin of field space:

m2

j�j2 � 2

�
~	

	1

�
2
: (14)

A remarkable feature of the condition (14) is that it does
not involve the heavy scaleM. Rather, it involves a relation
between relevant mass parameters of the MSSM and the
relative size of nonrenormalizable operators. Indeed, from
Eq. (13) it follows that both the remote vacuum and the

saddle point scale similarly, as �� ffiffiffiffiffiffiffiffiffi
mM

p � M. This
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FIG. 2. Regions of vacuum stability, projected on the heavy scale M vs electroweak scale parameters. All plots are generated at tree
level, for fixed value of mh ¼ 115 GeV. Left panels: Stability criteria of Eq. (15), vacuum degeneracy and quantum tunneling are
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behavior reflects the fact that the quartic couplings along
the D-flat directions originate from effective dimension
five operators. As a result, there exists a scale at which
quadratic, quartic and dimension six contributions in the
potential are of similar magnitude; this scale is preciselyffiffiffiffiffiffiffiffiffi
mM

p
.

For concreteness we attend to the case 	1 < 0, corre-
sponding to a positive shift for the lightest Higgs mass.
Rewriting Eq. (14) in terms of physical quantities and to
leading order in 	, we arrive at the following useful rela-
tion:

m2
Að1þ sin2�Þ

j�j2 � 2

�
~	

	1

�
2
�
1þm2

Z

m2
A

16~	

g2Z

�
1þ 2 sin2�

1þ sin2�

� 3

2

	1
~	

���1
: (15)

Restricting to the D-flat direction allowed us to write a
stability criterion of simple analytical form. However, the
actual vacua and saddle point emerge somewhat away from
the D-flat direction. In particular, the remote vacuum (and,

similarly, saddle point) can sustain an angle �m=
ffiffiffiffiffiffiffiffiffi
mM

p �ffiffiffi
	

p
from the flat direction. Hence imposing stability along

j�1j ¼ j�2j does not forbid the actual remote vacuum
from becoming a global minimum. It is therefore important
to complement Eq. (15) using numerical methods. In prac-
tice, as we show below, Eq. (15) turns out to be a robust but
slightly conservative stability criterion.

B. Numerical approach

Armed with intuition from the analytical analysis, we
proceed to define stability criteria based on numerical
procedures. We formulate two such criteria, then comment
on the possibility of CPVor CB field configurations.

Vacuum degeneracy. First, we define a stability criterion
by computing the potential and numerically verifying that
the remote vacuum is at most degenerate with, but never
deeper than the EW vacuum. We call this constraint vac-
uum degeneracy; it is robust but conservative.

Quantum tunneling. Second, we define a stability crite-
rion by numerically computing the tunneling rate from the
EW to the remote vacuum. The tunneling rate is given by
� / expð�BÞ, with B the bounce action. A metastable
configuration is viable if the Universe remains in the EW
vacuum for longer than its age. Quantitatively, this trans-
lates into B * 400. We have used an approximate method
to compute the bounce action, and errors of Oð1Þ are
expected. Hence we discuss configurations with bounce
action of B ¼ 400 and 103. A detailed computation of the
tunneling rate can be found in Appendix B.

In the discussion above we have ignored the CP violat-
ing and charge breaking background fields, � and �.
However, these effects are accounted for when we numeri-
cally search for vacuum degeneracy and compute the
bounce action. We find that neglecting the � and � back-

ground fields is almost always justified in the analysis of
potential stability in our framework, and does not affect the
reliability of Eq. (15). The reason is that the stability
criterion itself is typically sufficient to ban nonvanishing
� and �, for field values�<M. More details can be found
in Appendix A.
In Fig. 2 (three panels on the left) the stability criteria are

projected on various sections of the parameter space, illus-
trating the above analysis. We focus on the combined study
of electroweak scale parameters vs the heavy scaleM. The
following statements can be made.
The analytical stability criterion is slightly less conser-

vative than, but closely follows the robust numerical crite-
rion of vacuum degeneracy. Moreover, in the parameter
space depicted in Fig. 2 we find that the analytical criterion
is typically more conservative than imposing B * 103, and
always ensures that the bounce action will be above B�
400. Thus we can safely say that the analytical criterion is
robust, at least for moderate values of tan� & 10 where
small 	1 & 0:1 is more than sufficient to lift the Higgs mass
above the experimental bound. Since the gap between the
various criteria is modest at all parameter values, it is
evident that Eq. (15) provides a detailed qualitative, as
well as quantitative understanding of the parameter space
of vacuum stability.
Regarding the tunneling action, we find that it rises

steeply above B� 100, rendering the B ¼ 400 and 103

contours very close to each other. This occurs since in the
relevant regions of parameter space the remote minimum is
nearly degenerate with the EW vacuum, and so a small
change of parameters towards vacuum degeneracy causes
the action to diverge.

IV. PHENOMENOLOGICAL IMPLICATIONS

Finally the stage is set to study the implications of
stability constraints. We begin by discussing relations be-
tween electroweak scale parameters and the effective di-
mension five operators. We then study constraints on the
heavy BMSSM scaleM. Lastly we describe the viable shift
to the lightest Higgs mass, and outline how the analysis is
altered in the presence of radiative corrections.

A. Constraints on BMSSM parameters

The parameter space consistent with vacuum stability,
depicted in Fig. 2 for mh ¼ 115 GeV, becomes smaller
when the value of mh is increased further above the ex-
perimental bound.5 Hence Fig. 2 can be interpreted as a

5A quick way to understand this statement (which will be
assessed in Sec. IVC) is by noting that, for given values of mA,
tan� and 	2, the way to increase mh is via making 	1 more
negative. Vacuum instability is then driven stronger by the
negative quartic �	1�

4, balanced at large fields by the dimen-
sion six term ��6=M2. It follows that the upper bound on M
derived from stability must decrease as mh is increased.
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translation of our current knowledge, mh > 114 GeV, into
bounds on the viable ranges of other BMSSM parameters,
subject to the assumption that quantum corrections are
small. Furthermore, one of the merits of the analytical
criterion Eq. (15) is that it allows to extract limiting rela-
tions between BMSSM parameters regardless of the pre-
cise value of the Higgs mass, as long as the expansion to
orderOð	Þ is valid in the local vicinity of the EW vacuum.
In order to gain further insight it is useful to look at the
behavior of Eq. (15) in the following two limits.

Large mA limit—m2
A � m2

Z: In this case Eq. (15) im-
plies

j�j & mA

��������	1
~	

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2�

2

s
: (16)

This condition is robust but conservative. In other words,
while having j�j & mAj	1=~	j ensures stability, somewhat
larger values of j�j=mA may still yield stable vacuum
configurations, as illustrated in Fig. 2. Indeed, comparing
the two upper panels we see that while the vacuum degen-
eracy criterion requires mA > j�j, the more loose tunnel-
ing action criterion allows mA � j�j. For example, taking
tan� ¼ 4, 	2 ¼ �	1 ¼ 0:06, j�j ¼ mA ¼ 3mZ gives a
stable vacuum configuration with mh � 120 GeV at tree
level. Note that, in order to guarantee vacuum stability, it is
not a very good practice to assume very heavy mA. The
reason is that in order for the effective theory to work
properly, it is necessary to retain some hierarchy between
the high scaleM and electroweak mass parameters, and so
taking any of the latter very large can pose a problem.
However, positive values for the SUSY breaking 	2 result
in a cancellation in ~	 and so the stability criteria can easily
be satisfied through a combination of moderate ratios
mA=j�j � 1 and j	1=~	j * 1.

Small quartic coupling limit—j~	=	1j � 1: An acciden-
tal cancellation between the SUSY preserving and break-
ing dimension five operators can lead to j~	=	1j � 1. In this
case, for negative 	1, the right-hand side of Eq. (15)
approaches zero from above as the ratio j~	=	1j decreases,
and the stability constraint becomes trivially satisfied. A
vanishing ~	 corresponds to large 	2 > 0:1 if the LEP bound
is satisfied via 	1. A finite ratio is then required for the
effective expansion to remain valid. However, the role of
the nonsupersymmetric operator 	2 is clear. While it may
not much affect the Higgs mass, this term may be impor-
tant in stabilizing the potential; it thus partially decouples
the stability problem from the spectrum. The importance of
	2 for vacuum stability is illustrated in the lower panels of
Fig. 2. We see that turning on even a small positive value
for 	2 rapidly opens up the parameter space corresponding
to a stable EW vacuum. Note also that the � parameter is
largely unaffected by a change of 	2 when the Higgs mass
is held fixed. This reflects the fact that the stabilization of
the potential occurs at large field values.

B. Constraints on the scale of new physics

We now proceed to discuss the constraints imposed by
vacuum stability on the scale of new physics M. To this
end, note that the � parameter can be traded for M using
� ¼ 	�1M=��

1. We find that imposing stability implies an
upper bound on the heavy scaleM. For example, assuming
mA * 3mZ we obtain from Eq. (15):

��������M

�1

��������& mA

j~	j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2�

2

s
: (17)

The upper bound on M for various parameter settings can
be read off of Fig. 2. IncreasingmA, 	2 or lowering tan� all
act to weaken the bound; this behavior is readily under-
stood from Eq. (17). At tan� ¼ 5 and with j~	j ¼ 0:05, for
instance, we obtain jM=�1j & 17mA.
The occurrence of an upper bound on M following the

stability criteria may seem counterintuitive, given that the
potential destabilization can be removed by taking the new
physics decoupling limit, 	 ! 0, equivalent to M ! 1 at
finite �, mS. Indeed, the recovery of the familiar stability
constraint of the MSSM,m2 > 0, in the decoupling limit is
easily seen directly from Eq. (12). What enables us to
interpret Eq. (17) as an upper bound on M is the fact
that, under the assumption that the nonrenormalizable
operators are responsible for evading the LEP bound,
they cannot be decoupled: a finite value for 	 needs to be
maintained in order to provide the Higgs mass shift. In
other words, Eq. (17) describes the range in M compatible
with vacuum stability when �=M, mS=M are held fixed,
with values dictated by the Higgs mass.
Of course, while it is the main issue of the current paper,

vacuum stability is not the sole source of constraints on the
scale of new physics. As an example, in Appendix C we
show that electroweak precision tests (EWPTs) result in a
lower bound for the heavy scale M,

M * 8 TeV: (18)

Put in conjunction with the stability constraints, a lower
bound like (18) points towards a large value formA, sizable
SUSY breaking 	2, a small tan� or some combination of
the above. Since the dimension six operators responsible
for the leading Higgs mass shift and for potential stabiliza-
tion are different from the ones which affect EWPTs, the
combined bounds on M may be interpreted in two ways.
On the one hand, one may assume generic structure for the
dimensionless coefficients of all nonrenormalizable
BMSSM operators. In this case, if quantum corrections
are small (e.g., say, both stops are found at the LHC), then
taking the bound (18) together with the stability constraints
leaves a very narrow range for the scale of the heavy
BMSSM physics. Conversely, one may interpret these
two bounds as hinting towards some suppression pattern
in the microscopic extension behind the BMSSM theory.
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C. The lightest Higgs mass

The stability criteria can also be expressed in terms of
constraints on the lightest Higgs mass. We choose to
present the resulting relation between mh and the heavy
scaleM. For clarity, we considermA * 3mZ and expand to
zeroth order inm2

Z=m
2
A. Assuming a negative quartic ~	 < 0,

we can convert Eq. (17) into a limit on 	1, put in terms of
mA, tan�, 	2 andM. Plugging the stability constraint in this
form into the expression for the Higgs mass, Eq. (7), we
obtain

m2
h

m2
Z

& cos22�þ 4	2 sin2�ð1þ sin2�Þ
g2Z

þ 16mA sin2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ sin2�Þ=2p

g2ZjM=�1j
: (19)

It is illuminating to compare Eq. (19) with Eq. (7). In
particular, notice that in the 	2 term a suppression factor
of sin22� appearing in the spectrum equation gets replaced
by a larger factor of sin2�ð1þ sin2�Þ in the stability
constraint. This result is explained as follows. First, recall
that vacuum stability is trivially ensured if the overall
quartic coupling along the relevant D-flat direction is
non-negative, ~	 � 	2=4þ 	1 � 0. Given some value of
	2, substituting 	1 ¼ �	2=4 (which saturates the relation
with a vanishing ~	) into Eq. (7) gives the second term on
the right-hand side of (19). Hence the last term on the right-
hand side of (19) represents the extra gain due to allowing a
negative ~	 in the detailed analysis. This gain can indeed be
significant: for example, at tan� ¼ 5ð3Þ the numerical
coefficient in front of the ratio mA=jM=�1j equals
�9ð16Þ, so that a sizable shift for the Higgs mass is

possible even with mA � M. In addition, if 	2 � 0 (in
the case where the beyond MSSM new physics threshold
is supersymmetric, for instance) then the last term in
Eq. (19) provides the maximal tree level mass shift con-
sistent with vacuum stability.
The above analysis is illustrated in Fig. 3. In the left

panel we hold mA, tan� and 	2 fixed. The thick curve
depicts the full analytical constraint derived from
Eqs. (7) and (17), for which Eq. (19) represents the large
mA limit. [It is easy to verify that Eq. (19) follows this
curve to a very good approximation.] In order to keep track
of the value of�, and so of 	1, we plot contours of constant
j�j as thin labeled lines. In the right panel we explore the
range ofmh accessible in the BMSSM at tree level. We find
that with large mA, small tan� and a sizable 	2, values of
mh � 140 GeV can be reached at tree level, in a stable
vacuum configuration, even for jM=�1j * 8 TeV.
Considering the right panel of Fig. 3 and using Eq. (7),
we find that j	1j becomes larger than 0.1 atmh * 148, 130,
113 GeV for the black, the dark gray and the light gray
curves, respectively. For larger values of mh the expansion
to linear order in 	1 eventually begins to break down. Thus
even if very low values ofM=�1 are acceptable, the stabil-
ity curve cannot be trusted to arbitrarily large mh; we will
touch upon this issue again in the next subsection.

D. Quantum corrections

The radiative corrections to the scalar potential are
dominated by top and stop loops in the moderate tan�
scenario. A (if not The) noteworthy feature of the BMSSM
framework is that it allows quantum corrections to be small
[12]. As already implied in this work, a completely super-
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symmetric top-stop sector is consistent with both the LEP
bound on the lightest Higgs mass and stability consider-
ations. Nevertheless, it is interesting to check to what
extent our results are affected by moderate soft SUSY
breaking masses for the stops. Here we do not attempt to
study the stop sector in full detail. We find it sufficient for
our purpose to neglect stop mixing and D-terms, adopt a
common soft mass for both stops and work to one-loop
order. Under these simplifications, quantum corrections
modify the scalar potential by the expression

�V~t � 3

16
2

�
m4

~t ð�Þ
�
ln
m2

~t ð�Þ
Q2

� 3

2

�

�m4
t ð�Þ

�
ln
m2

t ð�Þ
Q2

� 3

2

��
: (20)

The field dependent masses are given by mtð�Þ ¼ yt�2,
m2

~t ð�Þ ¼ m2
t ð�Þ þm2

stop, with mstop the soft stop mass and

yt the top Yukawa. Q is the renormalization scale, which
we choose to be mZ. In writing Eq. (20), we impose
renormalization conditions such that Eq. (3) remains un-
changed. In Fig. 4 we repeat the stability analysis with
quantum corrections, focusing for concreteness on the
ðM;mAÞ and ðM; 	2Þ planes. We learn that soft masses for
stops stabilize the potential, effectively removing the tree
level upper bound on M for m~t * 400 GeV.

Finally, Fig. 5 depicts the effect of quantum corrections
on the results derived for the lightest Higgs boson mass.
Comparing with the right panel of Fig. 3 we find, as
expected, that quantum corrections increase the upper
bound on mh. A combination of small BMSSM operators
	 & 0:05 with modest radiative corrections from stops at
the 200–250 GeV range can easily and naturally accom-

modate the experimental bound on mh, even for M *
10 TeV. Figure 5 includes the tree level numerical stability
criterion of the tunneling action, as well as the analytical
criterion Eq. (19). Comparing the twowe find that the latter
provides a reasonable, though slightly conservative ap-
proximation to the numerical bound for values of mh

smaller than �140 GeV. For mh * 140 GeV, j	1j be-
comes larger than�0:13 and the expansion toOð	Þ begins
to fail, demonstrating the regime of validity of our analyti-
cal arguments.
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KFIR BLUM, CÉDRIC DELAUNAY, AND YONIT HOCHBERG PHYSICAL REVIEW D 80, 075004 (2009)

075004-10



V. CONCLUSIONS

In this paper we analyzed the vacuum structure of the
BMSSM Higgs sector. We showed that the effective di-
mension five operators which lift the lightest Higgs mass
are potentially harmful, as they are capable of destabilizing
the scalar potential. It is easy to ensure that MSSMD-terms
prevent the instability from occurring over most of the field
space, for scales �<M, by imposing 	2 & 1=15. This
condition does not exclude a significant shift to the Higgs
mass. Furthermore, it stands in accordance with the desire
to keep the effective theory expansion under control. Along
the D-flat directions, however, the MSSM D-terms vanish
and the leading BMSSM correction is dominant. Thus if
the quartic coupling along one of these directions is nega-
tive the effective expansion must be taken beyond leading
order. Scrutinizing the effective theory to order 1=M2, we
were able to show that the stability of the scalar potential is
controlled by only one scaling dimension six operator,
which is supersymmetric and positive definite. This opera-
tor is correlated with the supersymmetric effective dimen-
sion five term which is the most relevant for lifting the
lightest Higgs mass. Hence the nonrenormalizable part of
the theory can cure itself, even though a remote vacuum
may emerge before the cutoff scale of the effective theory.

An interesting possibility [19] is that our Universe may
actually reside in the remote vacuum, with the EW scale
given by v� ffiffiffiffiffiffiffiffiffi

�M
p

and with a rather low beyond MSSM
scale, M & TeV. In this paper we adopted a more conser-
vative approach, wherein the usual EW breaking vacuum is
either the global minimum or of a lifetime longer than the
present age of the Universe.

In order to deal with a nontrivial potential structure, a set
of criteria was developed from which relations between
BMSSM parameters were inferred, guaranteeing the stabil-
ity of the EW vacuum against tunneling into the remote
one. In particular, by analyzing the potential along the D-
flat directions we derived an approximate analytical crite-
rion, Eq. (15), whose robustness was demonstrated by
means of a full numerical study. Using this criterion we
showed, for example, that if the LEP bound on the Higgs
mass is accommodated at tree level in the BMSSM, then
the stability of the EW vacuum is ensured provided that
mA * j�j. Additionally, very low values of tan��Oð1Þ
are allowed and even favored despite the diminished
MSSM contribution to the Higgs mass. Interestingly, at
the classical level, vacuum stability implies an upper
bound on the heavy scale M. This bound is better defined
than what abstract fine-tuning arguments would suggest,
and, since the experimental data can be accommodated
with small �=M & 0:05, is also typically stronger. Put in
conjunction with generic lower bounds on M, arising for
instance from electroweak precision tests, the analysis
either constrains the BMSSM parameter space or directs
us towards a nongeneric coupling structure in the effective
theory.

Stability of the EW vacuum also dictates an upper bound
on the lightest Higgs mass accessible via the leading
effective operators. However, for M in the few TeV range,
mh * 140 GeV can still be accommodated at tree level, as
a result of the potential stabilization provided by the super-
symmetric dimension six operator. While a completely
supersymmetric top-stop sector is allowed in the
BMSSM (as far as the experimental bound on the lightest
Higgs mass is regarded), quantum corrections due to stop
loops are effective in stabilizing the potential, and two stop
states at �300 GeV suffice to significantly weaken the
constraints due to vacuum stability. Indeed, light stops
just around the corner for upcoming colliders can provide
a relatively unimportant direct contribution for the Higgs
spectrum, yet be significant for vacuum stabilization at
large field values.
Finding both stops not too far abovemt would already be

a smoking gun for a beyond MSSM extension. Information
on the spectrum of charginos, neutralinos and the Higgs
scalars, together with stability considerations, could then
be used in order to extract additional constraints on dimen-
sion five operators and low energy MSSM parameters, as
well as put an upper bound on the heavy scale M.
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APPENDIX A: CP VIOLATING AND CHARGE
BREAKING BACKGROUND FIELDS

Under the assumption of real parameters, the full effec-
tive potential including � and � fields is given by

Vð�1;�2;�;�Þ¼m2
1ð�2

1þ�2þ�2Þþm2
2�

2
2

�2½m2
12þ2	1ð�2

1þ�2þ�2þ�2
2Þ��1�2

þ2	2ð�2
1��2Þ�2

2

þg2Z
8
ð�2

1þ�2þ�2��2
2Þ2þ

g2

2
�2

2�
2

þ4

��������	1�
��������2

�2
2ð�2

1þ�2þ�2þ�2
2Þ

�ð�2
1þ�2Þ: (A1)

First derivatives of interest follow,

@V

@�2
¼m2

1� 4	1�1�2� 2	2�
2
2þ

g2Z
4
ð�2

1þ�2þ�2��2
2Þ

þ 4

��������	1�
��������2

�2
2ð2�2

1þ 2�2þ�2
2þ�2Þ; (A2)
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@V

@�2
¼ m2

1 � 4	1�1�2 þ g2Z
4
ð�2

1 þ �2 þ �2 ��2
2Þ

þ 4

��������	1�
��������2

�2
2ð�2

1 þ �2Þ þ g2

2
�2

2: (A3)

Since only the squares of � and � appear in the potential, a
trivial extremum solution with � ¼ � ¼ 0 always exists.
CPV and CB extrema require nontrivial solutions for a
vanishing right-hand side in Eqs. (A2) and (A3),
respectively.

We first derive the condition ensuring that the EW
vacuum is CP and charge conserving. Demanding that
the potential has a minimum at �1 ¼ v cos�, �2 ¼
v sin� and � ¼ � ¼ 0 and expanding to leading order in
	, we obtain that an additional, nontrivial solution with
�1 ¼ v cos�, �2 ¼ v sin� and � � 0 is never allowed,
while a solution with � � 0 requires �2 ’ �4sin2�ðm2

A þ
m2

W þ 2	2v
2Þ=g2Z. Hence � ¼ � ¼ 0 is the only consistent

solution at the EW vacuum, as long as

m2
A þm2

W þ 2	2v
2 > 0: (24)

Considering Eq. (9) and the validity of the effective theory
expansion, we find that this relation is always satisfied for
mA * mZ.

We now move on to find out how nonzero � or/and �
affect the potential at large field values. In particular, we
are interested in configurations of �, �which extremize the
potential in the vicinity of the tunneling path. Finding such
extrema is important, since they may shift the saddle point
and/or the remote vacuum from the ð�1; �2Þ plane and so
alter the numerical computation of the stability criteria.
Note that for large fields, unlike in the local neighborhood
of the EW vacuum, one must keep the scaling dimension
six operator appearing in the potential (A1). In addition to
the trivial solution f� ¼ 0; � ¼ 0g, there are three exclu-
sive possibilities: f� � 0; � ¼ 0g, f� ¼ 0; � � 0g or f� �
0; � � 0g. To find out which of them is consistent, we
rewrite the condition of vanishing right-hand sides in
Eqs. (A2) and (A3) as

�2 ¼ ACPVð�1; �2Þ þ BCPVð�1; �2Þ�2;

�2 ¼ ACBð�1; �2Þ þ BCBð�1; �2Þ�2:
(A5)

Solutions with f� � 0; � ¼ 0g or f� ¼ 0; � � 0g only ex-
ist for ACPV > 0 or ACB > 0, respectively. Moreover, since
the second derivatives of the potential with respect to �2

and �2 are positive definite, whenever one of these solu-
tions becomes available within some region of the ð�1; �2Þ
plane it will always minimize the potential energy, render-
ing the trivial solution unfavorable. Hence if the tunneling
path traverses these regions, CPV or CB will turn on. A
solution with f� � 0; � � 0g requires that both �2 ¼
ðACPV � ACBBCPVÞ=ð1� BCBBCPVÞ and �2 ¼ ðACB �
ACPVBCBÞ=ð1� BCBBCPVÞ be positive. If such a solution

exists, it may or may not become energetically favored
over solutions with only � or � nonzero.
We now describe how the � and � fields are dealt with in

the numerical procedures presented in Sec. III B. The
criterion of vacuum degeneracy requires computing the
value of the potential at the remote minimum. For the
tunneling action, according to the approximation we adopt
(see Appendix B), the location of and potential value at
both the remote minimum and saddle point are needed. To
find these extrema in the presence of possible CPVand CB
configurations, we numerically evaluate the full potential
over the ð�1; �2Þ plane where � and � are replaced by the
four classes of solutions defined above. Then we retain all
consistent solutions extremizing the potential along both
the �1 and �2 directions. While the remote minimum is
unique, as it has to minimize the potential along all direc-
tions, there may be several saddle points corresponding to
the different classes of solutions for � and �. We compute
the tunneling action assuming the path passes through the
saddle point of minimum potential energy.
After the dust settles it turns out that in typical cases in

which the EW vacuum is found to be stable, no CPVor CB
arise in regions of field space that are relevant for the
analysis, or otherwise the effect is very small. Thus the
discussion conducted in Sec. III A, where for clarity we
have set � ¼ � ¼ 0, holds true up to minor changes. In
order to see how this result comes about, it is useful once
again to consider the problem close to the D-flat directions.
Since away from them positive D-terms raise the potential,
the tunneling path is confined to remain near this region.
Thus removing CPV and CB from the flat directions pro-
tects the saddle point and the remote vacuum from devel-
oping nonzero � or �. We can derive simple analytical
criteria to exclude the formation of CPV or CB extrema
along the D-flat directions. To this end, let us consider 	1 <
0 in which case potential instability occurs for negative�1.

Setting ��1 ¼ �2 � �=
ffiffiffi
2

p
and ~	 � 	2=4þ 	1 < 0, the

extremum equations reduce to

�
�
g2Z
4
þ4

��������	1�
��������2

�2

�
�2 ¼m2

1þ4

�
3	1
2

� ~	

�
�2

þ3

��������	1�
��������2

�4

þ
�
g2Z
4
þ2

��������	1�
��������2

�2

�
�2; (A6)

�g2Z
4
�2 ¼ m2

1 þ
g2

4

�
1þ 8	1

g2

�
�2 þ

��������	1�
��������2

�4

þ
�
g2Z
4
þ 2

��������	1
�

��������2

�2

�
�2: (A7)

We find that CPV and CB are banned along the D-flat
directions provided the following conditions hold, respec-
tively,
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m2
Að1þ sin2�Þ

j�j2 � 4

3
fð�Þ

�
~	

	1

�
2
�
1� 3	1

2~	

�
2
;

m2
Að1þ sin2�Þ

j�j2 � fð�Þ
�
g2

8	1
þ 1

�
2

(A8)

up to Oðm2
Z=m

2
AÞ corrections, where fð�Þ � ð1þ

sin2�Þ=sin2� satisfies 1< fð�Þ< 4 for tan�> 1. These
two conditions can be compared to the approximate ana-
lytical criterion derived in Sec. III Awhich ensures that the
EW vacuum is stable, namely, m2

Að1þ sin2�Þ=j�j2 �
2ð~	=	1Þ2. Regarding CB, we find that vacuum stability
guarantees no CB turns on along the D-flat direction pro-
vided that j	1j & 0:2. In view of Fig. 1, as well as consid-
ering Eq. (9) and the validity of the effective theory
expansion, it is clear that this relation does not constitute
a real compromise for the size of 	1. The appearance of
CPV is a less marginal effect. However, the form of the
inequalities (A8) and the stability constraint implies that
the stable parameter space exhibits little CPV; numerically
we find that in most stable scenarios CPV does not occur
along the tunneling path, or else does not encompass the
saddle point nor the remote minimum. We conclude that
imposing vacuum stability typically renders CB and CPV
configurations irrelevant in the calculation. Note that since
the tunneling path does not pass strictly along, but merely
in the vicinity of the D-flat direction, the above analysis
provides an intuitive argument only. However, as previ-
ously mentioned, numerically scanning the relevant pa-
rameter space we find that in practice it is indeed safe to
neglect � and � in the analysis of vacuum stability in the
BMSSM with real Lagrangian parameters.

APPENDIX B: QUANTUM TUNNELING

We are interested in analyzing the stability of configu-
rations wherein the potential exhibits a remote vacuum, in
the presence of which our EW vacuum may be metastable.
At zero temperature, one should compute the rate of quan-
tum tunneling from the EW to the remote vacuum. For
completeness, let us briefly review the theoretical set up
before going into the details of our implementation. In a
semiclassical approach the tunneling rate (per unit time
and volume) is given by the WKB approximation [24]:

� ’ A expð�BÞ; B ¼ SE½�b� � SE½�false�; (B1)

where SE½�� is the Euclidean action and A is the determi-
nant of the Gaussian fluctuations around �b, the so-called
bounce solution of the equation of motion. The precise
value of the prefactor A plays a minor role in comparison to
the exponential suppression factor. Hence we make the
conservative assumption that the prefactor saturates the
highest scale in the BMSSM framework: A ’ M4. The
bounce solution is Oð4Þ symmetric [25], i.e. is only a

function of r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ t2E

q
. It solves the equation of motion

d2�b

dr2
þ 3

r

d�b

dr
�rVð�bÞ ¼ 0; (B2)

subject to the ‘‘bouncing’’ boundary conditions:�0
bð0Þ ¼ 0

and �bð1Þ ¼ �false.
In configuration space, quantum tunneling proceeds by

nucleation, growth and percolation of true vacuum bubbles
surrounded by a metastable environment. At a given time t,
the portionP ðtÞ of the volume of the Universe filled by true
vacuum bubbles is controlled by the tunneling rate and the
expansion of the Universe through the following relation
[26]:

P ðtÞ ¼ 1� exp

�
� 4


3

Z t

0
dt0�ðt0Þd3Hðt0Þ

�
; (B3)

where dHðtÞ � t is the horizon distance. For the case of
quantum tunneling (T ¼ 0), the rate �, given by (B1), is
time independent. Hence today, for t0 � 1010 yr�
e100v�1, the portion of the Universe in the stable phase is
given approximately by

P ðt0Þ � 1� exp

�
�Oð10Þ exp

�
4 log

M

v
� B

�
ðvt0Þ4

�
:

(B4)

Therefore to ensure that the metastable vacuum has a life-
time longer than the present age of the Universe, or equiv-
alently that P ðt0Þ ’ 0, it is enough to impose the following
constraint on the bounce action:

B * 400þ 4 log
M

v
; (B5)

where the second term, coming from the exponential pre-
factor A, contributes at most Oð10%Þ for M in the TeV
range.
In a one-dimensional field space (as in the standard

model), the correct bounce solution is easily found by
use of a simple ‘‘shooting’’ numerical method. However,
in the case of multiple fields, the search of the bounce
solution is a nontrivial numerical task. We make use of
several simplifying assumptions, justified in the BMSSM
setup under consideration.
The first simplification consists of projecting the action

on a given path in field space, which is known to be close to
the correct tunneling trajectory. This path is fully charac-
terized by a single curvilinear coordinate �s, i.e. � ¼
�ð�sÞ. The initial task is then greatly simplified as the
problem has been reduced to a one-dimensional search for
the bounce solution. However such a projection is in
general hard to estimate. One exception is when the po-
tential extrema are close to alignment in field space. In this
case the tunneling trajectory may be well approximated by
a straight line joining the true and false vacua [27].
Projecting on such a path allows one to easily compute
the bounce action using a traditional shooting method. We
stress that this approach is consistent as the approximate
alignment that it requires typically arises in the BMSSM.
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Indeed, as is apparent in Fig. 6, both the remote vacuum
and the saddle point separating it from the EW vacuum
form close to the D-flat direction.

Second, we adopt a triangular approximation for the
potential barrier, allowing us to use the clear prescription
given in [28]. Thus we reserve the more cumbersome
shooting method only as a check on the triangle calcula-
tion, verifying that the two methods agree at the level of
Oð10%Þ. In Fig. 6 we demonstrate the use of the triangle
approximation in computing the tunneling action.

APPENDIX C: ELECTROWEAK CONSTRAINTS

As we have seen, stability of the scalar potential, arising
from effective dimension six operators, gives an upper
bound on the scale of new physics. Other effective dimen-
sion six operators involving the Higgs sector also affect the
gauge terms in the Lagrangian, introducing mass shifts in
the gauge sector as well as kinetic mixings. They are
therefore constrained by electroweak data, in particular,
the precision electroweak variables S and T [29]

S ¼ �0:10
 0:10; T ¼ �0:08
 0:11 (C1)

for mh ’ 115 GeV. There are several effective dimension
six operators involving the Higgs sector that can contribute
to electroweak observables. For example, operators of the

form aijðHy
i e

VHiÞðHy
j e

VHjÞ=M2 with i, j ¼ u, d in the

Kähler potential contribute to the deviation of the � pa-
rameter from unity by [10]

�� 1 ¼ �4

�
mW

gM

�
2½auusin4�þ addcos

4�

� audcos
2�sin2�� ’ �T: (C2)

For generic coefficients aij �Oð1Þ, the expression in

square brackets in (C2) is not particularly suppressed for
any specific value of tan�. We obtain a lower bound on the
heavy scale,

M * 7:7 TeV: (C3)

Regarding the S parameter, consider for instance a
superpotential operator of the form aWBW

�B�HuHd=M
2,

where W�ðB�Þ denotes the SUð2ÞLðUð1ÞYÞ gauge super-
field strength. Such an operator generates a contribution to
S of

S ¼ 32


gg0
v2 sin2�

2M2
aWB: (C4)

Taking aWB �Oð1Þ we obtain a comparable bound, M *
8

ffiffiffiffiffiffiffiffiffiffiffiffi
sin2�

p
TeV.
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