
Flavor violation in supersymmetric Q6 model

K. S. Babu* and Yanzhi Meng†

Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
(Received 7 August 2009; published 2 October 2009)

We investigate flavor violation mediated by Higgs bosons and supersymmetric particles in a predictive

class of models based on the non-Abelian flavor symmetry Q6. These models, which aim to reduce the

number of parameters of the fermion sector and to solve the flavor changing problems of generic

supersymmetry (SUSY) setup, assume three families of Higgs bosons and spontaneous or soft violation of

CP symmetry. Tree-level contributions to meson-antimeson mixings mediated by Higgs bosons are shown

to be within experimental limits for Higgs masses in the (1–5) TeV range. Calculable flavor violation

induced by SUSY loops are analyzed for meson mixing and lepton decays and found to be consistent with

data. Significant new SUSY contributions arise in Bs– �Bs mixing, but nonstandard CP violation is

suppressed. A simple solution to the SUSY CP problem is found, which requires light Higgsinos.
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I. INTRODUCTION

The gauge interactions of the standard model (SM)
fermions are invariant under separate Uð3ÞL �Uð3ÞR
transformations. This global symmetry is broken explicitly
by the fermion Yukawa couplings. In the light fermion
sector violation of this symmetry is small, being propor-
tional to their masses. This feature has played a crucial role
in the success of the SM in the flavor sector. In extensions
of the SM this property is generally lost, often leading to
excessive flavor changing neutral current (FCNC)
processes.

A case in point is the supersymmetric (SUSY) standard
model which is the subject of this paper. While the gauge
interactions of the SUSY SM respect the Uð3ÞL �Uð3ÞR
global symmetry, there are new sources of violation of this
symmetry, in the soft SUSY breaking sector. Indeed, ge-
neric soft SUSY breaking scenarios lead to excessive
FCNC in processes such as K0– �K0 mixing, B0– �B0 mixing,
D0– �D0 mixing, and flavor changing leptonic decays such
as � ! e� [1]. This problem is most severe in the K0– �K0

system. SUSY box diagrams involving gluino and squarks
modify the successful SM prediction for �MK and �K,
leading to the following constraints for the real and imagi-
nary parts of the amplitude [2]:

jðRe; ImÞð�d
LLÞ12ð�d

RRÞ12j1=2 � ð9:6� 10�4; 1:3� 10�4Þ
�
�

~m

500 GeV

�
: (1.1)

Here ð�ABÞij ¼ ðm2
ABÞij= ~m2 is a flavor violating squark

mass insertion parameter, for ðA; BÞ ¼ ðL; RÞ, with ~m

being the average mass of the relevant squarks (~d and ~s
in this case). For this estimate the gluino mass was as-
sumed to equal the average squark mass. Now, the natural

magnitude of the mixing parameters ð�d
LLÞ12 and ð�d

RRÞ12,
in the absence of additional symmetries, should be of order
the Cabibbo angle,�0:2. Since the parameters ð�ABÞij split
the masses of the squarks, one sees from Eq. (1.1) that a
high degree of squark mass degeneracy is needed for
consistency.
Analogous limits from B0

d–
�B0
d mixing are less severe, as

given by [3]:

jðRe; ImÞð�d
LLÞ13ð�d

RRÞ13j1=2 � ð2:1� 10�2; 9:0� 10�3Þ
�
�

~m

500 GeV

�
: (1.2)

Note that the natural value of this mixing parameter, in the
absence of other symmetries, is Vub � 3� 10�3. The con-
straints from Eq. (1.2) are well within limits. Bs– �Bs mixing
provides even weaker constraints.
It can be argued that a natural explanation for solving

this problem is to enhance the symmetry of the SUSY SM
by assuming a non-Abelian symmetryG (a subgroup of the
Uð3ÞL �Uð3ÞR) that pairs the first two families into a
doublet, with the third family transforming trivially [4].1

Invariance underGwill then lead to degeneracy of squarks,
as needed for phenomenology. A variety of such models
have been proposed in the literature [4–8]. In Ref. [4],
SUð2Þ family symmetry and its variants were proposed to
solve the SUSY FCNC problem. If the symmetry is global,
one has to deal with the Goldstone bosons associated with
its spontaneous breaking. Global symmetries are suscep-
tible to violations from quantum gravity. Local gauge
symmetries are more natural, but in the SUSY context
there would be new FCNC processes arising from the
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1Grouping all three families into an irreducible triplet repre-
sentation ofG is also possible. The large top quark mass however
reduces the original Uð3ÞL �Uð3ÞR symmetry to Uð2ÞL �
Uð2ÞR, so we find it is easier to work with (2þ 1) assignment.
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family SUð2Þ D terms [9]. Exceptions to this generic
problem are known to exist [5].

A more natural solution to the problem is perhaps to
chooseG to be a non-Abelian discrete symmetry group [6].
In this case there would be no D term problem, since there
are no gauge bosons associated with G. Spontaneous
breaking of such symmetries will not lead to Goldstone
bosons. If the symmetry breaking occurs before the infla-
tionary era, such models should also be safe from potential
cosmological domain wall problems. Such non-Abelian
discrete symmetries have found application in understand-
ing the various puzzles associated with the quark and
lepton masses and mixing angles with or without super-
symmetry [10], more recently for understanding the tribi-
maximal neutrino mixing pattern [11]. It would be
desirable to find a symmetry that sheds light on the fermion
mass and mixing puzzle, and at the same time solves the
SUSY FCNC problem.

The supersymmetric standard model has another prob-
lem. In the flavor conserving sector CP violation is generi-
cally too large. Neutron and electron electric dipole
moments (EDM) receive new contributions from SUSY
loops. Unless the new phases in the SUSY breaking sector
are small or conspire to be small, experimental limits on
the EDM of the neutron (dn), electron (de), and atoms will
be violated by 2 to 3 orders of magnitude (depending on the
squark and slepton masses) [12,13]. The imaginary parts of
the left-right squark mixing parameters must satisfy the
constraints (from the experimental constraints dn < 6:3�
10�26 e-cm, de < 4:3� 10�27 e-cm) [14]

Im½ð�d
LRÞ11� � 1:9� 10�6

�
~m

500 GeV

�
;

Im½ð�e
LRÞ11� � 1:7� 10�7

�
~m

100 GeV

�
;

(1.3)

assuming that the gluino and Bino have the same mass as
the squark and slepton. Now, since these mixing parame-
ters are expected to be suppressed by fermion helicity
factors (but enhanced by the minimal supersymmetric
standard model (MSSM) parameter tan�) the natural val-
ues for these mixing parameters are of order (1� 10�4,
3� 10�6), respectively (for tan� ¼ 10 and assuming or-
der one phases). This implies that the CP violating phases
arising from the soft SUSY breaking sector must satisfy
�d � 1=53, �e � 1=63 [for gluino (Bino) mass of 500 GeV
(100 GeV)]. Why this is so, while the Kobayashi-Maskawa
phase takes order 1 value, is the SUSY CP puzzle. It would
be desirable to resolve this puzzle based on a symmetry
principle in the same context where the SUSY FCNC
problem is solved.

The purpose of this paper is to study a recently proposed
SUSY model based on the non-Abelian symmetry group
Q6 [7] which addresses these issues.Q6 is a finite subgroup
of SUð2Þ with 12 elements. Apart from providing a solu-
tion to the SUSY flavor problem, this class of models can

also constrain the quark masses and mixings. It was shown
in Ref. [7] that with the assumption of spontaneous (or
soft) CP violation, there is a nontrivial relation between
quark masses and mixings in this model. This sum rule was
found to be consistent with experimental data.
A crucial aspect of the Q6 model relevant for the quark

mixing sum rule is that CP violation occurs either sponta-
neously or softly. This can help ameliorate the SUSY CP
problem mentioned above. CP invariance requires that the
gaugino masses, the � terms, and the trilinear A terms be
all real. In the Q6 model of Ref. [7] it was found that there
is a phase alignment mechanism that makes the phases of
the sfermion mixing terms arising from the A terms to align
with the phases of the fermion masses. So SUSY CP
violation is suppressed to a large extent. However, sponta-
neously induced complex vacuum expectation values
(VEVs) do lead to nonzero contributions to EDM. Here
we analyze these contributions. Since these complex VEVs
are accompanied by the Higgsino � terms, a simple solu-
tion to the problem is found by making the Higgsinos to be
lighter than the squarks. Adequate suppression of EDM is
obtained for �� 100 GeV, while squark masses are of
order 500 GeV. This suggestion obviously has testable
implications for physics that will be probed at the LHC.
The fermion mass matrices that allow for a nontrivial

prediction and the phase alignment is a generalization of
well studied models [15]. The mass matrices for up and
down quarks and the charged leptons take the following
form:

M ¼
0 C 0

�C 0 B
0 B0 A

0@ 1A: (1.4)

The main feature of such mass matrices is that the phases
can be factorized, i.e.,M ¼ P �M0 �Q, withM0 being real
and P, Q being diagonal phase matrices. This feature,
when combined with the Q6 symmetry, has the interesting
consequence that CP violation induced by SUSY loops are
suppressed. This will be discussed in more detail in
Sec. IV.
The form of Eq. (1.4) can be obtained in renormalizable

theories based on Q6 symmetry. This requires the intro-
duction of three families of Higgs doublets, which fall into
2þ 1 representations of the Q6 group, very much like the
quarks and leptons. With multiple Higgs fields coupling to
fermions, invariably there will be tree-level FCNC medi-
ated by the Higgs bosons. The flavor changing Higgs
couplings are not arbitrary, but can be computed in terms
of the fermion masses and mixings. We will show that
these FCNC processes are within acceptable range, pro-
vided that the Higgs boson masses lie in the (1–5) TeV
range [except of course for the standard model-like Higgs
boson, which has a mass in the (100–130) GeV range].
While Higgsinos are naturally light in this scenario, in the
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bosonic sector only the lightest SM-like Higgs will be
accessible to LHC experiments.

One of our major results is that nonstandard CP viola-
tion is highly suppressed in this class of models. The phase
factorizability of the fermion mass matrices implies that
much of the SUSY induced CP violation is small. The
structure of the Yukawa couplings in the model implies that
the amplitudes for tree-level FCNC induced by neutral
Higgs bosons are nearly real (see discussions in Sec. V).
While there can be significant new contributions to meson-
antimeson mixings, there is very little CP violation beyond
the standard model.

Our analysis is similar in spirit to that of Ref. [8]. Our
approach is slightly different, with some differences in
analytical results, fits, spectrum, and conclusions. In par-
ticular, we have presented complete analytical results for
the Higgs boson spectrum, and we have a new proposal to
solve the SUSY EDM problem, which requires light
Higgsinos. We have also derived generalized constraints
on SUSY FCNC parameters for the Bd;s– �Bd;s system ap-

propriate for a (2þ 1) mass spectrum.
The plan of the paper is as follows. In Sec. II we describe

the SUSY Q6 model, lay out the parameter choice, and
summarize the prediction for the quark sector. In Sec. III
we analyze the Higgs potential involving the three pairs of
Higgs doublets. We provide analytic expressions for the
mass spectrum of Higgs bosons as well as numerical fits.
Consistency of symmetry breaking and spontaneous CP
violation will be established here. In Sec. IV we address
tree-level FCNC processes mediated by the heavy Higgs
bosons. Section V is devoted to analysis of the SUSY flavor
violation and EDM within the model. In Sec. VI we
conclude.

II. SUPERSYMMETRIC Q6 MODEL

Q6 is the binary dihedral group, a subgroup of SUð2Þ, of
order 12. It has the presentation

fA; B;A6 ¼ E; B2 ¼ A3; B�1AB ¼ A�1g: (2.1)

The 12 elements of Q6 can be represented as

fE; A; A2; . . . ; A5; B; BA; BA2; . . . ; BA5g: (2.2)

In the two dimensional representation the generators are
given in a certain basis by

A ¼ cos�3 sin�3� sin�3 cos�3

� �
B ¼ i 0

0 �i

� �
: (2.3)

The irreducible representation ofQ6 fall into 2, 2
0, 1, 10, 100,

1000, where the 2 is complex-valued but pseudoreal, while
the 20 is real valued. (Q6 is the simplest group with two
distinct doublet representations, which is very useful for
model building.) The 1 and 10 are real representations,
while 100 and 1000 are complex conjugates to each other.

The group multiplication rules are given as

10 � 10 ¼ 1; 100 � 100 ¼ 10; 1000 � 1000 ¼ 10;

100 � 1000 ¼ 1; 10 � 1000 ¼ 100; 10 � 100 ¼ 1000

(2.4)

2� 10 ¼ 2; 2� 100 ¼ 20; 2� 1000 ¼ 20;

20 � 10 ¼ 20; 20 � 100 ¼ 2; 20 � 1000 ¼ 2
(2.5)

2� 2 ¼ 1þ 10 þ 20; 20 � 20 ¼ 1þ 10 þ 20;

2� 20 ¼ 100 þ 1000 þ 2:
(2.6)

The Clebsch-Gordon coefficients for these multiplication
can be found in Ref. [7].
The fermions of all sectors (up-quark, down-quark,

charged leptons) are assigned to 2þ 1 representations of
Q6. The model assumes three families of Higgs bosons,
which are also assigned to 2þ 1 under Q6. Their trans-
formation properties are given by

c ¼ c 1

c 2

� �
¼ 2; c c ¼ �c c

1

c c
2

 !
¼ 20;

c 3 ¼ 10 c c
3 ¼ 1000;

(2.7)

H ¼ H1

H2

� �
¼ 20; H3 ¼ 1000: (2.8)

Here c generically denotes the fermion fields, and H
denotes the up-type and the down-type Higgs fields which
are doublets of SUð2ÞL. Because of the constraints of
supersymmetry,Hu andHu

3 couple only to up quarks, while

Hd and Hd
3 couple to down-type quarks and leptons. The

Yukawa couplings of the model in the down quark sector
arise from the superpotential

W ¼ �dc 3c
c
3H3 þ �dc

T	1c
c
3H� �0

dc 3c
cTi	2H

þ �dc
T	1c

cH3 þ H:c: (2.9)

with similar results for up-type quarks and charged leptons.
This leads to the mass matrix for the down quarks given by

Md ¼
0 �dvd3 �dvd2

��dvd3 0 �dvd1

�0
dvd2 �0

dvd1 �dvd3

0@ 1A: (2.10)

Here vd1, vd2, vd3 are the vacuum expectation values of
Hd

1;2;3 fields, which break the Q6 symmetry.

Now, the potential of the Q6 model admits an unbroken

S2 symmetry which interchanges Hu;d
1 $ Hu;d

2 . This un-

broken symmetry allows us to choose a VEV pattern

vu1 ¼ vu2; vd1 ¼ vd2; : (2.11)
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Consequently, a 45� rotation of the matrix in Eq. (2.10) in
the 1–2 plane can be done both in the up and the down
quark sectors without inducing Cabibbo-Kobayashi-
Maskawa (CKM) mixing. This will bring the mass matri-
ces to the desired form of Eq. (1.4). By using the unbroken
S2 symmetry, we make a 45� rotation on the Higgs fields,

Ĥ1;2 ¼ ðH1 �H2Þ=
ffiffiffi
2

p
, so that Ĥ1 acquires a VEV, while

hĤ2i ¼ 0. We shall drop the hat on these redefined fields,
and simply denote the VEVof the redefined H1 as v1.

We assume that CP is a good symmetry of the
Lagrangian, and that it is broken spontaneously by the
VEVs of scalar fields. If the full theory contains SM singlet
Higgs fields, spontaneous CP violation in the singlet sector
will show up as soft CP violation in the Higgs doublet
sector. Explicit examples of this sort have been given in
Ref. [7]. For now we simply assume that the Yukawa
couplings in Eq. (2.9) are real, and the CKM CP violation
has a spontaneous origin, via complex VEVs of the Higgs
doublet fields. We denote the phase of these (redefined)
VEVs as

��u ¼ argðvu3Þ � argðvu1Þ;
��d ¼ argðvd3Þ � argðvd1Þ:

(2.12)

We make an overall 45� rotation on the Q6 doublets, Q,
Dc, and Uc, and then a phase rotations on these fields:

U ! PuU; Uc ! PucU
c (2.13)

and similarly for D and Dc fields, where

Pu;d ¼
1 0 0

0 expði2��u;dÞ 0

0 0 expði��u;dÞ

0BB@
1CCA;

Puc;dc ¼
expð�i2��u;dÞ 0 0

0 1 0

0 0 expð�i��u;dÞ

0BB@
1CCA:

(2.14)

This will make the originally complex mass matrices of
Eq. (1.4) real, which we parametrize as

Mu;d ¼ m0
t;b

0 qu;d=yu;d 0
�qu;d=yu;d 0 bu;d

0 b0u;d y2u;d

0B@
1CA: (2.15)

These real mass matrices can be diagonalized by the
following orthogonal transformations:

OT
u;dMu;dM

T
u;dOu;d ¼

m2
u;d 0 0

0 m2
c;s 0

0 0 m2
t;b

0BB@
1CCA;

OT
uc;dcM

T
u;dMuc;dcOuc;dc ¼

m2
u;d 0 0

0 m2
c;s 0

0 0 m2
t;b

0BB@
1CCA:

(2.16)

The CKM matrix VCKM is then given by

VCKM ¼ OT
uPqOd; (2.17)

where

Pq ¼ Py
uPd ¼

1 0 0
0 ei2�q 0
0 0 ei�q

0@ 1A (2.18)

with �q ¼ ��d ���u.

Now it is clear how the Q6 setup reduces the number of
parameters in the quark sector. The total number of pa-
rameters in the quark sector is nine (four real parameters
each in Mu and Md, plus a single phase �q), which should

fit ten observables. Spontaneous CP violation is crucial for
this reduction of parameters. With explicit CP violation,
there would have been one more phase parameter. The
single prediction of this model was numerically studied
in Ref. [7], and shown to be fully consistent with data. Here
we present a numerical fit to all the quark sector observ-
ables, which deviates somewhat from the fit given in
Ref. [7]. The difference arises since here we have at-
tempted to be consistent with the recent lattice determina-
tion of light quark masses. An excellent fit to the quark
masses and mixings, including CKM CP violation, is
obtained with the following choice of parameters at a
momentum scale of � ¼ 1 TeV:

m0
t ¼ 150:7 GeV; m0

b ¼ 2:5515 GeV;

�q ¼ ��d � ��u ¼ �1:40; qu ¼ 1:5142� 10�4;

bu ¼ 0:0395; b0u ¼ 0:0770474; yu ¼ 0:99746;

qd ¼ 0:0043435; bd ¼ 0:02609;

b0d ¼ 0:69138; yd ¼ 0:8100: (2.19)

This choice yields at � ¼ 1 TeV, the following masses
and mixings for the quarks:

mu ¼ 1:13 MeV; mc ¼ 0:461 GeV;

mt ¼ 150:50 GeV; md ¼ 2:53 MeV;

ms ¼ 50:99 MeV; mb ¼ 2:43 GeV;

jVCKMj ¼
0:9745 0:2244 0:0033
0:2242 0:9737 0:0408
0:0093 0:0399 0:9991

0@ 1A;

W ¼ 0:3465;

(2.20)

where 
W is the CP violation parameter in the Wolfenstein
parametrization. These values, when extrapolated to lower
energy scales, give extremely good agreement with data
[16].
We have computed the orthogonal matrices that diago-

nalizeMu andMd. These rotation matrices will be relevant
for our discussion of Higgs-induced flavor violation, as
well as FCNC arising via SUSY loop diagrams. We find
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Od ¼
0:9840 �0:1782 0:0041

0:1781 0:9838 0:0188

�0:0074 �0:0178 0:9998

0BB@
1CCA;

Odc ¼
0:9645 �0:2640 �0:0001

�0:1817 0:6642 0:7251

0:1915 �0:6994 0:6886

0BB@
1CCA;

Ou ¼
0:9988 �0:0495 1:17� 10�5

0:0494 0:9980 0:0395

�0:0020 �0:0394 0:9992

0BB@
1CCA;

Ouc ¼
0:9988 0:0496 �6:00� 10�6

�0:0494 0:9958 0:0771

0:0038 �0:0770 0:9970

0BB@
1CCA:

(2.21)

In the case of charged leptons, there is some arbitrariness
in the values of ðA; B; B0; CÞ‘ of Eq. (1.4), since we have
three observables (charged lepton masses) and four pa-
rameters (without including the neutrino sector). We shall
present a fit with a simplifying assumption B0

‘ ¼ B‘. At

� ¼ 1 TeV, a consistent fit for all the lepton masses is
found with the following input values:

A‘ ¼ 1:675 36 GeV; B‘ ¼ B0
‘ ¼ 0:430 588 GeV;

C‘ ¼ 0:007 428 77 GeV: (2.22)

These yield the following eigenvalues at � ¼ 1 TeV:

me ¼ 0:4963 MeV; m� ¼ 104:686 MeV;

m	 ¼ 1779:5 MeV:
(2.23)

These values correspond to the central values of charged
lepton masses when extrapolated down to their respective
mass scales [16]. The orthogonal matrix that diagonalizes
Me is given by

Oe ¼
0:9976 0:0688 9:81� 10�4

0:0664 �0:9697 0:2352
�0:0171 0:2346 0:9720

0B@
1CA; (2.24)

with Oec obtained from the above by flipping the signs in
the first row and column.

III. SYMMETRY BREAKING AND THE HIGGS
BOSON SPECTRUM

We now turn to the discussion of symmetry breaking and
the Higgs boson spectrum in the model. We shall confine

here to the case of having three pairs of Higgs doublets, and
no Higgs singlets in the low energy theory. It is however,
assumed that singlet fields are present in the full theory, so
that spontaneous Q6 breaking in the singlet sector appears
as soft breaking in the doublet sector. As shown in Ref. [7],
it is possible to realize such a scenario while preserving the
1 $ 2 interchange symmetry for members (1, 2) inside Q6

doublets. We seek a consistent picture where CP violating
phases are generated in the Higgs doublet VEVs. As it
turns out, CP also has to be softly broken in the bilinear
soft SUSY breaking terms, or else there would be no CP
phases in the VEVs.
The superpotential that we consider is the most general

one consistent with softly broken Q6 symmetry, but pre-
serving the S2 interchange symmetry:

Weff ¼ �1ðHu
1H

d
1 þHu

2H
d
2 Þ þ�3H

u
3H

d
3

þ�13ðHu
1 þHu

2 ÞHd
3 þ�31H

u
3 ðHd

1 þHd
2 Þ

þ�12ðHu
1H

d
2 þHd

1H
u
2 Þ: (3.1)

As mentioned earlier, we make a 45� rotation in Hd
1 , H

d
2

and Hu
1 , H

u
2 space, with Ĥu

1;2 ¼ Hu
1
�Hu

2ffiffi
2

p and Ĥd
1;2 ¼ Hd

1
�Hd

2ffiffi
2

p ,

so that the superpotential becomes

Weff ¼ ð�1 þ�12ÞĤu
1Ĥ

d
1 þ ð�1 ��12ÞĤu

2Ĥ
d
2

þ�3Ĥ
u
3Ĥ

d
3 þ

ffiffiffi
2

p
�13Ĥ

u
1Ĥ

d
3 þ

ffiffiffi
2

p
�31Ĥ

u
3Ĥ

d
1 :

(3.2)

The redefined fields have hĤu
2i ¼ hĤd

2i ¼ 0. We work in
the hatted basis from now on, and drop the hat on the new
fields.
The soft SUSY breaking Lagrangian is given, in the

rotated basis, as

Vsoft ¼ ðb1 þ b12ÞHu
1�H

d
1 þ ðb1 � b12ÞHu

2�H
d
2

þ b3H
u
3�H

d
3 þ

ffiffiffi
2

p
b13H

u
1�H

d
3 þ

ffiffiffi
2

p
b31H

u
3�H

d
1

þ H:c:þm2
d1ðjHd

1 j2 þ jHd
2 j2Þ þm2

d3jHd
3 j2

þm2
u1ðjHu

1 j2 þ jHu
2 j2Þ þm2

u3jHu
3 j2; (3.3)

where � ¼ i�2.
The full scalar potential including the soft terms, the F

terms, and the D terms has the form
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V ¼ M2
d1ðjHd0

1 j2 þ jHd�
1 j2Þ þM2

d3ðjHd0
3 j2 þ jHd�

3 j2Þ þM2
u1ðjHu0

1 j2 þ jHuþ
1 j2Þ þM2

u3ðjHu0
3 j2 þ jHuþ

3 j2Þ
þ fM2

13ðHd0	
1 Hd0

3 þHd�	
1 Hd�

3 Þ þM2
31ðHu0	

3 Hu0
1 þHuþ	

3 Huþ
1 Þ þ H:c:g þM2

d2ðjHd0
2 j2 þ jHd�

2 j2Þ
þM2

u2ðjHu0
2 j2 þ jHuþ

2 j2Þ þ fb01ðHuþ
1 Hd�

1 �Hu0
1 Hd0

1 Þ þ b3ðHuþ
3 Hd�

3 �Hu0
3 Hd0

3 Þ þ ffiffiffi
2

p
b13ðHuþ

1 Hd�
3 �Hu0

1 Hd0
3 Þ

þ ffiffiffi
2

p
b31ðHuþ

3 Hd�
1 �Hu0

3 Hd0
1 Þ þ b02ðHuþ

2 Hd�
2 �Hu0

2 Hd0
2 Þ þ H:c:g þ 1

8
ðg21 þ g22ÞðjHuþ

1 j2 þ jHu0
1 j2 þ jHuþ

3 j2

þ jHu0
3 j2 þ jHuþ

2 j2 þ jHu0
2 j2 � jHd�

1 j2 � jHd0
1 j2 � jHd�

3 j2 � jHd0
3 j2 � jHd�

2 j2 � jHd0
2 j2Þ2

þ 1

2
g22jHuþ

1 Hd0	
1 þHu0

1 Hd�	
1 þHuþ

3 Hd0	
3 þHu0

3 Hd�	
3 þHuþ

2 Hd0	
2 þHu0

2 Hd�	
2 j2: (3.4)

Here we have redefined new effective parameters for con-
venience as

M2
d1 ¼ j�1 þ�12j2 þ 2j�31j2 þm2

d1;

M2
d3 ¼ j�3j2 þ 2j�13j2 þm2

d3;

M2
u1 ¼ j�1 þ�12j2 þ 2j�13j2 þm2

u1;

M2
u3 ¼ j�3j2 þ 2j�31j2 þm2

u3;

M2
d2 ¼ j�1 ��12j2 þm2

d1;

M2
u2 ¼ j�1 ��12j2 þm2

u1;

M2
13 ¼

ffiffiffi
2

p ð�1 þ�12Þ	�13 þ
ffiffiffi
2

p
�3�

	
31;

M2
31 ¼

ffiffiffi
2

p ð�1 þ�12Þ�	
31 þ

ffiffiffi
2

p
�	

3�13;

b01 ¼ b1 þ b12; b02 ¼ b1 � b12:

(3.5)

Before analyzing the spectrum, let us note that the
potential should be bounded from below along all D-flat
directions. The following conditions should be satisfied:

M2
d1 þM2

u1 � 2jb01j> 0; M2
d1 þM2

u2 > 0;

M2
d1 þM2

u3 � 2
ffiffiffi
2

p jb31j> 0 M2
d2 þM2

u1 > 0;

M2
d2 þM2

u2 � 2jb02j> 0; M2
d2 þM2

u3 > 0;

M2
d3 þM2

u1 � 2
ffiffiffi
2

p jb13j> 0; M2
d3 þM2

u2 > 0;

M2
d3 þM2

u3 � 2jb3j> 0:

(3.6)

In our numerical analysis, we shall verify that these con-
ditions are indeed met.
We parametrize the VEVs of the four neutral Higgs

fields as

vu1 ¼ v sin� sin�ue
i�u1 ; vu3 ¼ v sin� cos�ue

i�u3 ; vd1 ¼ v cos� sin�de
i�d1 ; vd3 ¼ v cos� cos�de

i�d3 :

(3.7)

Thus we have jvu1j2 þ jvu3j2 þ jvd1j2 þ jvd3j2 ¼ v2 ¼ ð174 GeVÞ2. �uðdÞ reflect the orientation of the VEVs in the
HuðdÞ1–HuðdÞ3 space, while tan� is analogous to the up and down VEV ratio of MSSM.

We can rewrite the potential of the H1–H3 sector of the neutral Higgs fields which acquire VEVs in a compact form

Vð1–3Þ
N ¼ Hu0	

1 Hu0	
3

� � M2
u1 M2

31

M2	
31 M2

u3

 !
Hu0

1

Hu0
3

 !
þ Hd0	

1 Hd0	
3

� � M2
d1 M2

13

M2	
13 M2

d3

 !
Hd0

1

Hd0
3

 !

þ
"

Hu0
1 Hu0

3

� � �b01 � ffiffiffi
2

p
b13

� ffiffiffi
2

p
b31 �b3

 !
Hd0

1

Hd0
3

 !
þ H:c:

#

þ 1

8
ðg21 þ g22Þ

"
Hu0	

1 Hu0	
3

� � Hu0
1

Hu0
3

 !
� Hd0	

1 Hd0	
3

� � Hd0
1

Hd0
3

 !#
2

: (3.8)

This suggests a unitary transformation that would diagonalize the first two matrices in Eq. (3.8), while leaving the D term
unaffected. With such a rotation we have

Vð1–3Þ
N ¼ h	1 h	2

� � m2
1 0

0 m2
2

 !
h1

h2

 !
þ h	3 h	4
� � m2

3 0

0 m2
4

 !
h3

h4

 !
þ
"

h1 h2
� � m2

13 m2
14

m2
23 m2

24

 !
h3

h4

 !
þ H:c:

#

þ 1

8
ðg21 þ g22Þ

"
h	1 h	2
� � h1

h2

 !
� h	3 h	4
� � h3

h4

 !#
2

: (3.9)
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The unitary transformations to go from Eq. (3.8) to Eq. (3.9) are defined as

h1
h2

� �
¼ UU

Hu
1

Hu
3

� �
¼ Qu

cos!u � sin!u

sin!u cos!u

� �
ei�u 0
0 eið�uþ�M31

Þ
� �

Hu
1

Hu
3

� �
;

h3
h4

� �
¼ UD

Hd
1

Hd
3

� �
¼ Qd

cos!d � sin!d

sin!d cos!d

� �
ei�d 0
0 eið�dþ�M13

Þ
� �

Hd
1

Hd
3

� �
;

(3.10)

with �M31
¼ argðM2

31Þ, �M13
¼ argðM2

13Þ, and

!u ¼ 1

2
tan�1

�
2jM2

31j
M2

u3 �M2
u1

�
;

!d ¼ 1

2
tan�1

�
2jM2

13j
M2

d3 �M2
d1

�
:

(3.11)

The two phases �u and �d here are arbitrary. �u ��d

does not appear in the potential[being proportional to
Uð1ÞY charges].�u þ�d can be used to remove one phase
of the bilinear terms in the potential. Qu;d are arbitrary
diagonal phase matrices. If desired, one can take advantage
of these phases to remove all but one phase from the
parameters of the potential. Since we are interested in
going back to the original basis from this rotated basis,
we find it convenient to set Qu;d to be identity.

The other parameters of this transformation are

m2
1;2 ¼

1

2
½M2

u3 þM2
u1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

u3 �M2
u1Þ2 þ 4jM2

31j2
q

�;

m2
3;4 ¼

1

2
½M2

d3 þM2
d1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

d3 �M2
d1Þ2 þ 4jM2

13j2
q

�:
(3.12)

and

m2
13 m2

14

m2
23 m2

24

� �
¼ U	

U
�b01 � ffiffiffi

2
p

b13
� ffiffiffi

2
p

b31 �b3

 !
Uy

D: (3.13)

If we choose

�u þ�d ¼ �þ arg½b01 sin!u sin!d

þ ffiffiffi
2

p
b31 cos!u sin!de

�i�M31

þ ffiffiffi
2

p
b13 sin!u cos!de

�i�M13

þ b3 cos!u cos!de
�ið�M31

þ�M13
Þ�; (3.14)

m2
24 is real and positive (withQu;d set to identity). We shall

adopt this phase convention in our numerical study.
However, we shall present analytical results that hold in
an arbitrary phase convention.

The task at hand is somewhat simplified, since Eq. (3.9)
is relatively simple to analyze. The eight real neutral Higgs

bosons in Hu;d
1;3 can be conveniently parametrized as (see

e.g. Ref. [17])

h1 ¼ ei�1

�
v1 þ 1ffiffiffi

2
p

�
�1 þ ie�5 þ ia�7 þ i

v1

v
G

��
;

h2 ¼ ei�2

�
v2 þ 1ffiffiffi

2
p

�
�2 þ if�6 þ ib�7 þ i

v2

v
G

��
;

h3 ¼ ei�3

�
v3 þ 1ffiffiffi

2
p

�
�3 þ ig�5 þ ic�7 � i

v3

v
G

��
;

h4 ¼ v4 þ 1ffiffiffi
2

p
�
�4 þ ih�6 þ id�7 � i

v4

v
G

�
: (3.15)

Here vi (i ¼ 1, 2, 3, 4) are the magnitudes of the VEVs of
the redefined fields hi, and �i are their phases. Without loss
of generality we have taken v4 to be real. G in Eq. (3.15) is
the Goldstone field eaten up by the Z gauge boson. We
shall work in the unitary gauge and set G ¼ 0. We have
checked explicitly that the G field does not mix with other
scalar fields, and that its mass is exactly zero. The coef-
ficients of various fields in Eq. (3.15) are functions of the
vi’s:

a ¼ v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ; b ¼ �v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ;

c ¼ �v3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ; d ¼ v4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ;

e ¼ v3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ; f ¼ v4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ;

g ¼ v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ; h ¼ v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q :

(3.16)

We shall allow for the soft SUSY breaking parameters
(bi) in the Higgs potential to be complex. Phase rotations
cannot remove all phases from the potential; one phase is
unremovable. Without this phase, the model cannot induce
complex VEVs to the doublets, as shown in Ref. [18] by a
geometric argument. For the case when all parameters in
the Higgs potential are real, we have numerically verified
that the CP violating extremum would generate two mass-
less modes, signaling inconsistency with symmetry break-
ing [18].
We take the soft bilinear terms m2

13, m
2
14, m

2
23, m

2
24 of

Eq. (3.9) to be complex, and denote the phase of m2
ij as �ij.

The minimization conditions then read as
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m2
1v1 þ jm2

13jv3 cosð�13 þ �1 þ �3Þ þ jm2
14jv4 cosð�14 þ �1Þ þ 1

4ðg21 þ g22Þv1ðv2
1 þ v2

2 � v2
3 � v2

4Þ ¼ 0;

m2
2v2 þ jm2

23jv3 cosð�23 þ �2 þ �3Þ þ jm2
24jv4 cosð�2 þ �24Þ þ 1

4ðg21 þ g22Þv2ðv2
1 þ v2

2 � v2
3 � v2

4Þ ¼ 0;

m2
3v3 þ jm2

13jv1 cosð�13 þ �1 þ �3Þ þ jm2
23jv2 cosð�23 þ �2 þ �3Þ � 1

4ðg21 þ g22Þv3ðv2
1 þ v2

2 � v2
3 � v2

4Þ ¼ 0;

m2
4v4 þ jm2

14jv1 cosð�14 þ �1Þ þ jm2
24jv2 cosð�2 þ �24Þ � 1

4ðg21 þ g22Þv4ðv2
1 þ v2

2 � v2
3 � v2

4Þ ¼ 0;

jm2
13jðv2

1 þ v2
3Þ sinð�13 þ �1 þ �3Þ þ jm2

23jv1v2 sinð�23 þ �2 þ �3Þ þ jm2
14jv3v4 sinð�14 þ �1Þ ¼ 0;

jm2
24jðv2

2 þ v2
4Þ sinð�24 þ �2Þ þ jm2

14jv1v2 sinð�14 þ �1Þ þ jm2
23jv3v4 sinð�23 þ �2 þ �3Þ ¼ 0;

jm2
14jv1v4 sinð�14 þ �1Þ � jm2

23jv2v3 sinð�23 þ �2 þ �3Þ ¼ 0:

(3.17)

Denoting the squared matrix for �i, i ¼ 1; 2; . . . 7 from the H1–H3 sector as

M 2
0;ð1–3Þ ¼ M2

ij; (3.18)

we obtain

M2
11 ¼ 
v2

1 þ �
v2v4

v2
1

½cotð�14 þ �1Þ � cotð�13 þ �1 þ �3Þ�;

M2
22 ¼ 
v2

2 þ �
v4

v2

½cotð�23 þ �2 þ �3Þ � cotð�24 þ �2Þ�;

M2
33 ¼ 
v2

3 þ �
v2v4

v2
3

½cotð�23 þ �2 þ �3Þ � cotð�13 þ �1 þ �3Þ�;

M2
44 ¼ 
v2

4 þ �
v2

v4

½cotð�14 þ �1Þ � cotð�24 þ �2Þ�;

M2
55 ¼ �

v2v4

v2
1 þ v2

3

�
v2
3

v2
1

cotð�14 þ �1Þ þ v2
1

v2
3

cotð�23 þ �2 þ �3Þ � ðv2
1 þ v2

3Þ2
v2
1v

2
3

cotð�13 þ �1 þ �3Þ
�
;

M2
66 ¼ �

1

v2v4ðv2
2 þ v2

4Þ
½v4

2 cotð�14 þ �1Þ þ v4
4 cotð�23 þ �2 þ �3Þ � ðv2

2 þ v2
4Þ2 cotð�24 þ �2Þ�;

M2
77 ¼ �

v2v4ðv2
1 þ v2

2 þ v2
3 þ v2

4Þ
ðv2

1 þ v2
3Þðv2

2 þ v2
4Þ

½cotð�14 þ �1Þ þ cotð�23 þ �2 þ �3Þ�;

M2
12 ¼ 
v1v2; M2

13 ¼ �
v1v3 þ �
v2v4

v1v3

cotð�13 þ �1 þ �3Þ; M2
14 ¼ �
v1v4 � �

v2

v1

cotð�14 þ �1Þ;

M2
15 ¼ ��

v2v4

v3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ; M2
16 ¼ �

v2
2

v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ;M2
17 ¼ �

v2v4

v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2 þ v2
3 þ v2

4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ;

M2
23 ¼ �
v2v3 � �

v4

v3

cotð�23 þ �2 þ �3Þ; M2
24 ¼ �
v2v4 þ � cotð�24 þ �2Þ; M2

25 ¼ �
v1v4

v3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ;

M2
26 ¼ ��

v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ; M2
27 ¼ ��

v4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2 þ v2
3 þ v2

4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ; M2
34 ¼ 
v3v4; M2

35 ¼ ��
v2v4

v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ;

M2
36 ¼ �

v2
4

v3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ; M2
37 ¼ ��

v2v4

v3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2 þ v2
3 þ v2

4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ; M2
45 ¼ �

v2v3

v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ;

M2
46 ¼ ��

v4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ; M2
47 ¼ �

v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2 þ v2
3 þ v2

4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ;
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M2
56 ¼ �

1

v1v3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ½v2
2v

2
3 cotð�14 þ �1Þ þ v2

1v
2
4 cotð�23 þ �2 þ �3Þ�;

M2
57 ¼ �

v2v4

v1v3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2 þ v2
3 þ v2

4

q
ðv2

1 þ v2
3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
2 þ v2

4

q ½v2
3 cotð�14 þ �1Þ � v2

1 cotð�23 þ �2 þ �3Þ�;

M2
67 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2 þ v2
3 þ v2

4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

3

q
ðv2

2 þ v2
4Þ

½v2
2 cotð�14 þ �1Þ � v2

4 cotð�23 þ �2 þ �3Þ�: (3.19)

Here we have defined 
 ¼ ðg21 þ g22Þ=2 ¼ M2
Z=v

2 and � ¼
m2

24 sinð�24 þ �2Þ.
The potential of the Hu

2 �Hd
2 fields which do not ac-

quire VEVs is

Vð2Þ
N ¼ M2

u2jHu
2 j2 þM2

d2jHd
2 j2 � fb02Hu

2H
d
2 þ H:c:g

þ g21 þ g22
8

ðjHu
2 j2 � jHd

2 j2 þ jvu1j2 þ jvu3j2

� jvd1j2 � jvd3j2Þ2: (3.20)

The corresponding squared mass matrix for the scalars in
the basis ðReHu

2 ; ImHu
2 ;ReH

d
2 ; ImHd

2 Þ is

M 2
0ð2Þ ¼

M2
u2 � m2

Z

2 cos2� 0 Reb02 �Imb02
0 M2

u2 � m2
Z

2 cos2� �Imb02 �Reb02
Reb02 �Imb02 M2

d2 þ m2
Z

2 cos2� 0

�Imb02 �Reb02 0 M2
d2 þ m2

Z

2 cos2�

0BBBBBB@

1CCCCCCA: (3.21)

This matrix has two pairs of degenerate eigenstates, owing
to an unbroken Uð1Þ symmetry.

The Hu;d
1 –Hu;d

3 sector charged Higgs boson mass matrix

is, in the basis fHuþ
1 ; Huþ

3 ; Hd�	
1 ; Hd�	

3 g,

M 2
�ð1–3Þ ¼ ðM2Þij;

with

M2
11 ¼ M2

u1 � 1
2m

2
Z cos2�þ 1

2
g22jvd1j2;

M2
22 ¼ M2

u3 � 1
2m

2
Z cos2�þ 1

2g
2
2jvd3j2;

M2
33 ¼ M2

d1 þ 1
2m

2
Z cos2�þ 1

2g
2
2jvu1j2;

M2
44 ¼ M2

d3 þ 1
2m

2
Z cos2�þ 1

2g
2
2jvu3j2;

M2
12 ¼ M2	

21 ¼ M2
31 þ 1

2g
2
2v

	
d1vd3;

M2
13 ¼ M2	

31 ¼ b01 þ 1
2g

2
2v

	
u1v

	
d1;

M2
14 ¼ M2	

41 ¼
ffiffiffi
2

p
b13 þ 1

2g
2
2v

	
u3v

	
d1;

M2
23 ¼ M2	

32 ¼
ffiffiffi
2

p
b31 þ 1

2g
2
2v

	
u1v

	
d3;

M2
24 ¼ M2	

42 ¼ b3 þ 1
2g

2
2v

	
u3v

	
d3;

M2
34 ¼ M2	

43 ¼ M2
13 þ 1

2g
2
2vu1v

	
u3:

(3.22)

Finally, theHu
2–H

d
2 sector charged Higgs mass matrix is,

in the basis fHuþ
2 ; Hd�	

2 g,

M 2
�ð2Þ ¼

M2
u2 � 1

2m
2
Z cos2� b02

b0	2 M2
d2 þ 1

2m
2
Z cos2�

 !
(3.23)

Now we present two sets of numerical fits [cases (1) and
(2)] which show the consistency of symmetry breaking. We
are interested in choosing the SUSY breaking parameters
(including the � terms) around the TeV scale, guided by
arguments of naturalness. At the same time we wish the
spectrum to be consistent with FCNC constraints arising
from meson-antimeson mixings. We have explored pa-
rameter space of the Higgs potential where both these
constraints are met. For the FCNC constraint, we allow
the new Higgs exchange contribution to �M be not more
than the experimentally measured values. We emphasize
that these two numerical examples are case studies, but
they are representative of the allowed parameter space of
the model. When we deviate significantly from these solu-
tions, the (heavy) Higgs boson masses exceed several TeV,
which would be in conflict with naturalness arguments.
Case (1)
The parameters in the original Higgs potential of

Eq. (3.8) are taken to have the following values:
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Md1 ¼ 3:754 TeV; Md3 ¼ 3:586 TeV;

Mu1 ¼ 4:782 TeV; Mu3 ¼ 2:152 TeV;

M31 ¼ 2:336ei0:792 TeV; M13 ¼ 1:346e�i1:205 TeV;

b01 ¼ 3:144ei2:963 TeV2; b3 ¼ 3:196ei2:064 TeV2;

b31 ¼ 4:052ei2:186 TeV2; b13 ¼ 3:438ei3:109 TeV2;

Mu2 ¼ 4:550 TeV; Md2 ¼ 4:850 TeV

b02 ¼ 0:000 TeV2: (3.24)

In the representation of Eq. (3.9) this choice corresponds to

m1 ¼ 4:937 TeV; m2 ¼ 1:767 TeV;

m3 ¼ 3:923 TeV; m4 ¼ 3:401 TeV;

m13 ¼ 1:851e�i1:437 TeV; m14 ¼ 2:736e�i0:732 TeV;

m23 ¼ 2:442ei1:347 TeV; m24 ¼ 2:104 TeV: (3.25)

For completeness we also give values of other parameters,
!u ¼ 0:70, !d ¼ 0:622, �u þ�d ¼ 1:005.

We obtain numerically the VEV parameters to be

tan� ¼ 2:00; ��d ¼ �0:03; ��u ¼ 1:37;

tan�d ¼ 2:50; tan�u ¼ 0:33: (3.26)

The mass eigenvalues of the Higgs bosons in the H1–H3

sector are found to be

Mh0 ¼ ð99:4; 115:1Þ GeV; M1 ¼ 3:299 TeV;

M2 �M1 ¼ 0:226 GeV; M3 ¼ 4:161 TeV;

M4 �M3 ¼ 0:411 GeV; M5 ¼ 5:124 TeV;

M6 �M5 ¼ 0:040 GeV: (3.27)

Note the appearance of nearly degenerate states ðM1;M2Þ
etc., with their mass splitting being proportional to m2

Z=4.
The Higgs bosons from the H2 sector have degenerate
masses given by

M7 ¼ M8 ¼ 4:850 TeV M9 ¼ M10 ¼ 4:550 TeV:

(3.28)

The charged Higgs bosons are nearly degenerate with its
neutral partner, so we list the mass splittings:

M�1 �M1 ¼ �0:532 GeV;

M�2 �M3 ¼ �0:156 GeV;

M�3 �M5 ¼ 0:032 GeV:

(3.29)

In the (Hu
2–H

d
2 ) sector, the two charged Higgs bosons are

degenerate with the neutral ones given in Eq. (3.28).
The mass eigenstates Hi are mixtures of hi, i ¼

1; 2; . . . 7 states in the (1–3) sector. The orthogonal trans-
formation that diagonalizes the mass matrix of Eq. (3.18) is

Hk ¼

0:066 0:892 0:271 0:356 8:60� 10�7 1:23� 10�6 2:15� 10�6

0:031 �0:002 0:043 �0:032 �0:400 0:880 0:248
0:332 �0:262 �0:327 0:843 0:020 0:029 0:051
�0:036 0:003 �0:048 0:037 0:151 0:335 �0:927
�0:064 0:365 �0:901 �0:216 0:023 0:033 0:058
0:043 �0:003 0:058 �0:044 0:904 0:331 0:261
�0:937 �0:055 �0:029 0:335 0:028 0:040 0:070

0BBBBBBBBBB@

1CCCCCCCCCCA

h1
h2
h3
h4
h5
h6
h7

0BBBBBBBBBB@

1CCCCCCCCCCA
; (3.30)

with k ¼ 0; � � � 6. Since b02 ¼ 0 in this case, the H0
2 mass

matrix is diagonal, and thus the mass eigenstates are the
original state.

Case (2)
Here we take the input parameters corresponding to

Eq. (3.8) to be

Md1 ¼ 3:980 TeV; Md3 ¼ 5:412 TeV;

Mu1 ¼ 2:765 TeV; Mu3 ¼ 3:692 TeV;

M31 ¼ 2:825ei0:781 TeV; M13 ¼ 1:693e�i0:949 TeV;

b01 ¼ 3:698ei1:495 TeV2; b3 ¼ 3:097ei1:522 TeV2;

b31 ¼ 7:420ei2:428 TeV2; b13 ¼ 1:840e�i2:772 TeV2;

Mu2 ¼ 3:550 TeV; Md2 ¼ 5:850 TeV;

b02 ¼ 1:234ei1:56 TeV2: (3.31)

This choice corresponds to parameters in Eq. (3.9) to be

m1 ¼ 4:377 TeV; m2 ¼ 1:154 TeV;

m3 ¼ 5:466 TeV; m4 ¼ 3:906 TeV;

m13 ¼ 3:281ei1:271 TeV; m14 ¼ 1:702ei0:974 TeV;

m23 ¼ 3:190e�i0:501 TeV; m24 ¼ 2:326 TeV; (3.32)

with !u ¼ �0:501, !d ¼ �0:606, �u þ�d ¼ 4:786.
The Higgs VEV parameters are found for this input to be

tan� ¼ 2:40; ��d ¼ �0:06; ��u ¼ 1:34;

tan�d ¼ 1:80; tan�u ¼ 1:00: (3.33)

The mass spectrum of Higgs bosons in theH1–H3 sector
is
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Mh0 ¼ ð104:1; 119:2Þ GeV; M1 ¼ 2:869 TeV;

M2 �M1 ¼ 0:325 GeV M3 ¼ 5:114 TeV;

M4 �M3 ¼ 0:132 GeV; M5 ¼ 5:658 TeV;

M6 �M5 ¼ 0:087 GeV; (3.34)

while the mass eigenvalues of Eq. (3.21) are

M7 ¼ M8 ¼ 5:856 TeV M9 ¼ M10 ¼ 3:541 TeV:

(3.35)

The charged Higgs boson masses are given by

M�1 �M1 ¼ 0:225 GeV; M�2 �M3 ¼ 0:182 GeV;

M�3 �M5 ¼ �0:064 GeV; (3.36)

with the remaining two charged Higgs bosons being de-
generate with the neutral ones given in Eq. (3.35).
The orthogonal matrix that diagonalizes Eq. (3.18) is

Hk ¼

0:392 0:836 0:262 0:282 1:02� 10�4 �5:99� 10�5 7:35� 10�5

0:476 �0:223 �0:190 0:176 0:669 0:407 0:207
�0:523 �0:038 0:455 0:417 0:422 �0:239 0:329
0:507 �0:238 0:101 �0:094 0:090 �0:811 0:054
�0:089 0:283 0:049 �0:760 0:197 0:013 0:542
�0:063 0:029 0:380 �0:353 0:451 0:044 �0:721
0:278 �0:336 0:729 �0:067 �0:351 0:342 0:181

0BBBBBBBBBB@

1CCCCCCCCCCA

h1
h2
h3
h4
h5
h6
h7

0BBBBBBBBBB@

1CCCCCCCCCCA
; (3.37)

The matrix diagonalizing Eq. (3.21) is

Hk ¼
�0:057 0:000 0:998 0:000
0:000 �0:057 0:000 0:998
0:000 0:998 0:000 0:057
0:998 0:000 0:057 0:000

0BBB@
1CCCA

ReðHu
2 Þ

ImðHu
2 Þ

ReðHd
2 Þ

ImðHd
2 Þ

0BBB@
1CCCA;

(3.38)

with k ¼ 7; � � � 10.
In these fits, Mh0 is the light standard model-like Higgs

boson mass, for which radiative corrections are significant.
In our computation we have included known two loop
corrections. The two values listed for Mh0 correspond to

zero and maximal left-right stop mixing (Xt ¼ 0 or 6). We
have taken mt ¼ 174 GeV, MSUSY ¼ 1:5 TeV, and
�sðmtÞ ¼ 0:108 for these evaluations and used the analytic
approximation given in Ref. [19]. We see that the lightest
Higgs boson mass cannot exceed about 121 GeVwith these
numerical fits (allowing for uncertainties in mt and �s).
Recall that the bound on mh0 in the MSSM is about
130 GeV. Here since tan� has been chosen to be small
so that FCNC constraints are satisfied [ tan� ¼ 2:4 in case
(2)], the tree-level contribution to mh0 is suppressed.

An interesting feature of these two fits is that the diago-
nal entries of the quadratic mass matrix of the potential of

Eq. (3.8) are all positive. This of course does not preclude
some soft squared masses turning negative as in the MSSM
via large top quark Yukawa coupling (since the diagonal
entries also receive � term contributions), however, this is
not necessary for symmetry breaking to be triggered. Yet,
one of the eigenvalues of this matrix is negative, which
facilitates symmetry breaking. For the two cases we find
these eigenvalues to be

Case ð1Þ: fð5:123 TeVÞ2; ð4:161 TeVÞ2; ð3:300 TeVÞ2;
� ð38:682 GeVÞ2g;

Case ð2Þ: fð5:658 TeVÞ2; ð5:115 TeVÞ2; ð2:869 TeVÞ2;
� ð45:40 GeVÞ2g: (3.39)

The conditions for boundedness of the potential listed in
Eq. (3.6) are found to be satisfied for both cases.

Neutralino and Chargino masses

The symmetry breaking parameters do not fully deter-
mine the masses of the neutralinos and the charginos. Here
we present analytical results for their mass matrices.
The mass matrix of ~H1– ~H3 sector neutralino in the basis

of f ~B; ~W0; ~Hu0
1 ; ~Hu0

3 ; ~Hd0
1 ; ~Hd0

3 g is

M �0ð13Þ ¼

M ~B 0 g2vu1ffiffi
2

p g2vu3ffiffi
2

p � g2vd1ffiffi
2

p � g2vd3ffiffi
2

p
0 M ~W � g1vu1ffiffi

2
p � g1vu3ffiffi

2
p g1vd1ffiffi

2
p g1vd3ffiffi

2
p

g2vu1ffiffi
2

p � g1vu1ffiffi
2

p 0 0 �ð�1 þ�12Þ � ffiffiffi
2

p
�13

g2vu3ffiffi
2

p � g1vu3ffiffi
2

p 0 0 � ffiffiffi
2

p
�31 ��3

� g2vd1ffiffi
2

p g1vd1ffiffi
2

p �ð�1 þ�12Þ � ffiffiffi
2

p
�31 0 0

� g2vd3ffiffi
2

p g1vd3ffiffi
2

p � ffiffiffi
2

p
�13 ��3 0 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: (3.40)
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The mass matrix of the ~H2 sector in the basis f ~Hu0
2 ; ~Hd0

2 g is

M �0ð2Þ
0 �ð�1 ��12Þ�ð�1 ��12Þ 0

� �
: (3.41)

The mass matrix of charginos of the ~H1– ~H3 sector in the
basis f ~Wþ; ~Huþ

1 ; ~Huþ
3 ; ~W�; ~Hd�

1 ; ~Hd�
3 g has a block-

diagonal form:

M ��ð13Þ ¼ 0 XT

X 0

� �
(3.42)

with

X ¼
M ~W g1vu1 g1vu3

g1vd1 �1 þ�12

ffiffiffi
2

p
�31

g1vd3

ffiffiffi
2

p
�13 �3

0@ 1A: (3.43)

The chargino mass matrix in the ~Hu
2–

~Hd
2 sector in the basis

of f ~Huþ
2 ; ~Hd�

2 g is

M ��ð2Þ ¼ 0 �1 ��12

�1 ��12 0

� �
: (3.44)

IV. TREE-LEVEL HIGGS INDUCED FCNC
PROCESSES

In this section we discuss various FCNC processes
mediated by tree-level neutral Higgs boson exchange.

A. Neutral meson mixing via Higgs exchange

Accurate measurements exist [20] for neutral meson-
antimeson mixings in the K0– �K0, B0

d–
�B0
d, B

0
s– �B

0
s , and in

D0– �D0 sectors. In the Q6 model there are new contribu-
tions to these mixings arising through tree-level Higgs
exchange. These new contributions will modify the SM
predictions, which are all in good agreement with data.
Here we compute these new contributions, following the
analysis of Ref. [21], with updated QCD corrections and
hadronic matrix elements.

The Yukawa coupling �u;d, �u;d, �
0
u;d, �u;d of Eq. (2.10)

can be determined from the mass matrix Eq. (2.15):

�u;d ¼
m0

t;by
2
u;d

jvu;d3j ; �u;d ¼
m0

t;bbu;d

jvu;d1j

�0
u;d ¼

m0
t;bb

0
u;d

jvu;d1j ; �y;d ¼ m0
t;bqu;d=yu;d

jvu;d3j :

(4.1)

Using the input values given in Eq. (2.19) we get the
following for the two cases.

Case (1)

�d ¼ 0:0409; �d ¼ 6:51� 10�4;

�0
d ¼ 0:0173; �d ¼ 3:35� 10�4;

�u ¼ 0:7195; �u ¼ 0:0858;

�0
u ¼ 0:1672; �u ¼ 1:10� 10�4:

Case (2)

�d ¼ 0:0526; �d ¼ 7:46� 10�4;

�0
d ¼ 0:0198; �d ¼ 4:30� 10�4;

�u ¼ 0:9354; �u ¼ 0:0372;

�0
u ¼ 0:0724; �u ¼ 1:43� 10�4:

After 45� rotation in the Q6 doublet space, the Yukawa
coupling matrices in the down sector are

Yd1 ¼ OT
dPd

0 0 0
0 0 �d

0 �0
d 0

0@ 1APdcOdc ;

Yd2 ¼ OT
dPd

0 0 �d

0 0 0
�0

d 0 0

0@ 1APdcOdc;

Yd3 ¼ OT
dPd

0 �d 0
��d 0 0
0 0 �d

0@ 1APdcOdc ;

(4.2)

where Pd, Pdc are defined in Eq. (2.14). The Yukawa
couplings in the up-quark sector and the charged lepton
sector are similar.
The new Higgs-mediated contributions to �F ¼ 2

Hamiltonian, responsible for the neutral meson-antimeson
mixings has the form [21]

Heff ¼ � 1

2M2
k

�
�qi

�
Yk
ij

1þ �5

2
þ Yk	

ji

1� �5

2

�
qj

�
2
: (4.3)

Here qi;j are the relevant quark fields contained in the

meson. Yk
ij are the Yukawa couplings of qi, qj with

Higgs mass eigenstate Hk mediating FCNC interactions,
k ¼ 1; 2; . . . 10 in our model, 6 from the (H1–H3) sector,
and 4 from the H2 sector. (The light standard model-like
Higgs boson has practically no FCNC couplings.) Yk

ij can

be obtained via inverse transformations, Eq. (3.10), (3.15),
and (3.30) or (3.37).
We obtain

M�
12 ¼ h�jHeff j ��i

¼ � f2�m�

2M2
k

�
� 5

24

m2
�

ðmqi þmqjÞ2
ðYk2

ij þ Yk	2
ji Þ

� B2 � 
2ð�Þ þ Yk
ijY

k	
ji

�
1

12
þ 1

2

m2
�

ðmqi þmqjÞ2
�

� B4 � 
4ð�Þ
�
: (4.4)

Here � is the neutral meson ðK0; B0
d; B

0
s ; D

0Þ. For our

numerical study we use the modified vacuum saturation
and factorization approximation results for the matrix ele-
ments [2,3]
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h�j �fið1� �5Þfj �fið1
 �5Þfjj ��i

¼ f2�m�

�
1

6
þ m2

�

ðmqi þmqjÞ2
�
� B4;

h�j �fið1� �5Þfj �fið1� �5Þfjj ��i

¼ � 5

6
f2�m�

m2
�

ðmqi þmqjÞ2
� B2:

(4.5)

B2 and B4 are equal to one in the vacuum saturation
approximation, but are found to be slightly different from
one in lattice simulations. We use ðB2; B4Þ ¼ ð0:66; 1:03Þ
for the K0 system, (0.82, 1.16) for the B0

d and B0
s systems,

and (0.82, 1.08) for the D0 system [2]. In Eq. (4.4) 
2ð�Þ,

4ð�Þ are QCD correction factors of the Wilson coeffi-
cients C2 and C4 of the effective �F ¼ 2 Hamiltonian in
going from the SUSY scale Ms to the hadronic scale �.
These factors are computed as follows. The �F ¼ 2 effec-
tive Hamiltonian has the general form

H �F¼2
eff ¼ X5

i¼1

CiQi þ
X3
i¼1

~Ci
~Q; (4.6)

where

Q1 ¼ �q�iL��q
�
jL �q

�
iL�

�q�jL; Q2 ¼ �q�iRq
�
jL �q

�
iRq

�
jR;

Q3 ¼ �q�iRq
�
jL �q

�
iRq

�
jL; Q4 ¼ �q�iRq

�
jL �q

�
iLq

�
jR;

Q5 ¼ �q�iRq
�
jL �q

�
iLq

�
jR; (4.7)

with ~Q1;2;3 obtained from Q1;2;3 by the interchange L $ R.
For computing 
2;4 we take the SUSY scale Ms to be

1 TeV. All the supersymmetric particles and heavy Higgs
bosons are integrated out at 1 TeV. The Wilson coefficients
evolve from Ms down to the hadron scale � according to
the equations

Crð�Þ ¼ X
i

X
s

ðbðr;sÞi þ 
cðr;sÞi Þ
aiCsðMsÞ: (4.8)

Here 
 is defined as 
 ¼ �sðMsÞ=�sðmtÞ. The magic

numbers ai, b
ðr;sÞ
i , and cðr;sÞi can be found in Ref. [2] for

the K system, in Ref. [3] for the Bd;s system and in

Ref. [22] for the D system. With Ms ¼ 1 TeV and
�sðmZÞ ¼ 0:118, and mtðmtÞ ¼ 163:6 GeV we find 
 ¼
�sð1 TeVÞ=�sðmtÞ ¼ 0:0882=0:108 ¼ 0:8167.

At the SUSY scale, the neutral Higgs bosons in our
model generate only operators Q2 and Q4. Consequently,
at the hadron scale, for the K0 system, we find

C2ð�Þ ¼ C2ðMsÞ � ð2:54Þ;
C4ð�Þ ¼ C4ðMsÞ � ð4:81Þ;
C3ð�Þ ¼ C2ðMsÞ � ð�1:8� 10�3Þ;
C5ð�Þ ¼ C4ðMsÞ � ð0:186Þ;

(4.9)

leading to 
2ð�Þ ¼ 2:54, 
4ð�Þ ¼ 4:81. Although opera-

tor mixings induce nonzero C3 and C5 at the hadronic
scale, their coefficients are found to be rather small.
For the B0

d;s system, following the same procedure, we

find

C2ð�Þ ¼ C2ðMsÞ � ð2:00Þ;
C4ð�Þ ¼ C4ðMsÞ � ð3:12Þ;
C3ð�Þ ¼ C2ðMsÞ � ð�2:44� 10�2Þ;
C5ð�Þ ¼ C4ðMsÞ � ð0:0874Þ:

(4.10)

And for the D0 system we have

C2ð�Þ ¼ C2ðMsÞ � ð2:31Þ;
C4ð�Þ ¼ C4ðMsÞ � ð3:99Þ;
C3ð�Þ ¼ C2ðMsÞ � ð�1:30� 10�2Þ;
C5ð�Þ ¼ C4ðMsÞ � ð0:144Þ:

(4.11)

In all cases we see that the induced operators C3 and C5 are
negligible.
K0– �K0 mixing constraint:
In the K0 system, tree-level neutral Higgs boson ex-

change contributes to KL � KS mass difference, as well
as to the indirect CP violation parameter, modifying the
successful SM predictions. The mass difference is com-
puted from �mK ¼ 2ReMK

12, while the CP violation pa-

rameter is j�Kj ’ ImMK
12ffiffi

2
p

�mK
. We seek consistency with the

precisely measured experimental values �mK=mK ’
ð7:1� 0:014Þ � 10�15 and j�Kj ’ 2:3� 10�3. In our cal-
culation, we choose mK ¼ 498 MeV and fK ¼ 160 MeV.
For the two numerical fits we find the new contributions to
be

Case ð1Þ: ð�mK=mKÞnew ¼ 7:361� 10�15;

�newK ¼ 2:00� 10�4;

Case ð2Þ: ð�mK=mKÞnew ¼ 5:721� 10�15;

�newK ¼ 2:28� 10�5:

(4.12)

The contributions from H0
1–H

0
3 sector and H0

2 sector to

ReðMK
12Þ are, respectively, ð3:033� 10�15;�1:200�

10�15Þ GeV for case (1) and ð2:512� 10�15;�1:088�
10�15Þ GeV for case (2). We see that the new contributions
to the mass difference is significant, but consistent with
data. New contributions to CP violation is suppressed,
which is a generic feature of Higgs exchange in this class
of models. We elaborate on this issue later in this section.
B0
d–

�B0
d mixing constraint:

For the B0
d–

�B0
d system we use as input mBd

¼
5:281 GeV, fBd

¼ 240 MeV, and seek consistency with

the experimental value �mBd
¼ 3:12� 10�13 GeV. We

find for the Higgs induced contribution
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Case ð1Þ: ð�mBd
Þnew ¼ 2:997� 10�13 GeV;

Case ð2Þ: ð�mBd
Þnew ¼ 2:728� 10�13 GeV:

(4.13)

The contributions fromH0
1–H

0
3 sector andH

0
2 sector toM

bd
12

are ð2:298� 10�14; 1:269� 10�13Þ GeV for case (1) and
ð2:137� 10�14; 1:150� 10�13Þ GeV. Again, we see con-
sistency with experimental values. CP violation parameter
is found to be extremely tiny,�10�5, from the Higgs boson
exchange.

B0
s– �B0

s mixing constraint:
For the B0

s– �B
0
s system, we use mBs

¼ 5:37 GeV, fBs
¼

295 MeV and compare the new contributions with
�mBs

¼ 1:067� 10�11 GeV.

Case ð1Þ: ð�mBs
Þnew ¼ 1:688� 10�12 GeV;

Case ð2Þ: ð�mBs
Þnew ¼ 1:396� 10�12 GeV:

(4.14)

The H0
1–H

0
3 sector and the H0

2 sector contribute to M
B0
s

12

given by ð8:532� 10�13;�9:460� 10�15Þ GeV for
case (1) and ð7:067� 10�13;�3:835� 10�15Þ GeV for
case (2). These new contributions are within the experi-
mentally allowed range. The Higgs mediated CP violation
is again found to be highly suppressed.

D0– �D0 mixing constraint:
For the D0– �D0 mixing we use mD ¼ 1:864 GeV, fD ¼

200 MeV, and compare the new contribution with �mD ¼
1:27� 10�12 GeV.

Case ð1Þ: ð�mDÞnew ¼ 8:620� 10�13 GeV;

Case ð2Þ: ð�mDÞnew ¼ 2:645� 10�13 GeV:
(4.15)

TheH0
1–H

0
3 sector contribution has different sign from that

of the H0
2 sector. We find forMD0

12 these contributions to be

ð4:402� 10�15;�4:354� 10�13Þ GeV for case (1) and
ð2:568� 10�15;�1:348� 10�13Þ GeV for case (2).
Again these limits are within the experimental range.

We have found that the new sources of CP violation
through tree-level Higgs is very small in meson-antimeson
mixings with typical values ImðM12Þ � 10�4 ReðM12Þ.
This can be understood heuristically as follows. There
are two types of contributions to the meson mixing as
given in Eq. (4.4). The first term, proportional to B2 re-
spects a global Uð1Þ symmetry (strangeness in the K0

system), which is only broken by the mass-splittings in
the neutral Higgs boson spectrum between a pair of parti-
cles. However, this splitting is very small, of order m2

Z in
the squared mass [see Eq. (3.27)]. The couplings of the
nearly degenerate Higgs in each pair differ by a factor i,
owing to the Uð1Þ symmetry, and the two contributions
cancel, in the limit of exact degeneracy. For both the real
and imaginary parts of M12 the contribution from the first
term is suppressed by a factor m2

Z=ð4M2
kÞ. Such a suppres-

sion is absent in the second term of Eq. (4.4), since the
operator Q4 explicitly breaks the Uð1Þ symmetry. Thus,
although the first term has CP violation, in relation to the

CP-conserving second term, it is suppressed by a factor
m2

Z=ð4M2
kÞ � 10�4. Now, the second term, while it has no

suppression factor, it is purely real. This can be seen from
the following observation. In the mass basis of fermions in
the original basis we have the relation (owing to the
vanishing of off-diagonal mass terms in the mass eigenba-
sis)

ðYd3ÞijhHd
3 i ¼ �ðYd1ÞijhHd

1 i (4.16)

for i � j. The couplings of mass eigenstates of the Higgs
boson to down-type quarks are simply linear combinations
of Hd

1 and Hd
3 . Since we assume CP to be spontaneously

broken, all components of ðYkÞij with i � j have the same

phase. As a result the second term of Eq. (4.4) becomes
real. The constraint imposed by SUSY, that H	

u fields do
not couple to down-type quarks, and the fact that only two
of the down-type Higgs bosons acquire VEVs is very
crucial for this result.

B. Neutron electric dipole moment from Higgs
exchange

The Higgs boson exchange can generate nonzero elec-
tric dipole moments for the fermions. These diagrams are
however suppressed by the light fermion Yukawa cou-
plings. For the d quark EDM arising from neutral Higgs
boson exchange at the one-loop level we find [21]

dd ¼ Qde

16�2
ImðYk

dqY
k
qdÞ

mq

M2
k

�
3

2
� ln

�
M2

k

m2
q

��
�d; (4.17)

where �d ¼ ð�sðMkÞ=�sð�ÞÞ16=23 � 0:12, and q is
summed over d, s, and b. The neutron EDM is determined
using the quark model via

Dn ¼ 4dd=3� du=3: (4.18)

We find

Case ð1Þ: Dn ¼ 1:809� 10�31 e-cm;

Case ð2Þ: Dn ¼ 6:091� 10�31 e-cm;
(4.19)

which are well within experimental limits. The EDM of the
electron is similarly found to be extremely small from the
Higgs boson exchange diagrams.

C. � ! 3e and � ! 3� decays

Tree-level Higgs boson exchange can lead to flavor
violating leptonic decays such as 	 ! 3� and � ! 3e.
The effective weak interaction mediating such decays can
be parametrized as

Geff ¼
��������X

k

ðYeÞk11ðYeÞk12
1

M2
k

��������: (4.20)

The effective couplings are found for � ! 3e for the two
cases to be
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Case ð1Þ: Geff ¼ 4:432� 10�13GF;

Case ð2Þ: Geff ¼ 4:191� 10�13GF:
(4.21)

And the couplings for 	 ! 3� decay are

Case ð1Þ: Geff ¼ 45:721 � 10�8GF;

Case ð2Þ: Geff ¼ 6:977 � 10�8GF:
(4.22)

Such small effective couplings will lead to negligible con-
tributions to the decay branching ratios. For example, the
branching ratio for 	 ! 3� is of order 10�15, well below
the experimental sensitivity. We conclude that Higgs-
mediated FCNCs in the lepton sector are all safe.

V. FCNC MEDIATED BY SUSY PARTICLES

In this section we turn attention to the flavor changing
processes mediated by the supersymmetric particles. The
main motivation for the non-Abelian Q6 model was to
bring such processes under control by a symmetry reason.
Here we analyze meson-antimeson mixings, flavor violat-
ing leptonic decays, and the EDM of the neutron and the
electron. We present our proposal to suppress SUSY con-
tributions to the EDM by making the Higgsinos of the
model light, with masses of order 100 GeV.

Owing to the Q6 symmetry, the first two family squarks
(and similarly sleptons) are degenerate in mass, while the

third family, which is a Q6 singlet has a different mass. In
the fermion sector Q6 symmetry is broken, which means
that there will be SUSY loop induced flavor violation in the
model. Constraints on such flavor violation have been
listed in Refs. [2,3,22] assuming all three families of
squarks are degenerate. While these results are applicable
for the K0 and D0 system in our model, they do not work

well for the B0
d;s system. This is because the masses of the ~b

and gd; s masses are not the same.

A. Generalized constraints for Bd system

We have generalized the results of Ref. [3] by allowing

for ~b mass to be different from the masses of gd; s. We
define new parameters

ydA;B ¼ ð ~m2
bÞA;B

~m2
dA;B

(5.1)

for A, B ¼ L, R. We expect these y parameters to be of
order one, but not very close to 1. Taking account of y � 1
we have generalized the constraints on the squark mixing
parameters from B0

d system as follows.

The effective �F ¼ 2 Hamiltonian for Bd;s system can

be written as

H eff ¼
X5
i¼1

CiQi þ
X3
i¼1

~Ci
~Q

¼ � �s

216m2
~d

fð�d
13Þ2LLð24Q1xf6ðx; yÞ þ 66Q1

~f6ðx; yÞÞ þ ð�d
13Þ2RRð24 ~Q1xf6ðx; yÞ þ 66 ~Q1

~f6ðx; yÞÞ

þ ð�d
13ÞLLð�d

13ÞRRð504Q4xf6ðx; yÞ � 72Q4
~f6ðx; yÞ þ 24Q5xf6ðx; yÞ þ 120Q5

~f6ðx; yÞÞ
þ ð�d

13Þ2RLð204Q2xf6ðx; yÞ � 36Q3xf6ðx; yÞÞ þ ð�d
13Þ2LRð204 ~Q2xf6ðx; yÞ � 36 ~Q3xf6ðx; yÞÞ

þ ð�d
13ÞLRð�d

13Þ2RLð�132Q4
~fðx; yÞ � 180Q5

~f6ðx; yÞÞg: (5.2)

The functions f6ðx; yÞ and ~f6ðx; yÞ are

f6ðx; yÞ ¼ 1

ðx� 1Þ3ðy� 1Þ3ðz� 1Þ3 ½� lnxðxþ yþ xy� 3x3Þðy� 1Þ3 þ lnyðxþ yþ xy� 3y2Þðx� 1Þ3

þ 2ðx� 1Þðy� 1Þð�xþ yþ x2 � y2 � x3 þ y3 þ 2x2y� 2xy2Þ�
~f6ðx; yÞ ¼ 1

ðx� 1Þ3ðy� 1Þ3ðz� 1Þ3 ½2 lnx � xðx
2 � yÞðy� 1Þ3 þ 2 lny � yðx� y2Þðx� 1Þ3

þ ðx� 1Þðy� 1Þðx2 � y2 þ x3 � y3 � 7x2yþ 7xy2 þ x3y� xy3Þ�:

(5.3)

Generalizing the results of Ref. [3] we obtain the squark mixing coefficients ð�d
13ÞAB with A; B ¼ ðL; RÞ as shown in

Table I. Here we have used the same input as in Ref. [3], so that for y ¼ 1 our results coincide. We have used the next-to-
leading order lattice calculation results for the matrix elements. For some of the mixing parameters we made a simplifying
assumption that ydL and ydR are equal.
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B. SUSY flavor change in Q6 model

In the Q6 model the mass matrices of squarks in the
flavor basis can be written as

ðm~qÞ2AA ¼ m2
~qA

1 0 0
0 1 0
0 0 y

0@ 1A; (5.4)

q can be u or d, and A can be L or R. Making the same
unitary transformation on the squark fields as the ones on
the quarks which diagonalize the quark mass matrices, we
find the mass matrices of squarks in the SUSY basis (where
the gluino coupling matrix is identity in the flavor space) to
be:

ð ~m~dÞ2LL ¼ OT
dP

	
dðm~dÞ2LLPdOd ¼ m2

~dL

264Iþ ðydl � 1ÞOT
dP

	
d

0 0 0
0 0 0
0 0 1

0@ 1APdOd

375
¼ m2

~dL

264I þ ðydL � 1Þ
5:43� 10�5 1:31� 10�4 �0:0074
1:31� 10�4 3:17� 10�4 �0:0178
�0:0074 �0:0178 0:9996

0B@
1CA
375: (5.5)

Note that this matrix is real, a consequence of the phase factorization of the fermion mass matrix. Similarly,

ð ~m~dÞ2RR ¼ m2
~dR

264I þ ðydR � 1Þ
0:0367 �0:1339 0:1318
�0:1339 0:4891 �0:4816
0:1319 �0:4816 0:4742

0@ 1A
375; (5.6)

ð ~m~uÞ2LL ¼ m2
~uL

264I þ ðyuL � 1Þ
3:85� 10�6 7:74� 10�5 �0:0020
7:74� 10�5 0:0016 �0:0394
�0:0020 �0:0394 0:9984

0B@
1CA
375; (5.7)

ð ~m~uÞ2RR ¼ m2
~uR

264I þ ðyuR � 1Þ
1:46� 10�5 2:94� 10�4 0:0038
2:94� 10�4 0:0059 �0:0768

0:0038 �0:0768 0:9941

0B@
1CA
375: (5.8)

K0– �K0 mixing via squark-gluino loops have several contributions. The most stringent limit arises from the ðLLÞ–ðRRÞ
mixing, which requires [2]

TABLE I. Maximum allowed values for jReð�d
13ÞABj and jImð�d

13ÞABj, with A, B ¼ ðL;RÞ. A new parameter y is introduced, with
y ¼ m2

~b
=m2

~d
. The definition of other parameters and their values follow Ref. [3].

ynx 0.25 1.0 4.0 0.25 1.0 4.0

jReð�d
13ÞLLj jImð�d

13ÞLLj
0.25 3:4� 10�2 1:6� 10�1 2:5� 10�1 7:2� 10�2 3:4� 10�1 1:2� 10�1

1.0 6:2� 10�2 1:4� 10�1 7:0� 10�1 1:3� 10�1 3:0� 10�1 3:4� 10�1

4.0 1:6� 10�1 2:7� 10�1 - 3:3� 10�1 5:8� 10�1 -

jReð�d
13ÞRRj ¼ jReð�d

13ÞLLj jImð�d
13ÞRRj ¼ jImð�d

13ÞLLj
0.25 1:4� 10�3 2:4� 10�2 1:0� 10�2 4:4� 10�3 1:0� 10�2 4:3� 10�3

1.0 1:9� 10�2 2:1� 10�2 2:8� 10�2 8:0� 10�3 9:0� 10�1 1:2� 10�2

4.0 4:8� 10�2 4:0� 10�2 1� 10�1 2� 10�2 1:7� 10�2 4:6� 10�2

jReð�d
13ÞLRj jImð�d

13ÞLRj
0.25 1:7� 10�2 3:7� 10�2 1:6� 10�2 3:6� 10�2 8:4� 10�2 3:6� 10�2

1.0 3:0� 10�2 3:3� 10�2 4:5� 10�2 6:6� 10�2 7:4� 10�2 1:0� 10�1

4.0 7:5� 10�2 6:4� 10�2 1:7� 10�1 1:7� 10�1 1:4� 10�1 3:9� 10�1

jReð�d
13ÞLRj ¼ jReð�d

13ÞRLj jImð�d
13ÞLRj ¼ jImð�d

13ÞRLj
0.25 1:4� 10�2 5:9� 10�2 - 2:3� 10�2 4:4� 10�1 -

1.0 2:6� 10�2 5:2� 10�2 - 9:0� 10�3 2:3� 10�2 -

4.0 6:5� 10�2 1:0� 10�1 - 2:3� 10�2 4:4� 10�2 -
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jðyd � 1Þj
ð0:51þ 0:49ydÞ1=4 < 0:23

�
~m

500 GeV

�
: (5.9)

Here we have assumed ydL ¼ ydR ¼ yd, and took the gluino
mass to be equal to the first two family squark mass. For
the first two family squark mass of 500 GeV, this translates
to the limit 0:77 � yd � 1:24. For 1 TeV squarks, this limit
is relaxed to 0:58 � yd � 1:48. We see that for yd order 1,
the most stringent limit on squark mediated FCNC is
satisfied.

The Q6 model also generates significant ðRRÞðRRÞ con-
tributions to the K0– �K0 mixing. We find

0:68 � yd � 1:37 (5.10)

for squark and gluino mass of 500 GeV. This constraint is
also easily satisfied in the model.
In the B0

d system, the analogous constraints are [from the

ðLLÞðRRÞ operator]
jðyd � 1Þj

ð0:53þ 0:47ydÞ1=4 < 0:69

�
~m

500 GeV

�
: (5.11)

This limit leads to 0:48 � yd � 1:85 for squark-gluino
mass of 500 GeV. The ðRRÞðRRÞ squark mixing gives no
constraint from the Bd system. Similarly, there are no
constraints arising from the D0 system, nor from other
type of operators in the model.
In the leptonic sector, we find the (LL) slepton mixing

[which is the same for the (RR) slepton mixing] to be

ð ~m~eÞ2LL ¼ m2
~eL

264I þ ðyeL � 1Þ
2:93� 10�4 �4:02� 10�3 �0:0167
�4:02� 10�3 0:0550 0:2280

�0:0167 0:2280 0:9447

0B@
1CA
375: (5.12)

There are stringent constraints on the mixing parameter
ðð�eÞLLÞ12 from the decay � ! e� [23]. On the face of it,
the mixing presented above would appear to be in mild
conflict with data by a factor of few. However, since such a
constraint is very weak for the ðð�eÞRRÞ12 mixing, we point
out that the flexibility in the lepton sector mass matrix can
be used to make the (LL) contribution small in exchange
for larger (RR) contributions. That is, assume B � B0 in
Eq. (1.4).

C. Left-Right squark mixing and a solution to the EDM
problem

So far we have ignored SUSY flavor violation arising
from the left-right squark mixings. It turns out that these
operators do not give significant contributions to meson-
antimeson mixings, since such mixings have fermion chi-
rality suppression. However, these mixings can generate
new contributions to the neutron (and electron) electric
dipole moments. Here we analyze constraints from the
EDM and suggest a simple solution to the SUSY EDM
problem.

First, as shown in Ref. [7], the trilinear A term induced
phases align with the phases of the fermion mass matrices,

even without assuming proportionality of the A terms with
the respective Yukawa couplings. This feature arises due to
the phase factorization of the fermion mass matrix. Left-
right squark mixings also receive contributions from the
superpotential � terms. We derive the mass matrix for the
down squark sector to be:

ðm~dÞ2LR ¼ Fd	
1

0 �d 0
��d 0 0
0 0 �d

0@ 1A
þ ffiffiffi

2
p

Fd	
2

0 0 0
0 0 �d

0 �0
d 0

0@ 1A; (5.13)

with

Fd
1 ¼ �3vu3 þ�13vu1;

Fd
2 ¼ �31vu3 þ�1 þ�12

2
vu1:

(5.14)

After the unitary transformations to the left and the right
squarks, corresponding to case (1), we have the (LR)
mixing matrix in the flavor basis as

ð ~m~dÞ2LR ¼ OT
dPdðm~dÞ2LRPdcOdc

¼ Fd	
1

�1:75� 10�4 4:14� 10�4 3:09� 10�5

�4:46� 10�4 3:84� 10�4 �5:45� 10�4

0:0078 �0:0286 0:0282

0B@
1CA

þ ffiffiffi
2

p
Fd	
2 ei��d

4:53� 10�5 �1:66� 10�4 �1:24� 10�5

1:79� 10�4 �6:52� 10�4 2:18� 10�4

�0:0031 0:0115 0:0125

0B@
1CA; (5.15)
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ð ~m~uÞ2LR ¼ OT
uPuðm~uÞ2LRPucOuc

¼ Fu	
1

�1:62� 10�5 2:18� 10�4 �0:0014
�2:18� 10�4 0:0022 �0:0283

0:0027 �0:0554 0:7168

0B@
1CAþ ffiffiffi

2
p

Fu	
2 ei��u

3:24� 10�5 �6:53� 10�4 0:0042
6:53� 10�4 �0:0131 0:0848
�0:0082 0:1661 0:0162

0B@
1CA:

(5.16)

with

Fu
1 ¼ �3vd3 þ�31vd1; Fu

2 ¼ �13vd3 þ�1 þ�12

2
vd1: (5.17)

ð ~m~eÞ2LR ¼ OT
ePeðm~eÞ2LRPecOec

¼ Fd	
1

�1:10� 10�5 2:85� 10�4 6:72� 10�4

�2:75� 10�4 0:0039 0:0257
�4:89� 10�5 0:0047 0:0313

0B@
1CA

þ ffiffiffi
2

p
Fd	
2 ei��d

2:93� 10�6 �1:14� 10�4 �2:69� 10�4

1:10� 10�4 �0:0043 �0:0103
1:96� 10�5 �0:0019 0:0093

0B@
1CA; (5.18)

Corresponding to case (2) these matrices are

ð ~m~dÞ2LR ¼ OT
dPdðm~dÞ2LRPdcOdc

¼ Fd	
1

�2:25� 10�4 5:32� 10�4 3:97� 10�5

�5:73� 10�4 4:93� 10�4 �7:00� 10�4

0:0100 �0:0368 0:0362

0B@
1CA

þ ffiffiffi
2

p
Fd	
2 ei��d

5:20� 10�5 �1:90� 10�4 �1:42� 10�5

2:05� 10�4 �7:48� 10�4 2:50� 10�4

�0:0036 0:0131 0:0144

0B@
1CA; (5.19)

ð ~m~uÞ2LR ¼ OT
uPuðm~uÞ2LRPucOuc

¼ Fu	
1

�2:11� 10�5 2:83� 10�4 �0:0018
�2:83� 10�4 0:0028 �0:0368

0:0036 �0:0720 0:9319

0B@
1CAþ ffiffiffi

2
p

Fu	
2 ei��u

1:41� 10�5 �2:83� 10�4 0:0018
2:83� 10�4 �0:0057 0:368
�0:0036 0:0720 0:0070

0B@
1CA:

(5.20)

ð ~m~eÞ2LR ¼ OT
ePeðm~eÞ2LRPecOec

¼ Fd	
1

�1:41� 10�5 3:66� 10�4 8:62� 10�4

�3:53� 10�4 0:0050 0:0330
�6:28� 10�5 0:0061 0:0402

0B@
1CA

þ ffiffiffi
2

p
Fd	
2 ei��d

3:36� 10�6 �1:31� 10�4 �3:08� 10�4

1:26� 10�4 �0:0049 �0:0118
2:24� 10�5 �0:0022 0:0106

0B@
1CA: (5.21)

Note that these matrices are in general complex, since Fu;d
i

are complex because of the spontaneously induced phases
of the VEVs. This means that these matrices will contrib-
ute to neutron and electron EDM. Since these complex
coefficients are proportional to �v= ~m2, we find a simple

solution to the SUSY EDM problem: Let the� terms be of
order 100 GeV, in which case one finds a suppression factor
of 10�2 for the effective phase that enters the EDM ex-
pression. With this suppression factor, from the (1, 1)
elements of these (LR) mixing matrices, we see that neu-
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tron and electron EDM constraints can be satisfied, even
with the spontaneously induced phases in the VEVs being
of order 1.

The proposed solution to the SUSY EDM problem has
direct experimental consequences for LHC.We predict that
the Higgsinos should be light, and three such pairs of
doublet Higgsinos should be observable at the LHC.
Their scalar partners, however, are inaccessible, since their
masses lie in the few TeV range.

VI. CONCLUSION

In conclusion, we have presented a detailed analysis of
the Higgs potential involving three pairs of Higgs doublets
in a Q6 model of flavor. We have found consistent numeri-
cal solutions to the Higgs spectrum which satisfy all the
FCNC constraints, with the SUSY breaking scale in the
TeV range. This class of models are motivated on two
grounds: They lead to reduced number of parameters in

the fermionic sector, and they can be helpful in alleviating
the flavor changing problems of generic SUSY models.
We have shown that tree-level Higgs boson induced

FCNC are within experimental limits, even for the most
stringent K0– �K0 mixing amplitude. The Higgs boson
masses must lie in the TeV range. New sources of CP
violation in meson mixing are highly suppressed. We have
also shown the consistency of the model with SUSY flavor
violation. A simple solution to the SUSY EDM problem is
suggested, which requires light Higgsinos.
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