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We explore aspects of the phase structure of SUð2Þ and SUð3Þ lattice gauge theories at strong coupling

with many flavors Nf of Wilson fermions in the fundamental representation. The pseudoscalar meson

mass as a function of hopping parameter is observed to deviate from the expected analytic dependence, at

least for sufficiently large Nf. Implications of this effect are discussed, including the relevance to recent

searches for an infrared fixed point.
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I. INTRODUCTION

There has been a lot of interest recently in identifying an
infrared fixed point, and the possibility of an associated
conformal window, for SUðNcÞ lattice gauge theories as a
function of the number of fermion flavors Nf [1–9], moti-

vated by the pioneering work of Banks and Zaks [10]. For a
valuable review, see Ref. [11]. Much of the interest stems
from the longstanding suggestion that a (nearly) conformal
gauge theory could play a key role in electroweak symme-
try breaking beyond the standard model of particle physics
[12–15]. For fermions in the fundamental representation,
the prediction obtained from a detailed study using the
Wilson fermion action [1] differs from subsequent studies
that use other actions [11]. According to Ref. [16] it is
generally believed that confinement exists in the strong
coupling limit for anyNf; the disagreement with data from

the Wilson action [1] suggests that the unphysical Wilson
term has a dramatic effect. In the present work, we revisit
the strong coupling limit of the Wilson action with the goal
of providing some additional insight into this issue.

An SUðNcÞ lattice gauge theory with fundamental
Wilson fermions is expected to have a phase where flavor
and parity are spontaneously broken, known as the Aoki
phase [17,18]. The expected phase diagram (for example
figure 3 of Ref. [18]) is sketched in the plane spanned by
the two relevant parameters: the gauge coupling and the
fermion mass. The weak coupling part of the diagram
shows ‘‘fingers’’ of Aoki phase separated by regions of
symmetric phase, but ongoing research by various groups
is refining this picture for specific discretizations and lat-
tice improvement scenarios [19–25]. The strong coupling
part of the original expected phase diagram is simpler: the
Aoki phase exists for quark masses of smaller magnitude
and the symmetric phase exists for quark masses of larger
magnitude. In the extreme strong coupling limit (g ¼ 1),
the phase boundary is predicted to be at a specific critical
value of the hopping parameter,

�c ¼ 1

4
: (1)

Recall that the hopping parameter � is related to the

dimensionless bare fermion mass m0 as follows:

� � 1

2m0 þ 8
: (2)

In addition, the dimensionless pion mass in the strong
coupling limit is predicted to be a rather simple function
of the hopping parameter [17],

coshðm�Þ ¼ 1þ ð1� 16�2Þð1� 4�2Þ
8�2ð1� 6�2Þ : (3)

This expression for the pion mass was derived long ago for
quenched configurations (i.e. Nf ¼ 0 inside the configura-

tions) [26,27], and initial tests of its validity for Nf > 0

were presented in some of the direct numerical simulations
within Ref. [1]. A central result of our work is the obser-
vation of systematic deviations from Eq. (3) in exploratory
simulations with multiple Wilson fermions at � ¼ 0.

II. SIMULATION DETAILS

For this study we use the standard plaquette gauge action
and the standard Wilson fermion action for each of the Nf

degenerate fermions,

S ¼ SG þ XNf

f¼1

SfW; (4)

SG ¼ �

2

X
x;�;�

�
1� 1

Nc

ReTrU�ðxÞU�ðxþ�Þ

�Uy
�ðxþ �ÞUy

� ðxÞ
�
; (5)

SfW ¼X
x

½ �c fðxÞc fðxÞ��f �c fðxÞð1���ÞU�ðxÞc fðxþ�Þ

þ �c fðxþ�Þð1þ��ÞUy
�ðxÞc fðxÞg�; (6)

where � ¼ 2Nc=g
2 with g the gauge coupling, and where

U�ðxÞ is the SUðNcÞ-valued link variable. Then the parti-

tion function Z is
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Z ¼
Z
½dU�ðxÞ�

YNf

f¼1

½d �c fðxÞ�½dc fðxÞ� expð�SÞ

¼
Z
½dU�ðxÞ�ðdetðDy

WDWÞÞNf=2 expð�SGÞ; (7)

where DW is the kernel of the single-fermion action SfW ¼
�c fðxÞDWðx; yÞc fðyÞ.
Simulations are performed with a standard hybrid

Monte Carlo (HMC). For independent confirmation, simu-
lations for the heavier fermions are repeated using a poly-
nomial hybrid Monte Carlo (PHMC).1 In each molecular
dynamics (MD) evolution, the number of steps per trajec-
tory NMD is tuned to beyond 80% acceptance for the
Metropolis test. The step size �� is defined by ��NMD ¼
1.

Our simulations focus primarily on � ¼ 0, but some
studies at � ¼ 2will also be reported. Lattice sizes include
62 � 122, 82 � 162, 122 � 242, and 123 � 24. With zero
temperature simulations in mind, we use periodic bound-
ary conditions and define the Euclidean time dimension to
be greater than or equal to every spatial dimension. For
each chosen set of parameters, 50 to 100 configurations
were collected after thermalization, with 4 or 5 trajectories
between saved configurations.

Our primary observables are the average plaquette hhi,
the pseudoscalar meson mass m�, and the axial-Ward-
Takahashi-identity quark mass mAWI

q , all defined in stan-

dard fashion:

hhi¼
�

1

12NcV

X
x;�;�

ReTrU�ðxÞU�ðxþ�ÞUy
�ðxþ�ÞUy

� ðxÞ
�
;

(8)

�X
x

Pðx; tÞPð0; 0Þ
�
¼ c�e

�m�t þX
n

cne
�mnt

ðwith mn > m�8nÞ; (9)

mAWI
q ¼

hr4

P
x
A4ðx; tÞPð0; 0Þi

h2P
x
Pðx; tÞPð0; 0Þi ; (10)

where V denotes the total number of lattice sites, r4 is the
symmetric temporal derivative operator, and the flavor
nonsinglet bilinear operators (with flavor index omitted)
are

Pðx; tÞ ¼ �c ðx; tÞ�5c ðx; tÞ; (11)

A4ðx; tÞ ¼ �c ðx; tÞ�4�5c ðx; tÞ: (12)

III. SUð2Þ WITH MANY FLAVORS AT � ¼ 0

For a first indication of the difference between quenched
and dynamical simulations, consider the average plaquette
for various numbers of flavors, as shown in Fig. 1. An
abrupt transition is clearly seen for Nf � 6, with a two-

state signal defining the transition region in each case. The
data at Nf ¼ 4 hint at a transition but are not conclusive,

though other observables to be discussed below will con-
firm a Nf ¼ 4 transition. At Nf ¼ 2 the transition is either

suppressed or absent. This behavior implies the existence
of a first-order transition for sufficiently large Nf, and was

already reported for the SUð3Þ case in Ref. [1] and for
SUð2Þ with two flavors of adjoint-representation fermions
in Refs. [2,8]. Our results show that the first-order transi-
tion moves to larger values of 1=� asNf is increased. All of

our observed transitions are in the range 1=8< �< 1=4.
Figure 2 shows m2

� and mAWI
q over a wide range of 1=�.

Notice that m2
� and mAWI

q become insensitive to Nf as 1=�

increases. This is no surprise because sufficiently heavy
quarks have a minimal effect on the vacuum structure of
the theory, so meson and quark masses for any Nf > 0

approach their quenched (Nf ¼ 0) values as 1=� grows.

A close-up of the small 1=� region is displayed in Fig. 3.
The same transition that was observed in the elementary
plaquette is clearly seen in m2

� and mAWI
q as well. From

these data it is clear that the transition exists at least for
Nf � 4 and the two-state signals imply that it is first order

at least for Nf � 6. The transition moves to larger 1=� as

Nf is increased and we speculate that the transition will

approach � ¼ 1=8 as Nf ! 1, i.e. the gauge theory with

infinitely many fermions will become the free theory.
It should be noted that Fig. 1 is obtained for all four of

our lattice volumes: no volume dependence is observed.
This was expected in advance because the average pla-
quette is a short distance quantity. We have similarly con-
firmed volume independence for m2

� and mAWI
q over our

¤¤
¤¤¤¤¤

¤

¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤
¤¤ ¤¤¤

4 5 6 7
1/κ

0

0.2

0.4

0.6

0.8

〈❑
〉

Nf=2

Nf=4

Nf=6

Nf=8

Nf=10 

Nf=12

Nf=14

Nf=28¤ ¤

FIG. 1 (color online). Average plaquette as a function of 1=�
in SUð2Þ gauge theory with Nf flavors at � ¼ 0.

1Use of our PHMC for the lighter fermions would require a
polynomial of remarkably high degree.
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range of volumes, and examples are presented in Fig. 4. In
particular, the transition shows no evidence of vanishing in
the infinite volume limit, and it shows no evidence of
moving to � ¼ 1=4 in the infinite volume limit.

Besides the transition itself, Figs. 3 and 4 show an
interesting curvature at values of 1=� above the transition,
where the slope deviates more and more from the quenched
slope when approaching the transition point. If someone
wanted to extrapolate to m2

� ¼ 0 using only data above the
transition, then the critical hopping parameter so obtained,
let us name it �ext

c , would be smaller than 1=4. Of particular
interest is the fact that even the data above the transition in
Figs. 3 and 4 do not follow Eq. (3) and do not arrive at
�ext
c ¼ 1=4 despite Eq. (1).
To ascertain the properties of the transition and of the

regions it separates, a range of other observables should be
discussed. That discussion goes beyond the scope of the
present work, but brief comments and selected plots can be
found in Appendix A.

IV. SUð3Þ WITH MANY FLAVORS AT � ¼ 0

Qualitatively the situation for SUð3Þ is similar to that for
SUð2Þ, but our quantitative results indicate that deviations
from Eq. (3) are smaller for SUð3Þ. Perhaps a large-Nc

suppression mechanism is at work. Data for the average
plaquette, pseudoscalar meson mass, and axial-Ward-
Takahashi-identity quark mass are plotted in Figs. 5 and
6. Notice thatm2

� is consistent with Eq. (3) for Nf ¼ 0, but

the Nf > 0 data display bending that is very similar to the

SUð2Þ case but of smaller magnitude.
The search for a possible transition is more expensive for

SUð3Þ than for SUð2Þ because we must work at larger �. A
transition is found to exist for Nf � 8 but we cannot say

whether it is abrupt. Recall that Ref. [1] found the tran-
sition to occur only forNf � 7; they rely to some extent on
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FIG. 4 (color online). Volume independence of m2
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as a function of 1=� in SUð2Þ gauge theory for Nf ¼ 6 and 12 at

� ¼ 0. The prediction from Eq. (3) is shown as a solid blue
curve that reaches m2

� ¼ 0 at 1=� ¼ 4. Quadratic fits to lattice
data for m2

� are shown as a pair of solid curves (Nf ¼ 6 is black

and Nf ¼ 12 is orange).
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FIG. 2 (color online). m2
� and mAWI

q as functions of 1=� in
SUð2Þ gauge theory with Nf flavors at � ¼ 0.
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FIG. 5 (color online). Average plaquette as a function of 1=�
in SUð3Þ gauge theory with Nf flavors at � ¼ 0.
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counting the conjugate gradient iterations required during
thermalization to determine the phase for Nf ¼ 6 at � ¼
1=4. (We comment briefly in Appendix B.) Our results2 do
show hints of a transition for Nf ¼ 6.

V. DISCUSSION

Simulations on small space-time lattices in the strong
coupling limit display the phase transition already dis-
cussed in Ref. [1], but the present work makes the addi-
tional observation that the dependence of the pseudoscalar
meson mass on the hopping parameter deviates from the
expected formula, Eq. (3), as seen in Figs. 4 and 6. These
deviations, which appear as bending in plots of meson (and
quark) mass versus hopping parameter, are easily seen for
Nc ¼ 2 and are smaller but still observed for Nc ¼ 3. The
formula in Eq. (3) was derived through a large-Nc expan-
sion [17], and the present data for Nc ¼ 2; 3 suggest a
rather rapid approach to Eq. (3) as Nc is increased.
Equation (3) is also obtained for any Nc with Nf ¼ 0.

Because of the phase transition there is generally no
value of the hopping parameter at which the pseudoscalar
meson becomes massless, but extrapolation from above the
phase transition (i.e. from smaller hopping parameters)
does allow the definition of an effective critical hopping
parameter, �ext

c ðNfÞ. This extrapolated value is found to

obey

�ext
c ðNfÞ< �ext

c ðNf � 1Þ< � � �< �ext
c ð1Þ< �ext

c ð0Þ ¼ 1

4
(13)

as a consequence of the observed deviation away from
Eq. (3).
The authors of Ref. [1] performed a detailed study of

SUð3Þ gauge theory with Nf Wilson fermions and from

that study they proposed a phase structure with regions of
confinement and deconfinement for certain values of Nf.

They also include a brief appendix (in the most recent
publication in [1]) devoted to the SUð2Þ theory, where
�c ¼ 1=4 is assumed and simulations at that hopping
parameter are used as the basis for conclusions about a
confinement/deconfinement transition. The results of
Ref. [1] differ from those obtained using other actions
[11], and one might ask whether assumptions about �c ¼
1=4 might play a role. However, Eq. (13) confirms that for
any Nf > 0

�dðNfÞ< �ext
c ðNfÞ< 1

4
; (14)

where �d is the location of the phase transition; this fact is
sufficient to leave the conclusions of Ref. [1] intact.
Therefore the source of discrepancies between the phase
structure obtained from the Wilson action versus other
actions must be sought elsewhere.
It is worth noting that phenomena in the strong coupling

limit are not typical of results at weaker couplings. For
example the average plaquette, meson mass, and quark
mass for the SUð2Þ theory at � ¼ 2 are plotted in Figs. 7
and 8. Instead of an abrupt transition that is essentially
independent of lattice volume, we now see smoothly con-
tinuous functions and the meson mass has a significant
volume dependence. Detailed studies at � � 0 are left for
future work.
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FIG. 7 (color online). Average plaquette as a function of 1=�
in SUð2Þ gauge theory with Nf flavors at � ¼ 2 on 82 � 162

lattices.
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FIG. 6 (color online). m2
� and mAWI

q as functions of 1=� in
SUð3Þ gauge theory with Nf flavors at � ¼ 0. The prediction

from Eq. (3) is shown as a solid blue curve reaching m2
� ¼ 0 at

1=� ¼ 4.

2The configurations of Nf ¼ 6 at � ¼ 0:25 in our case are
generated from the last configuration of Nf ¼ 8 at � ¼ 0:25. We
use the HMC algorithm with a time step of �� ¼ 0:005, while
Ref. [1] uses the approximate R algorithm with �� ¼ 0:01.
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APPENDIX A: ADDITIONAL OBSERVABLES

A Polyakov loop is the trace of a product of links in a
straight line along a lattice axis which, via periodic bound-
ary conditions, closes upon itself. Polyakov loops are often
used as an indicator for confinement. The absolute value of
a Polyakov loop is plotted in Fig. 9 at � ¼ 0 on 62 � 122

lattices. For each of the two cases Nf ¼ 6 and Nf ¼ 8, the

graph shows the Polyakov loops in both the shorter (Nx ¼
6) and longer (Nt ¼ 12) lattice directions. The shorter
Polyakov loops are numerically large and dependent on
the hopping parameter, with a two-state signal at the
transition for large enough Nf. The longer Polyakov loops

are consistent with zero for all values of �. We refrain from
drawing conclusions about confinement from this brief
consideration of Polyakov loops.
For discussions of chiral symmetry and its possible

breaking, natural quantities include the chiral condensate
h �c c i and the pseudoscalar density h �c�5c i. The low-
lying eigenvalues of the Wilson-Dirac operator relate to
these observables through the spectral representation of the

quark propagator. For instance, h �c�5c i ¼ P
�

h�j�i
�ðHW Þ and

h �c c i ¼ P
�
h�j�5j�i
�ðHW Þ , where �ðHWÞ and j�i are an eigen-

value and eigenvector, respectively, of the Hermitian
Wilson-Dirac operator HW ¼ �5DW .
The upper panel of Fig. 10 is the lowest eigenvalue, �,

defined by � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðH2

WÞ
q

in the eigenvalue equation,

H2
W j�0i ¼ �0j�0i, and obtained by the Ritz functional

method. This behavior hints at the dependence h �c�5c i �
1=�. At least for Nf � 4, two phases are found and in both

phases the eigenvalues are not particularly small.
Because Wilson fermions break chiral symmetry explic-

itly, the chiral condensate is not adequate and should be
replaced by the subtracted chiral condensate defined by
ð �c c Þsubt¼2mAWI

q N where N ¼ð2�Þ2Px;thPðx;tÞ�
Pð0;0Þi. The fermion mass mAWI

q itself is discussed in the

main body of this article, and it is most naturally defined
only for 1=� values above the transition, so here we focus
on the observation of N . The lower panel of Fig. 10
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FIG. 9 (color online). The dependence of a Polyakov loop
hjLji on Nf flavors is expressed through the difference hjLjiNf
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hjLji0. This difference is plotted as a function of 1=� in SUð2Þ
gauge theory on 62 � 122 lattices at � ¼ 0 with Nf ¼ 6 and 8.
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displays N for SUð2Þ gauge theory at strong coupling for
various Nf. Indications of a 1=mq divergence in the con-

finement phase (i.e. 1=� above the transition) are visible, as
expected. For both observables in Fig. 10, the transition is
visible when Nf � 4.

APPENDIX B: ALGORITHMIC ISSUES

The HMC algorithm uses a number of trajectories, tradi-
tionally distinguished by an integer �. Each trajectory uses
some number of molecular dynamics steps, NMD, and each
of those uses some number of conjugate gradient (CG)
iterations, nCGi ð�Þ with 1 � i � NMD, to attain the imposed
precision. The average number of CG iterations per MD

step is therefore NCGð�Þ ¼ 1
NMD

PNMD

i¼1 nCGi ð�Þ. The left

panel of Fig. 11 shows this quantity for sequential trajec-
tories during thermalization for SUð2Þ with Nf ¼ 6, � ¼
0, and � ¼ 0:215 on a 82 � 162 lattice with precision
defined by jjrresCGjj< 10�12. For reference, the average

plaquette is also plotted for each trajectory. The hot start
requires more trajectories before reaching thermalization,
and some of those trajectories needed many CG iterations.
One could possibly be tempted to abort such a calculation
before reaching equilibrium and assume that the increasing
NCGð�Þ would never return to a smaller value at larger �.
The right panel of Fig. 11 showsNCGð�Þ for SUð3Þ atNf ¼
6, � ¼ 0, and � ¼ 0:250 on a 62 � 122 lattice with
jjrresCGjj< 10�12 and NMD ¼ 200. When configuration gen-

eration starts from the last configuration of Nf ¼ 8 at � ¼

0:250, the HMC becomes stable at 65% acceptance and
NCGð�Þ ¼ Oð103Þ. On the other hand, the hot and cold
starts are not accepted by the HMC’s Metropolis test
with NCGð�Þ ¼ Oð104Þ. In both cases3 of Fig. 11, the large
value of NCGð�Þ does not imply the existence of a massless
mode.
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