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We formulate nonrelativistic quantum chromodynamics (NRQCD) on a lattice which is boosted relative

to the usual discretization frame. Moving NRQCD allows us to treat the momentum for the heavy quark

arising from the frame choice exactly. We derive moving NRQCD through Oð1=m2; v4
relÞ, as accurate as

the NRQCD action in present use, both in the continuum and on the lattice with Oða4Þ improvements. We

have carried out extensive tests of the formalism through calculations of two-point correlators for both

heavy-heavy (bottomonium) and heavy-light (Bs) mesons in 2þ 1 flavor lattice QCD and obtained

nonperturbative determinations of energy shift and external momentum renormalization. Comparison to

perturbation theory at Oð�sÞ is also made. The results demonstrate the effectiveness of moving NRQCD.

In particular we show that the decay constants of heavy-light and heavy-heavy mesons can be calculated

with small systematic errors up to much larger momenta than with standard NRQCD.
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix is the
focus of intense study; an inconsistency between indepen-
dent determinations of CKM matrix elements from differ-
ent physical processes would be evidence for new physics
beyond the standard model. While experimental measure-
ments of exclusive semileptonic decays have reached good
precision and will be improved further by LHCb, determi-
nations of CKM matrix elements from the decay rates are
complicated by the need for precise theoretical calcula-
tions in nonperturbative quantum chromodynamics
(QCD). Lattice QCD provides a first-principles approach
to these calculations and it is important to reduce system-
atic and statistical errors as far as possible.

For example, the decay B ! �‘� [1–3] can be used to
determine the CKM matrix element Vub, while the rare

decays B ! K��, Kð�Þ‘þ‘� [4–8] provide excellent op-
portunities to study contributions from new physics, as the
flavor-changing neutral current b ! s is loop suppressed in
the standard model. In both cases, a nonperturbative cal-
culation of the hadronic form factors is required.

These form factors are a function of the momentum
transfer squared, q2, where q ¼ pB � pF is the difference

between the four-momenta of the B meson and the meson
in the final state. If this meson is light compared to the B
meson, the recoil momentum at small values of q2 can be
very large. Unfortunately, current lattice QCD calculations
of these form factors work well only for low-recoil mo-
menta, i.e., large q2 [9–12], while for B ! K�� one has
q2 ¼ 0 and experimental data for B ! �‘� cover the full
q2 range [1–3].
By computing at just one or a few points with large q2,

one might be able to reduce the error on jVubj from B !
�‘�, where the shape of the form factor is now being
measured precisely by experiment [1–3]. However, the
form factors governing the rare b ! s decays are not
well determined and must be computed using lattice
QCD. Given the propensity for models of new physics to
introduce new sources of flavor-changing neutral currents,
it is desirable to have new tools to reduce the errors on the
standard model calculations of differential cross sections
for rare decays.
In this paper we present a technique for extending lattice

QCD calculations of the decays of mesons containing one
heavy quark to lower q2 values than has hitherto been
possible by reducing the discretization errors owing to
the large recoil of the final state meson.
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The formalism that we describe and put to the test in
subsequent sections is a generalization of nonrelativistic
QCD (NRQCD) [13,14]. The NRQCD formalism, which
has already had considerable success in the study of heavy-
quark systems, relies on the fact that fluctuations in the
heavy-quark momentum within a heavy meson are small
compared with the mass of the meson itself. The
Lagrangian of NRQCD is expressed as a sum over opera-
tors whose importance is governed by power-counting
rules; in dimensionless units the operators are ordered in
powers of g, vrel for heavy-heavy mesons and in powers of
�s, �QCD=m for heavy-light mesons, where �s ¼ g2=ð4�Þ
is the strong coupling constant, vrel � jpj=m is the relative
internal velocity of the heavy quarks, and m is the heavy-
quark mass.1 For NRQCD, the heavy meson is usually
taken to be at rest in the lattice frame. This is appropriate
for calculations of the mass spectrum of heavy-light and
heavy-heavy mesons and for zero-recoil or low-recoil de-
cays. However, for the heavy-to-light decays of the B
meson cited above, outside the low-recoil region the mo-
mentum of the light meson in the final state becomes
comparable to the inverse lattice spacing. Consequently
the calculation is sensitive to lattice artifacts which lead to
large systematic errors.

It is therefore better to give the B meson a nonzero
momentum in the opposite direction, thereby reducing
the final meson’s momentum at a given q2. To substantially
reduce the momentum of the final meson, the momentum
of the Bmeson has to be very large, so that NRQCD would
no longer be able to describe the b quark inside it due to
relativistic and lattice spacing errors. However, we note
that fluctuations of momentum of the heavy quark inside
the B meson are much smaller than the momentum of the
meson itself. Therefore, to reduce errors, instead of dis-
cretizing the momentum of the b quark itself, we choose to
discretize its fluctuations inside the moving B meson. The
formalism which achieves this goes by the name of moving
NRQCD (mNRQCD) in which the expansion is about the
state where the heavy quark is moving with a velocity v,
the frame velocity; this formalismwas introduced briefly in
[15]. Earlier, related approaches were proposed in [16,17].

The remainder of the paper is structured as follows. In
Sec. II we discuss the choice of the optimal reference frame
for the lattice calculations. We give an explicit derivation
of the continuum mNRQCD action in Sec. III. We explain
how the theory is discretized in Sec. IV. In Sec. V we
develop perturbative methods for mNRQCD and explain
how to derive the renormalization of parameters due to
radiative corrections. We give one-loop results for the
heavy-quark renormalization constants. The construction
of decay currents is discussed in Sec. VD. Then, in Sec. VI

we present the results of nonperturbative calculations
based on two-point correlators for heavy-heavy and
heavy-light mesons in mNRQCD. These include the spec-
trum, renormalization constants, and decay constants for
various values of the frame velocity v.
The perturbative and nonperturbative renormalization

constants are compared in Sec. VII. We summarize and
discuss our results in Sec. VIII.
In the appendixes we specify some notation

(Appendix A), describe the removal of time derivatives
in theOð�2

QCD=m
2ÞmNRQCDHamiltonian (Appendix B),

give explicit expressions for the lattice derivative operators
(Appendix C) and tadpole improvement corrections
(Appendix D), and present further perturbative results for
a set of simpler actions (Appendix E). We comment on the
poles of the Symanzik-improved gluon action in
Appendix F.
Preliminary versions of this work have been presented in

Refs. [18–23].

II. MINIMIZING ERRORS

We start by parametrizing the 4-momentum of the b
quark as

p ¼ muþ k;

where m is the mass of the b quark, and u a 4 velocity. In
traditional (nonmoving) NRQCD one has u ¼ ð1; 0; 0; 0Þ,
and a nonrelativistic expansion in the residual 3-
momentum k is performed. In other words, the heavy-
quark mass term is removed from the Lagrangian. Thus,
the 3-momentum p, which is equal to k in this case, has to
be small to prevent large relativistic errors as well as
discretization errors on the lattice.
In moving NRQCD, we generalize this to other frames

of reference, removing the momentum mu with an arbi-
trary 4 velocity u from the Lagrangian, and again perform-
ing a nonrelativistic expansion in the residual 3-
momentum k. The relativistic energy of the heavy quark

is E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmuþ kÞ2 þm2
p

. Taylor expansion
for small jkj gives

E ¼ �mþ v � kþ k2 � ðv � kÞ2
2�m

þ � � � ;

where we write u ¼ ðu0; uÞ ¼ ð�; �vÞwith the 3 velocityv
and � ¼ ð1� v2Þ�1=2. Discarding the constant term �m,
we expect that theOð1=mÞ ‘‘kinetic’’ part of the continuum
mNRQCD Hamiltonian in momentum space will be given
by

H0 ¼ v � kþ k2 � ðv � kÞ2
2�m

:

Of course, the size of k and the associated relativistic and
discretization errors depend on the choice of u. The stan-
dard choice is u ¼ pB=MB, the 4 velocity of the B meson.

1These rules are frequently referred to as NRQCD and heavy-
quark effective theory power-counting schemes, respectively.
Note that the choice of NRQCD as a lattice action is compatible
with both schemes. See Sec. III B below.
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Then, the residual momentum k is small compared to pB,
and the nonrelativistic expansion in k is a good approxi-
mation even for B mesons at moderately high velocities.

A. Discretization errors

One of the main applications of the mNRQCD approach
is to the heavy-to-light weak decay of a B meson to a final
state including a light meson. As discussed in the intro-
duction the size of the discretization errors in a lattice
calculation depends on the momentum of the final state
meson; states with spatial momenta comparable to the
inverse lattice spacing can be affected by lattice artifacts.
Nevertheless, one wishes to compute matrix elements over
the whole physical kinematic range, including the large
recoil regime where the final state has large momentum
relative to the B meson. With mNRQCD we attempt to
reduce discretization errors by choosing a nonzero frame
velocity v, so that the final state meson can have moderate
spatial momentum in the lattice frame, even as we explore
large recoil kinematics.

If the B meson is at rest, the residual momentum k has a
distribution with width of the order �QCD, and the residual

energy has a distribution with width of the order
�2

QCD=ð2mÞ � �QCD. Note that the momentum pspec of

the light quark in the Bmeson (the ‘‘spectator quark’’) is of
the same order by momentum conservation.

For a B meson moving with velocity v, the momentum
distribution is boosted to approximately ��QCD. Let us

now consider a decay B ! F where F denotes the light
meson in the final state and the 4-momenta are

pB ¼ ð�MB; �MBvÞ; pF ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

F þ jpFj2
q

;pFÞ;
where v is antiparallel to pF. For a given value of q2 ¼
ðpB � pFÞ2, we shall determine the optimal velocity of the
B meson which minimizes discretization errors. The dis-
cretization errors are determined by the momenta carried
by the quarks (and gluons) and are typically proportional to
ða�momentumÞ2 where a is the lattice spacing. The full
mNRQCD action described in this paper has no tree-level
Oða2k2Þ errors, but has Oð�sa

2k2Þ errors due to radiative
corrections. The same is true for highly improved light
quark actions such as ASQTAD [24–26] or highly im-
proved staggered quarks [27]. Assuming that the constants
of proportionality for the discretization errors are the same,
discretization errors are minimal if all quarks involved in
the decay have momenta of the same size.

The increase in discretization errors for the quarks in the
B meson due to the boost of the momentum distribution
when going from zero velocity (� ¼ 1) to a nonzero ve-
locity v is proportional to

�2�2
QCD ��2

QCD: (1)

Assuming that the quarks in the light meson share the
momentum equally, each carrying momentum of order

pF=2, we expect that the increase in relative discretization
errors for the light meson when going from zero momen-
tum to pF is proportional to�

1

2
jpFj

�
2
: (2)

The total error is the sum of these terms with some coef-
ficients that we presume are of order unity. Noting that
ðpB � pFÞ2 ¼ q2, we choose v to minimize the total error
to give the optimal v as a function of q2. Investigation with
different reasonable choices of coefficients shows that the
minimum error is compatible with setting the two above
terms equal. The result is plotted in Fig. 1 for the �, K, and
K� light mesons. We find that at maximum recoil a velocity
of jvj � 0:7 would minimize discretization errors. Of
course this is only a very crude estimate, and the optimal
velocity depends on the details of the lattice computation.

B. Statistical errors

Lattice calculations are limited not only by discretiza-
tion errors but also by statistical errors. Unfortunately these
increase exponentially when going to lower q2. Consider
for instance the B-meson two-point function with momen-
tum pB, denoted as hByðpB; 0ÞBðpB; �Þi, which is required
in the form factor computations alongside the pion two-
point function and the B ! F three-point function. The
variance in the correlator is [28]

�2ð�Þ ¼ h½ByðpB; 0ÞBðpB; �Þ�½ByðpB; 0ÞBðpB; �Þ�yi
� jhByðpB; 0ÞBðpB; �Þij2: (3)

The correlator in the first line of (3) couples to the combi-
nation of a heavy-heavy (HH) meson at rest and a pion at
rest, so for large Euclidean time �, it will decay like
expð�ðMHH þM�Þ�Þ. However, the second line is simply
the square of the two-point function, which will decay like
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FIG. 1 (color online). Estimate of optimal velocity, minimiz-
ing discretization errors, for B ! F form factors (see text) as a
function of q2 for the �, K, and K� light mesons.
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expð�2EBðpBÞ�Þ where EBðpBÞ is the energy of a Bmeson
with momentum pB. Since MHH þM� < 2EBðpBÞ, the
variance will be dominated by the first line at large �.
This means that the signal-to-noise ratio approaches zero
exponentially fast in Euclidean time �,

hByðpB; 0ÞBðpB; �Þi
�ð�Þ / e�ðEBðpBÞ�ðMHH=2Þ�ðM�=2ÞÞ�; (4)

and at fixed � it decreases as the momentum pB increases.
A similar analysis can be performed for the B ! F three-
point function and for the light meson two-point function.
At lower q2, the momenta pB, pF and the corresponding
energies are larger and hence the signal decays faster,
while the variance is independent of q2. (For an example
with heavy-light correlators, see [29].)

The above argument illustrates that using mNRQCD to
extend the kinematic range of calculations requires the
efficient use of techniques for reducing statistical noise.
Already progress has been made reducing statistical errors
using stochastic sources [30]. Nevertheless, calculations at
lower q2 will undoubtedly require increased computational
effort. In view of the opportunity for rare b ! s decays to
discover or further constrain non–standard model physics,

via B ! K��, Kð�Þ‘þ‘� for example, such effort is
worthwhile.

C. Heavy-quark expansion of the current

Even in continuum mNRQCD systematic errors for
heavy-to-light decays increase when going to lower q2,
since the convergence of the heavy-quark expansion for the
current mediating the decay gets worse. The heavy-quark
expansion requires that all momentum scales for the light
degrees of freedom are small compared to the mass of the
heavy quark, which is approximately equal to the mass of
the B meson, MB. In the low-recoil regime, the only

relevant scale is �QCD � MB, but for large recoil the

momentum of the light meson in the B rest frame is large.
The light meson energy in the B rest frame can be

written in a Lorentz-invariant way as

EF;0 ¼ pB � pF

MB

¼ M2
B þM2

F � q2

2MB

: (5)

The light meson momentum in this frame is then jpF;0j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
F;0 �M2

F

q
. In Fig. 2, we plot the ratio jpF;0j=MB as a

function of q2 for the �, K and K� light mesons. This ratio
becomes almost 0.5 at q2 ¼ 0, which has to be compared to
�QCD=MB � 0:1 in the low-recoil limit.

III. DERIVATION OF MNRQCD

A. Continuum mNRQCD

To derive the mNRQCD action in Minkowski space, we
work in two frames, the optimal frame with coordinates x
and the rest frame of the B meson with coordinates x0. The
two frames are related by a Lorentz boost with velocity v,

x ¼ �x0:

For the explicit form of � ¼ �ðvÞ, see Appendix A. We
denote the physical (full QCD Dirac spinor) heavy-quark
field in the two frames by�ðxÞ and�0ðx0Þ. They are related
by the spinorial representation of the boost,

�ðxÞ ¼ Sð�Þ�0ðx0Þ; ��ðxÞ ¼ ��0ðx0Þ �Sð�Þ:
The spinorial boost matrix Sð�Þ is defined in Appendix A.
The Dirac Lagrangian for �0 is

L 0ðx0Þ ¼ ��0ðx0Þði�̂ �D0 �mÞ�0ðx0Þ: (6)

(The ‘‘hat’’ simply distinguishes a Dirac spin matrix from
the � of the Lorentz transformation. Our convention for
these matrices is given in Appendix A.) Since the heavy
quark is approximately at rest in this frame, we can ap-
proximate this Lagrangian very well by the standard
NRQCD Lagrangian. One approach to constructing this
Lagrangian is by writing down all possible operators that
are allowed by the symmetries of the theory. This approach
is described, for example, in [14,31] and has the advantage
that it includes operators which only arise at higher loop
order as, for example, four-quark operators. By matching
to full QCD one finds, however, that these are suppressed
by �2

s and will play no role in our analysis.

1. FWT transformation

We use a Foldy-Wouthuysen-Tani (FWT) transforma-
tion to derive the Lagrangian order by order in 1=m via
field redefinitions, since this automatically generates the
correct tree-level coefficients of all operators. For a de-
tailed description of the method, see [32]. The transforma-
tion can be written as
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FIG. 2 (color online). The ratio jpF;0j=MB as a function of q2

for the �, K, and K� light mesons.
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�0ðx0Þ ¼ T0
FWTe

�imx00�̂0 ~�0ðx0Þ (7)

which defines the transformed field ~�0. [A corresponding

transformation defines ��0ðx0Þ]. The factor e�imx00�̂0
re-

moves the additive mass term from the Lagrangian and
T0
FWT is given by

T0
FWT ¼ exp

�
1

2m
ði�̂ �D0Þ

�
exp

�
1

2m2

�
� ig

2
�̂0�̂ �E0

��

� exp

�
1

2m3

�
g

4
�̂ � ðD0ad

0 E0Þ þ 1

3
ði�̂ �D0Þ3

��
� ½1þOð1=m4Þ�: (8)

(The chromoelectric and chromomagnetic components of
the gluon field strength tensor are defined by Ek ¼ F0k,
Bj ¼ � 1

2 �jklFkl in Minkowski space). The resulting

Lagrangian is

L0 ¼ �~�
0
�
i�̂0D0

0 þ
D02

2m
þ g

2m
� �B0 þ g

8m2
�̂0ðD0ad �E0

þ i� � ðD0 �E0 �E0 �D0ÞÞ
�
~�0 þOð1=m3Þ; (9)

with

�j 	 �j 0
0 �j

� �
:

Note that in (9) the adjoint derivative D0ad acts on E0 only,
whereas the standard derivatives D0 act on all quantities to
their right.

As a result of the FWT transformation, all operators in
the new Lagrangian commute with �̂0; that is, the quark
and antiquark components are decoupled to this order.

The next step is to reexpress the Lagrangian (9) in terms
of quantities in the frame x (which we will put onto the

lattice). To this end, we define a new field ~�ðxÞ via the
trivial transformation law

~�ðxÞ 	 ~�0ðx0Þ; �~�ðxÞ 	 �~�
0ðx0Þ: (10)

Note that in order to preserve the commutativity with �̂0

we do not include the spinorial boost matrix Sð�Þ in (10).
This is in contrast to the standard continuum ‘‘moving
heavy-quark effective theory ’’ Lagrangian.

Under the change of coordinates x ¼ �x0, derivative
operators in the Lagrangian and FWT transformation trans-
form like

D0
� ¼ ��

�D�: (11)

The transformation law for the gluon field strength tensor,

F0
��ðx0Þ ¼ �	

��


�F	
ðxÞ;

leads to the following transformation for the chromoelec-
tric and chromomagnetic components:

E 0ðx0Þ ¼ �

�
EðxÞ þ v� BðxÞ � �

�þ 1
vðv �EðxÞÞ

�
;

B0ðx0Þ ¼ �

�
BðxÞ � v�EðxÞ � �

�þ 1
vðv �BðxÞÞ

�
:

(12)

Using (10)–(12), the Lagrangian (9) can be expressed
entirely in the new frame with coordinates x. Note that
Lorentz invariance can be used to simplify the transforma-
tion in the following way: x00 ¼ u0 � x0 ¼ u � x, where u0 ¼
ð1; 0Þ and u ¼ ðu0; uÞ ¼ ð�;�vÞ. Similarly, D0

0 ¼
u0 �D0 ¼ u �D and D02 ¼ ðu �DÞ2 �D2. The term with
the adjoint derivative of the chromoelectric field can be
written asD0ad �E0 ¼ Dad

� u�F
��. The other occurrences of

the field strengths are simply replaced by (12), but we will
not insert this expression explicitly for the sake of legibil-
ity. The Lagrangian becomes

L ¼ �~�

�
i�̂0u �Dþ ðu �DÞ2 �D2

2m
þ g

2m
� �B0

þ g

8m2
�̂0ðDad

� u�F
�� þ i�jkl�

j��
kfD�; E

0
lgÞ
�
~�

þOð1=m3Þ: (13)

2. Removing time derivatives in the Hamiltonian

Note that the operators of order 1=m and 1=m2 in (13)
now contain time derivatives. In the following, we will
show how these can be removed via further field redefini-
tions to ensure that in the lattice computations the propa-
gator can be obtained by solving an initial value problem
using a time evolution equation.
It is convenient to write the Lagrangian (13) in the

following form,

L ¼ � �~�

�
O0 þ 1

�m
O1 þ 1

ð�mÞ2 O2

�
~�þOð1=m3Þ;

(14)

with

O0 ¼ i�̂0ðD0 þ v �DÞ;

O1 ¼ 1

2
ððu �DÞ2 �D2Þ þ g

2
� � B0;

O2 ¼ g

8
��̂0ðDad

� u�F
�� þ i�jkl�

j��
kfD�; E

0
lgÞ:

We start by removing the time derivatives in O1. To see
how this can be done, we note that any field redefinition of
the form

~� ¼ exp

�
1

�m
U

�
~�ð1Þ;

�~� ¼ �~�ð1Þ exp
�
1

�m
U

�

will result in
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L ¼ � �~�ð1Þ
�
O0 þ 1

�m
Oð1Þ1 þ 1

ð�mÞ2 Oð1Þ2
�
~�ð1Þ

þOð1=m3Þ
with the new operators

Oð1Þ1 ¼ O1 þ fU;O0g;
Oð1Þ2 ¼ O2 þ fU;O1g þUO0Uþ 1

2fU2; O0g:
(15)

Thus, we need to write O1 ¼ Oð1Þ1 � fU;O0g with some

operator U such that Oð1Þ1 does not contain time deriva-

tives. This is indeed possible:

O1 ¼ 1

2
½�2D2

0þ�2fD0;v �Dgþ�2ðv �DÞ2�D2
0þD2�

þg

2
� �B0

¼ 1

2
½D2�ðv �DÞ2�þg

2
� �B0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

	Oð1Þ1

þ 1

2
½ð�2� 1ÞD2

0þ�2fD0;v �Dgþ ð�2þ 1Þðv �DÞ2�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼�fU;O0g

;

and we can now read off the operator U,

U ¼ i

4
�̂0½ð�2 � 1ÞD0 þ ð�2 þ 1Þv �D�: (16)

The next step is to remove the time derivatives (other than
the adjoint time derivative, which acts on the gluon field
strength only) in the new operator Oð1Þ2, given in (15).

Similarly to before, we use a field redefinition

~� ð1Þ ¼ exp

�
1

ð�mÞ2 V
�
~�ð2Þ;

�~�ð1Þ ¼ �~�ð2Þ exp
�

1

ð�mÞ2 V
�
;

(17)

now with an extra power of 1=ð�mÞ, so that the lower-order
terms are unaffected. The derivation of the operator V is
given in Appendix B.

3. mNRQCD Lagrangian

Finally, we rescale the fields

~� ð2Þ ¼ 1ffiffiffiffi
�

p �v;
�~�ð2Þ ¼ 1ffiffiffiffi

�
p ��v; (18)

to remove the factor of � in front of L. We arrive at the
following result for the tree-level moving NRQCD
Lagrangian in Minkowski space:

L ¼ ��v

�
i�̂0D0 þ i�̂0v �DþD2 � ðv �DÞ2

2�m
þ g

2�m
� �B0 þ i

4�2m2
�̂0ðfv �D;D2g � 2ðv �DÞ3Þ

þ g

8m2
�̂0ðDad �E� v � ðDad � BÞÞ þ ig

8�m2
�̂0� � ðD�E0 �E0 �DÞ � ig

8ð�þ 1Þm2
�̂0fv �D;� � ðv�E0Þg

þ ð2� v2Þg
16m2

�̂0ðDad
0 � v �DadÞðv �EÞ þ ig

4�2m2
�̂0fv �D;� �B0g

�
�v þOð1=m3Þ: (19)

As before, all terms commute with �̂0. We can therefore
introduce two-component fields c vðxÞ and �vðxÞ,

�v ¼ c v

�v

� �
; ��v ¼ c y

v; ��y
v

� �
;

to explicitly separate the Lagrangian into the quark and
antiquark pieces:

L¼ c y
v

�
iD0þ iv �DþD2�ðv �DÞ2

2�m
þ g

2�m
� �B0

�
c v

þ�y
v

�
iD0þ iv �D�D2�ðv �DÞ2

2�m
� g

2�m
� �B0

�
�v

þOð1=m2Þ: (20)

Terms with odd powers of 1=m [i.e., those without a factor
of �̂0 in (19)] appear with the opposite sign in the antiquark
Lagrangian.

Note that we have chosen a particular notation conven-
tion for the two-component antiquark field: �v creates an

antiquark whereas c v annihilates a quark. Whilst the quark
and antiquark terms in (20) take a similar form, dictated by
charge conjugation invariance, it should be borne in mind
that c v and �v have these different interpretations when
constructing the heavy-quark and antiquark Green func-
tions. As an aside, note that our new result (19) differs
slightly at order 1=m2 from the one given in
Refs. [20,21,33].
Let us now summarize the tree-level relation between

the full QCD field �ðxÞ and the moving NRQCD two-
component fields c vðxÞ, �vðxÞ:

�ðxÞ ¼ Sð�ÞTFWTe
�imu�x�̂0

ADt

1ffiffiffiffi
�

p c vðxÞ
�vðxÞ

� �
; (21)

where TFWT is the FWT transformation (8) expressed in the
frame x; i.e.,

TFWT ¼ exp

�i�̂j��
jD�

2m

�
exp

�
ig�̂ �E0�̂0

ð2mÞ2
�
� . . .
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and

ADt
¼ exp

�
U

�m

�
exp

�
V

ð�mÞ2
�
� . . .

removes the unwanted time derivatives in the Lagrangian
[U and V were defined in Eqs. (16) and (B5), respectively].

The field redefinition (21) can be used to obtain tree-
level expressions for currents containing the heavy quark
in calculations of decay constants and form factors, as
discussed briefly in Sec. VD.

B. Power counting

When deriving the mNRQCD Lagrangian in the pre-
vious section, we were formally expanding in powers of
1=m. As is well-known from heavy-quark effective theory,
for heavy-light systems such as B mesons, the expansion
really is in �QCD=m with the QCD scale �QCD �
500 MeV. The Lorentz transformation does not affect the
power counting, and thus the Lagrangian (19) is complete
through order ð�QCD=mÞ2. For heavy-heavy mesons such

as the �, the situation is more complicated. In the frame
where the meson is at rest, the power counting is governed
by powers of vrel, the small nonrelativistic internal velocity
of the heavy quarks inside the meson [14]. For � systems,
one has v2

rel � 0:1. It turns out that all terms of the

Lagrangian (9) are of order v4
rel or lower, but one term of

order v4
rel is missing. By expanding the expression for the

relativistic kinetic energy in powers of the residual mo-
mentum k,

Ekin �m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
�m ¼ k2

2m
� k4

8m3
þ k6

16m5
� . . . ;

and replacing k by the operator �iD, we see that we must
include the operator D4=ð8m3Þ into (9) in order to obtain
accuracy to order v4

rel. The corresponding term in the

moving NRQCD Lagrangian can be obtained in the same
way,

Ekin � �m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�mvþ kÞ2 þm2

q
� �m

¼ v � kþ 1

2�m
ðk2 � ðv � kÞ2Þ

þ 1

4�2m2
ð�fv � k; k2g þ 2ðv � kÞ3Þ

þ 1

8�3m3
ð�k4 þ 3fk2; ðv � kÞ2g � 5ðv � kÞ4Þ

þ . . . :

Thus, the operator

1

8�3m3 ðD4 � 3fD2; ðv �DÞ2g þ 5ðv �DÞ4Þ (22)

must be included into the moving NRQCD Lagrangian
(19). We ordered the terms with products of (v �D) and
D2 in the form of anticommutators, as the anticommutator-

ordering is what one would have obtained from field
redefinitions.
For heavy-heavy mesons at v ¼ 0, the power counting is

different for temporal- and spatial components of Lorentz
vectors but they will mix in a frame with v � 0. The rules
for both v ¼ 0 and v � 0 are summarized in Table I.
Care has to be taken when dealing with quantities like

D �D and u �D; their power counting cannot be derived by
naı̈vely multiplying the power-counting rules for each
factor. For example, for v ! 1 the product D �D does
not scale like ð�mvrelÞ2 but as m2v2

rel instead. The correct

values are shown in the last two rows of Table I.

C. Euclidean mNRQCD

The Euclidean action SE ¼ R
d4xELEðxEÞ can be ob-

tained from the Minkowski space action S ¼ R
d4xLðxÞ in

the usual way by making the formal replacements

�vðxÞ ! �vðxEÞ; ��vðxÞ ! ��vðxEÞ;
AðxÞ ! AðxEÞ; A0ðxÞ ! iA4ðxEÞ;

x0 ! �ix4E 	 �i�;

so that the integration measure and derivatives become
d4x ! ð�iÞd4xE, @0 ! i@4. Finally, the result must be
multiplied by (� i). In the following, we drop the subscript
E (‘‘Euclidean’’). Note that we do not introduce Euclidean
gamma matrices in this paper; the same definition as in
Minkowski space is used (see Appendix A).
It is also convenient to define the relation between the

chromoelectric field E and the four-dimensional F�� with

a different sign in Euclidean space, i.e., Ej ¼ Fj4, while

the definition of the chromomagnetic field is unchanged,
Bj ¼ � 1

2 �jklFkl.

With this definition, (12) turns into the symmetric form

E 0 ¼ �

�
Eþ iv�B� �

�þ 1
vðv �EÞ

�
;

B0 ¼ �

�
Bþ iv�E� �

�þ 1
vðv � BÞ

�
:

(23)

TABLE I. Power-counting rules appropriate for mNRQCD
with heavy-heavy mesons. In the large velocity limit (last
column), the Lorentz boost removes the differences in order
found for NRQCD, giving Dt �D and E�B. In the last two
rows note that the naı̈ve power-counting rules can give the wrong
counting (see text).

�QQ rest frame Lattice frame v ! 1

D0
t mv2

rel Dt �mðv2
rel þ vvrelÞ �mvrel

D0 mvrel D �mðvrel þ vv2
relÞ �mvrel

gE0 m2v3
rel gE �m2ðv3

rel � vv4
rel � �v2v3

rel

�þ1 Þ �m2v3
rel

gB0 m2v4
rel gB �m2ðv4

rel þ vv3
rel � �v2v4

rel

�þ1 Þ �m2v3
rel

D0 �D0 m2v2
rel D �D m2v2

rel ( � �2m2v2
rel) m2v2

rel

u0 �D0 m2v2
rel u �D m2v2

rel ( � �2m2v2
rel) m2v2

rel
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The Euclidean Lagrangian, in which we now include the relativistic correction term (22), becomes

L¼ ��v

�
�̂0D4 � i�̂0v �D�D2 � ðv �DÞ2

2�m
� g

2�m
� �B0 � i

4�2m2
�̂0ðfv �D;D2g � 2ðv �DÞ3Þ

þ g

8m2
�̂0ðiDad �Eþv � ðDad �BÞÞ � g

8�m2
�̂0� � ðD�E0 �E0 �DÞ þ g

8ð�þ 1Þm2
�̂0fv �D;� � ðv�E0Þg

� ð2�v2Þg
16m2

�̂0ðDad
4 þ iv �DadÞðv �EÞ � ig

4�2m2
�̂0fv �D;� �B0g � 1

8�3m3
ðD4 � 3fD2; ðv �DÞ2g þ 5ðv �DÞ4Þ

�
�v:

(24)

As in (20) one can introduce two-component fields for
quark and antiquark. It turns out that in Euclidean space,
the antiquark action can be obtained from the quark action
by replacing c v ! ð�y

vÞT , c y
v ! ð�vÞT , v ! ð�vÞ and

taking the complex conjugate of the whole action kernel.
This is an important result, because it implies that the
Euclidean antiquark Green function can be obtained from
the Euclidean quark Green function in a frame with the
opposite boost velocity, �v. We define GðþvÞ

�v
ðx; x0Þ ¼

h�vðxÞ�y
vðx0Þi. Writing out color, spin, and position indices

explicitly, one then has

½GðþvÞ
�v

�csc0s0 ðx; x0Þ ¼ �½Gð�vÞ
c v

��c0s0csðx0; xÞ
¼ �½Gð�vÞ

c v
�y
csc0s0 ðx0; xÞ: (25)

IV. LATTICE MNRQCD

A. Construction of the Hamiltonian

We construct the lattice moving NRQCD action such
that for v ¼ 0 it reduces to the previously used lattice
NRQCD action with conventions as in [34]. Thus, the
quark action has the form

Sc v
¼ X

x;�

c y
vðx; �Þ½c vðx; �Þ � Kð�Þc vðx; �� 1Þ� (26)

with the kernel

Kð�Þ ¼
�
1� �Hj�

2

��
1�H0j�

2n

�
n
Uy

4 ð�� 1Þ

�
�
1�H0j��1

2n

�
n
�
1� �Hj��1

2

�
: (27)

Note that the heavy-quark Green function for the action
(26) satisfies the evolution equation

Gc v
ðx; �; x0; �0Þ ¼ Kð�ÞGc v

ðx; �� 1; x0; �0Þ: (28)

For this, it is crucial that the Hamiltonian does not contain
time derivatives (other than the adjoint time derivative of
the chromoelectric field).

This split into leading-order kinetic terms H0 and
higher-order corrections �H which satisfies time-reversal
symmetry was introduced in [14]. Other than consistency
with previous work, there are no strong arguments (such as
computational load, numerical stability, or size of discre-
tization errors) for the relative ordering of H0 and �H in
the action. The time derivative in (26) is implemented as a
backward (rather than forward) difference operator as this
prevents mean-field corrections to the wave function re-
normalization [14].
The leading evolution due to H0 from one lattice time

slice to the next is effectively divided into 2n smaller steps
to avoid the well-known instability in the discretization of
parabolic differential equations (see, for instance, Sec. 19.2
of Ref. [35]). In this way, one can allow the highest
momentum modes in the theory to come into equilibrium,
while avoiding the need for a very small lattice spacing
which would render the theory too expensive to simulate.
For NRQCD, where H0 is always positive, the integer-
valued stability parameter n has to be chosen such that

max

	







1�H0

2n










�
< 1: (29)

In the free field case this condition can be satisfied by
choosing n > 3=ð2amÞ, and gluons are known to reduce
the factor of 3=2 slightly [14].
In moving NRQCD, H0 can be negative for values of k

pointing opposite to the frame velocity. In this case the
two-point function will grow exponentially, but this is
physical as we find the same behavior in the continuum.
In our numerical simulations, which included boost veloc-
ities up to v ¼ 0:6, we did not encounter any instabilities
with n ¼ 2, am ¼ 2:8.
The lattice H0 and �H are defined as

H0 ¼ �iv ��
 ��ð2Þ � �ð2Þ
v

2�m
; (30)
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�H ¼ � g

2�m
� � ~B0 � i

4�2m2
ðf�ð2Þ;v ��
g � 2�ð3Þ

v Þ þ g

8m2
ðið�
 � ~E� ~E ��
Þ þ v � ð�ad � ~BÞÞ

� g

8�m2
� � ð ~�
 � ~E0 � ~E0 � ~�
Þ þ g

8ð�þ 1Þm2
fv � ~�
;� � ðv� ~E0Þg � ð2� v2Þg

16m2
ð�ad

4 þ iv ��adÞðv � ~EÞ

� ig

4�2m2
fv � ~�
;� � ~B0g � 1

8�3m3
ðð�ð2ÞÞ2 � 3f�ð2Þ;�ð2Þ

v g þ 5�ð4Þ
v Þ þ �Hcorr: (31)

The lattice derivative operators and field strength are de-
fined in Appendix C. Note that in the continuum the
Leibniz rule Dad �E ¼ D �E�E �D holds. For consis-
tency with previous work we discretize the right-hand side
of this expression on the lattice. However, the other adjoint
derivatives in the action, which enter only at v � 0, are
discretized as lattice adjoint derivatives. This is more
efficient and for the term Dad

4 ðv �EÞ it is crucial since it
avoids a time derivative acting on the quark field.

Note that in the static limit (m ! 1) one has H0 ¼
�iv ��
. The symmetric derivative �
 leads to zero-
energy modes at the corners of the Brillouin zone (‘‘dou-
blers’’). With a finite mass, these doublers are shifted to
higher energy due to the second-order derivatives in H0.
However, the second-order derivatives are suppressed by a
factor of 1=ð2�mÞ and hence �m must not be too large.

The terms in �Hcorr provide the spatial and temporal
lattice spacing improvement. We perform tree-level
Symanzik improvement to order Oða4Þ, as explained in
the next section. This means that the we expect the leading
errors to be of order Oð�sa

2Þ.

1. Improvement corrections

An Oða4Þ-improved version of H0 is given by

~H 0 ¼ �iv � ~�
 �
~�ð2Þ � ~�ð2Þ

v

2�m
(32)

with the improved derivatives given in Appendix C.
However, we do not simply replace H0 by ~H0. Let us first
consider the time derivative in the lattice action. Improving
it in the standard way would introduce next-to-nearest
neighbor couplings, preventing the use of an evolution
equation like (28). Instead, we try to find an operator ~H�

0

such that (explicitly reintroducing the lattice spacing a)�
1� a ~H�

0

2n

�
n ¼ exp

�
� a

2
~H0

�
; (33)

which yields a more continuumlike behavior [14]. We
obtain

a ~H�
0 ¼ 2n

�
1� exp

�
�a ~H0

2n

��
: (34)

One could now replace H0 ! ~H�
0 in the lattice action.

However, for performance reasons and consistency with
previous work, we choose to put all correction terms into
�H. We consider the operator on the right-hand side of the

temporal link in the lattice action (27), the operator acting
in the time slice at time �� 1. Then �Hcorr, the lattice
spacing improvement term in (31) is defined by�

1� a ~H�
0

2n

�
n ¼

�
1� aH0

2n

�
n
�
1� a�Hcorr

2

�
(35)

for �Hcorr. This gives

a�Hcorr ¼ 2

�
1�

�
1� aH0

2n

��n
�
1� a ~H�

0

2n

�
n
�

¼ 2

�
1�

�
1� aH0

2n

��n
exp

�
� a ~H0

2

��
;

and, expanding in powers of a,

a�Hcorr ¼ að ~H0 �H0Þ þ a2

4n
ð�ð1þ nÞH2

0 � n ~H2
0

þ 2nH0
~H0Þ þ a3

24n2
ð�ð2þ 3nþ n2ÞH3

0

þ ð3nþ 3n2ÞH2
0
~H0 � 3n2H0

~H2
0 þ n2 ~H3

0Þ

þ a4

192n3
ð�ð6þ 11nþ 6n2 þ n3ÞH4

0

þ ð8nþ 12n2 þ 4n3ÞH3
0
~H0 � ð6n2 þ 6n3ÞH2

0
~H2
0

þ 4n3H0
~H3
0 � n3 ~H4

0Þ þOða5Þ:
The term C 	 ~H0 �H0 is of third order, while H0 is of
first order. Neglecting all operators of order 5 and higher,
we obtain

a�Hcorr ¼ aC� a2

4n
ðH2

0 þ n½C;H0�Þ � a3H3
0

12n2

� ð2þ nÞa4H4
0

64n3
: (36)

Had we considered the operators on the left-hand side of
the temporal link in the lattice action (27) instead, the
ordering of H0 and ~H0 would be interchanged, and this
would change the sign of the commutator ½C;H0� in (36),
thereby canceling the term in the lattice action up to
operators of order 5 and higher. We therefore remove this
term on both sides.
Let us go back to lattice units now. WritingH0 ¼ Aþ B

with

A ¼ �iv ��
; B ¼ ��ð2Þ ��ð2Þ
v

2�m
;
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we obtain

�Hcorr ¼ ~H0 �H0 � 1

4n
ðA2 þ fA; Bg þ B2Þ � 1

12n2
ðA3 þ fA2; Bg þ ABAÞ � ð2þ nÞ

64n3
A4: (37)

For performance reasons, we replace some 3rd- and 4th-order derivatives in (37) by more local expressions (the resulting
change is of order 5 or higher):

ðv ��
Þ3 ! �ð3Þ
v ; fv ��
;�ð2Þ

v g ! 2�ð3Þ
v ; ðv ��
Þ4 ! �ð4Þ

v ; ð�ð2Þ
v Þ2 ! �ð4Þ

v ;

fðv ��
Þ2;�ð2Þg ! f�ð2Þ
v ;�ð2Þg; fðv ��
Þ2;�ð2Þ

v g ! 2�ð4Þ
v ; ðv ��
Þ�ð2Þ

v ðv ��
Þ ! �ð4Þ
v ;

ðv ��
Þ�ð2Þðv ��
Þ ! 1
2ðv ���Þ�ð2Þðv ��þÞ þ 1

2ðv ��þÞ�ð2Þðv ���Þ:
This finally gives

�Hcorr ¼ ~H0 �H0 � 1

4n

�
�ðv ��
Þ2 þ fiv ��
;�ð2Þg � 2i�ð3Þ

v

2�m
þ ð�ð2ÞÞ2 � f�ð2Þ;�ð2Þ

v g þ �ð4Þ
v

4�2m2

�

� 1

12n2

�
i�ð3Þ

v þ f�ð2Þ;�ð2Þ
v g � 3�ð4Þ

v þ 1
2 ððv ���Þ�ð2Þðv ��þÞ þ ðv ��þÞ�ð2Þðv ���ÞÞ

2�m

�
� ð2þ nÞ

64n3
�ð4Þ

v : (38)

The result (38) can be simplified further since most opera-
tors are already in the Hamiltonian.

2. Radiative corrections

In principle, all operators in the Hamiltonian are multi-
plied by coefficients ci which contain radiative corrections
that correct for lattice artifacts appearing beyond tree-
level, including the missing contributions of UV modes
with momenta greater than the lattice cutoff: jk�j>�=a.

They can be expanded as a power series in �s:

ci ¼ cð0Þi þ �sc
ð1Þ
i þ . . .þ ð�sÞncðnÞi þ . . . ;

where the tree-level cð0Þi ¼ 1 and the radiative corrections

cðnÞi depend on the bare quark mass and the frame velocity.
These radiative corrections are calculated using lattice
perturbation theory by matching standard on-shell pro-
cesses computed in mNRQCD with the continuum coun-
terpart. Four-quark operators can only arise at Oð�2

sÞ and
for this reason will not be considered in our analysis.

For the calculations in this paper, we use the tree-level
values of the couplings ci. However, we account for a large
amount of the expected renormalizations via tadpole
improvement.

B. Tadpole improvement of the Hamiltonian

It is well-known that the perturbative expansion in the
bare lattice coupling is poorly behaved. Tadpole diagrams,
which do not contribute in continuum schemes, give large
contributions to coefficients multiplying powers of the bare
coupling. Tadpole improvement (also known as mean-field
improvement) fixes this problem by resumming diagrams
containing tadpoles [36]. As tadpole improvement reduces
the size of perturbative corrections, even the tree-level
couplings in the action will give accurate results. Gauge

links U� and Uy
� in the action and operators are divided by

a factor u0 which is designed to correct for the fact that the
expectation value of the mean link (using some gauge-fixed
or gauge-independent definition) is much less than unity.
We choose u0 to be the mean link in Landau gauge. The
fourth root of the mean plaquette is another frequently used
definition of u0.
Care has to be taken when replacing U� � U�=u0 and

Uy
� � Uy

�=u0 in the action. The action is composed of

Wilson lines or ‘‘paths.’’ If, due to application of a lattice
derivative, for example, the product U�ðxÞUy

�ðxÞ appears,
one should not multiply by a factor of 1=u20 since the

product is trivial and does not contribute to tadpole con-
tamination. Some paths are not explicit in our simulation
code, where we evolve the heavy-quark green function by
subsequently applying the individual blocks of the action
kernel (27) rather than expanding it in terms of paths first.
Explicitly coding (27) in terms of products of link variables
would be forbiddingly time-consuming. Therefore we only
take into account link-pair cancellation separately within
H0 and �H. Also, no extra cancellations are made when
derivative operators act on field strengths in �H.
For perturbative studies the tadpole counterterm must be

computed to the appropriate order in Oð�sÞ. The tadpole
improvement of perturbation theory is discussed in
Sec. VH.

V. RENORMALIZATION OF MNRQCD

In the previous sections we derived the tree-level
continuum mNRQCD Lagrangian and its lattice version.
The radiative corrections to the couplings ci include a
renormalization of the external momentum whose origins
are discussed below. The momentum renormalization
is important because it is the coupling of the v �D term
( ¼ P0 � k=�m, P0 ¼ �mv) in the action which is leading
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order in the 1=m expansion. The momentum renormaliza-
tion must be well determined for accurate results.
Fortunately, as described below, approximate reparametri-
zation invariance ensures that this renormalization is small;
the renormalization constant is close to unity.

A. Derivation of the mNRQCD renormalization
parameters

The low-momentum properties of the moving heavy-
quark inverse propagator can be expressed as a general
power series in the energy p4 and the three-momentum p.
The coefficients of this power series determine the renor-
malization of the wave function Zc , the quark mass Zm, the

shift in the origin of energy E0, and the frame velocity Zv.

1. Wave function renormalization

The wave function renormalization Zc can be computed

using the following simple arguments. The tree-level quark
propagator is given by

G0ðzÞ ¼ z

z� z0
; (39)

where z ¼ eip4 and

z0 	
�
1�H0ðpÞ

2n

�
2n
�
1� �HðpÞ

2

�
2
: (40)

Then z ¼ z0 is the on-shell (tree-level) value. At one loop

G�1ðzÞ ¼ G�1
0 ðzÞ � �s�ðzÞ ¼ Z�1

c

z� z1
z

where �s�ðzÞ is the self-energy (to order �s), containing
both rainbow and tadpole diagrams. Let the new ‘‘one-
loop’’ on-shell value be z1, which is the solution of

G�1ðz1Þ ¼ G�1
0 ðz1Þ � �s�ðz1Þ ¼ 0: (41)

Expanding �ðzÞ around the new on-shell value we have

�ðzÞ ¼ �ðz1Þ þ ðz� z1Þ @�@z








z¼z1

þ� � � : (42)

Therefore

G�1ðzÞ¼ 1

z
ðz� z0Þ��s

�
�ðz1Þþðz� z1Þ@�@z









z¼z1

þ . . .

�
:

Eliminating z0 in this expression in favor of z1 using (41),
we obtain

G�1ðzÞ ¼ 1

z
ðz� z1Þ

�
1��s

�
�ðz1Þ þ z

@�

@z









z¼z1

��
þ �� � :

(43)

Thus, as z1 � z0 ¼ Oð�sÞ, the wave function renormaliza-
tion is, at one loop,

Zc ¼ 1þ �s

�
�ðz0Þ þ z

@�

@z









z¼z0

�

¼ 1þ �s

�
�� i

@�

@p4









on shell

�
: (44)

2. Other renormalization parameters

To derive the other renormalization parameters, we use
the following argument which can easily be extended to
higher-order kinetic terms [37]. At tree-level we have in
momentum space [up to Oðp2Þ]:

H0ðpÞ ¼ v � pþ p2 � ðv � pÞ2
2�m

þ . . . ;

�HðpÞ ¼ � 1

4n
ðv � pÞ2 þ . . . :

(45)

By combining this with (40) and expanding in p we find
that the pole in the tree-level propagator (39) is given by

! ¼ !0ðpÞ ¼ v � pþ p2 � ðv � pÞ2
2�m

; (46)

where! ¼ �ip4 is the energy in Minkowski space. At one
loop the inverse propagator is

Gðp; !Þ�1 ¼ 1� e!�!0ðpÞ � �s�ðp; !0ðpÞÞ
so that

!ðpÞ ¼ !0ðpÞ � �s�ðp; !0ðpÞÞ

	 vR � pþ p2 � ðvR � pÞ2
2�RmR

� �s�!ðpÞ (47)

with vR ¼ Zvv, �R ¼ ð1� v2
RÞ�1=2, mR ¼ Zmm, and

�s�!ðpÞ ¼ E0 þ . . . . Here and in the following we as-
sume that the boost velocity points in one of the lattice
directions, which guarantees that only the magnitude of v
is renormalized. The self-energy can now be expanded in
small momenta

�ðp; !Þ ¼ �0ð!Þ þ�vð!Þv � pþ �1ð!Þ p2

2�m
þ . . .

and the renormalization constants can be expressed in

terms of the coefficients �ð‘Þ
j in the expansion

�jð!Þ ¼ X1
‘¼0

�ð‘Þ
j !‘:

We find

E0 ¼ �s�
ð0Þ
0 ; Zv ¼ 1� �sð�ð1Þ

0 þ�ð0Þ
v Þ;

Zm ¼ 1þ �sðð�ð1Þ
0 þ �ð0Þ

1 Þ þ �2v2ð�ð0Þ
v þ �ð1Þ

0 ÞÞ;
(48)

and have for the renormalization of the external momen-
tum P ¼ �RmRvR 	 ZpP0 with
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Zp ¼ 1þ �sð�ð0Þ
1 ��ð0Þ

v Þ: (49)

In actual calculations we consider the real parts of parame-

ters �ð‘Þ
j . It is convenient to define

�0 ¼ Re�ð0Þ
0 ¼ �ð0Þ;

�1 ¼ �Re�ð1Þ
0 ¼ Im

@�

@p4









p¼0
;

�2 ¼ Re�ð0Þ
1 ¼ �mRe

@2�

@p2
z









p¼0
;

�v ¼ Re�ð0Þ
v ¼ 1

v
Re

@�

@px









p¼0
;

(50)

taking the frame velocity v to lie in the x direction. The
renormalization parameters are then expressed as

Zc ¼ 1þ �sð�0 þ�1Þ; E0 ¼ �s�0;

Zv ¼ 1� �sð�v ��1Þ;
Zm ¼ 1þ �sð�2 ��1Þ þ �sð�v ��1Þv2�2;

Zp ¼ 1� �sð�v ��2Þ:

(51)

B. Dispersion relation and energy shift

The renormalized dispersion relation in (47) has to be
compared to the corresponding expression in QCD

!ðQCDÞðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�RmRvR þ pÞ2 þm2

R

q
¼ �RmR þ vR � pþ p2 � ðvR � pÞ2

2�RmR

þ . . .

(52)

from which one obtains a shift in the zero point energy of a
heavy quark of

Cv ¼ !ðQCDÞðp ¼ 0Þ �!ðp ¼ 0Þ ¼ �RmR þ E0: (53)

We write Cv ¼ �mð1þ �s�Cv þ . . .Þ and the one-loop
correction is given by

�Cv ¼ �2 ��1 þ �0

�m
: (54)

The shift Cv and the renormalization of the external
momentum can be obtained nonperturbatively by comput-
ing the energy EvðpÞ of a heavy-heavy system which is up
to lattice artifacts given by

EvðpÞ þ 2Cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Zp�mvþ pÞ2 þM2

kin

q
:

A corresponding dispersion relation with 2Cv � Cv and
2Zp � Zp holds for heavy-light mesons containing only

one heavy quark. We will compare values for the energy
shift and the renormalization of the external momentum
calculated in perturbation theory and nonperturbatively

using the dispersion relation of heavy-heavy and heavy-
light mesons in Sec. VII.

C. Reparametrization invariance

One thing we expect from our results is that, because of
lattice reparametrization invariance [33], the deviation of
the momentum renormalization parameter Zp from its tree-

level result is much smaller than for other renormalization
parameters. Reparametrization invariance is a symmetry
that has been studied in the context of heavy-quark effec-
tive theories [38–40]. This symmetry arises from the fact
that the division of the full momentum p into a ‘‘fixed’’
external part mu and a ‘‘dynamic’’ residual part k is not
unique. We can always write p ¼ muþ k ¼ mu0 þ k0
where k0 ¼ k�m�, u0 ¼ uþ �. The 4 velocities u and
u0 have unit norm which implies the constraint on � that
2� � uþ � � � ¼ 0. It can be shown [38,39] that this repar-
ametrization of the full momentum is a symmetry of the
effective heavy-quark Lagrangian in the continuum.
Because mNRQCD is a nonrelativistic formulation

Lorentz symmetry is not manifest in the action. This is
apparent from the form of the FWT transformation (8), the
field redefinition (Sec. III A 2) required to remove time
derivatives in the Hamiltonian, the truncation of the action
to a given order in 1=m, and the nonrelativistic field
normalization (18). To adapt the discussion of reparamet-
rization invariance to mNRQCD we study the ambiguity in
division of the total 3-momentum, p ¼ �ðvÞmvþ k,
keeping jvj fixed since it is a parameter in the
Hamiltonian. We first consider a simple action with
Hamiltonian

H0 ¼ �iv �D� D2

2�m
(55)

omitting the term ðv �DÞ2=ð2�mÞ for the moment. This
action is invariant under the transformation

vj � vj þ �j; c � e�i�m��xc (56)

with 2v � �þ � � � ¼ 0. This constraint ensures that
jv0j ¼ jvj. This is an exact symmetry which implies that
the external momentum P0 ¼ �mv is not renormalized as
the relative coefficients of the two terms in (55) are fixed
even after renormalization.
On the lattice, where we use the discretized Hamiltonian

HðlatÞ
0 ¼ �iv ��
 � �ð2Þ

2�am
; (57)

this symmetry is broken. Under (56) HðlatÞ
0 transforms

according to

HðlatÞ
0 � HðlatÞ

0 þ 1

2
�ma2

X
j

c yvj�j�
þ
j �

�
j c þOð�2Þ:

If v is chosen along a lattice axis vj ¼ v�j1, say, then

using the constraint on � the factor vj�j can be replaced by
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� 1
2 j�j2�j1 which is small for small �. We might therefore

expect the breaking of reparametrization invariance by
lattice artifacts in this case to be small. In the correspond-

ing derivation with improved derivatives in HðlatÞ
0 , we find

that the lattice artifacts which break reparametrization
invariance are of Oða4Þ.

Reparametrization invariance is broken even for the
continuum theory unless the FWT transformation and the
truncation of the action as a series in 1=m respect it. The
field redefinition, designed to remove time derivatives in
the Hamiltonian, must also be invariant under the repar-
ametrization transformation. This will be satisfied only if
the velocity and the covariant derivative appear in the
combination [38,39]

v � iD

2�m
: (58)

This implies that terms of different order in 1=m are mixed
by the reparametrization transformation and so any trun-
cation of the action as a series in 1=m will break this
invariance. It would be possible to include selected
higher-order terms in 1=m by rewriting the action in terms
of the combination (58) but in practice this is unnecessary
since the approximate reparametrization invariance of the
action is sufficient to restrict the renormalization Zp of the

total quark momentum P0 to be close to unity. It would also
introduce extra terms of little significance in the nonrela-
tivistic expansion but which are expensive to evaluate
computationally for the lattice theory. In any case discre-
tization breaks the invariance as already discussed. We
shall compute Zp both perturbatively and

nonperturbatively.
The mixing is evident in our simple example above. It is

easy to see that adding the term ðv �DÞ2=ð2�mÞ will break
the invariance for nonzero frame velocities even in the
continuum. This breaking is proportional to v2=ð2�mÞ,
so it increases to reach a maximum at v ¼ ffiffiffiffiffiffiffiffi

2=3
p � 0:8

and then drops to zero due to the suppression by 1=�.
Numerically we find this behavior in our perturbative
results for the simple action we discuss in Appendix E 1.
The one-loop contribution to the external momentum re-
normalization vanishes for small v, rises to a maximum at
v � 0:75, and then drops again. At this velocity we also
computed �Zp with the action (55) both with naı̈ve and

improved derivatives. We find that the use of improved
derivatives reduces �Zp by roughly a factor 2.

Our numerical results (see Table IV, to be discussed in
Sec. V I) do indeed show that on the lattice Zp is very close

to 1 for small frame velocities. For larger frame velocities
the perturbative results show a deviation of Zp from the

tree-level value of at most 10% for practical choices of
frame-velocity v.

D. Current construction

For calculations of hadronic matrix elements of weak
interaction operators involving the heavy quark, the con-
tinuum QCD currents must be replaced by appropriate
lattice currents. Let us, for example, consider the vector
current

J�ðxÞ ¼ �qðxÞ�̂��ðxÞ;
where qðxÞ is the Dirac field of the light quark and �ðxÞ is
the Dirac field of the heavy quark. At tree-level, it suffices
to express �ðxÞ via the Euclidean version of the field
redefinition (21).

Recall that Eq. (7) contains a factor of e�imx00�̂0
which

removes the mass term from the Lagrangian. For a heavy
quark, the lower two components of the nonrelativistic

field ~�0ðx0Þ in Eq. (7) are zero, so that �̂0 ~�0ðx0Þ ¼ ~�0ðx0Þ
and hence e�imx00�̂0 ~�0ðx0Þ ¼ e�imx00 ~�0ðx0Þ. Since the FWT
transformation in this frame does not contain time deriva-

tives, the factor e�imx00 can be moved to the left of T0
FWT.

[In the antiquark case, where the upper two components of
~�0ðx0Þ are zero, one has eþimx00 .]
Performing the other steps of the derivation in Sec. III

again, it then follows that also the factor of e�imu�x�̂0
in

Eq. (21) can be moved to the left of TFWT in the case where
�vðxÞ ¼ 0. Thus, in correlation functions the factor

e�imu�x�̂0
trivially shifts energy and momentum and can

be removed. We obtain

J�ðxÞ ¼ �qðxÞ�̂� 1ffiffiffiffi
�

p Sð�ÞTFWTADt

c vðxÞ
0

� �
:

For on-shell quantities, time derivatives in TFWT and ADt

can be eliminated using the equations of motion, D4 ¼
iv �DþOð1=mÞ. The continuum derivatives are then re-
placed by lattice derivatives.
Beyond tree-level, additional lattice operators are re-

quired and matching coefficients must be introduced to
correct for the different ultraviolet behavior of QCD and
lattice mNRQCD. These matching coefficients can be
computed perturbatively by comparing matrix elements
between on-shell states in the continuum and lattice
theories.
Note that the renormalization of the boost velocity also

affects the spinorial boost matrix Sð�Þ. We have for bare
quantities

Sð�ðvÞÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ �Þp 1þ � �� � v

�� � v 1þ �

� �

and the renormalized matrix is obtained from this by an
additional Lorentz boost,

Sð�ðvRÞÞ ¼ Sð�ð�vÞÞSð�ðvÞÞ:
(No Wigner rotation is needed here as only the magnitude
of v is renormalized for v pointing in one of the lattice
directions.) We find
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Sð�ð�vÞÞ ¼ 1 1
2�v � �

1
2�v � � 1

 !

with

�v ¼ vR � v

1� v � vR

¼ �s�Zv�
2v:

Wewill not consider the current matching any further here;
this will be discussed in another paper.

E. Lattice perturbation theory

Feynman rules for lattice actions are complicated and
for all but the simplest cases an automated procedure is
needed to obtain them. The formalism for this is due to
Lüscher and Weisz [41]. This was extended by Nobes and
Trottier [42] and Hart et al. [43–45] to include both rela-
tivistic and nonrelativistic fermion actions such as highly
improved staggered quark [27] and, as used here,
mNRQCD. In this paper we use the implementation of
Hart et al. [43–45] to compute the one-loop self-energy
�ðzÞ for various choices of mNRQCD Hamiltonian. The
Feynman rules, vertices and propagators, are generated in
machine-readable form using the Python program HIPPY

and then used in the Fortran 95 code HPSRC to construct the
diagrams and carry out the loop momentum integrations.
The latter are done using VEGAS [46,47] or, in the case of
small lattices, by mode summation. All perturbative results
presented in this paper are obtained on an infinite lattice.

As more correction terms are added to the action, the
number of terms in the perturbative expansion grows very
fast, and so does computation time. We have used a version
of VEGAS that has been adapted to parallel computing using
MPI (,message passing interface).

The diagrams we evaluate to obtain the heavy-quark
self-energy at one loop are shown in Fig. 3. The renormal-
ization parameters require derivatives of the self-energy.
The derivatives of the Feynman rules were calculated
exactly (rather than from small finite differences due to
their associated errors and instabilities) and then automati-

cally combined to form diagram derivatives using code
based on the TAYLUR package [48,49] (which overloads
arithmetic operations so as to respect Leibniz’s rule and the
chain rule).
As an alternative to perturbation theory based on loop

integrals, renormalized quantities may be measured by
simulation in the weak coupling regime of the theory
(i.e., at high ) [50,51] on small lattices using ’t Hooft
twisted boundary conditions [41,52]. While not the subject
of this paper, knowledge from analytic calculation of the
one-loop corrections allows accurate fitting to extract the
two-loop contributions. To implement twisted boundary
conditions is straightforward; it requires the spectrum of
the momenta used to be appropriately modified and the
vertices to carry a momentum-dependent phase rather than
the usual color factor. We will discuss such calculations for
mNRQCD in more detail in a forthcoming publication.

F. Contour shift

For a Euclidean lattice field theory the energy integral is
nominally over the unit circle jðz ¼ eik4Þj ¼ 1. However,
the positions of the poles in the integrand are functions of
the loop three-momentum and care must be taken that no
pole crosses the contour: the contour must be distorted to
avoid this happening. In particular, the heavy-quark pole zh
must remain inside the contour of integration in order to
represent a forward-propagating heavy quark. This can be
done by choosing jzj ¼ R, R> 1where R is chosen so that
the contour is large enough to enclose zh and as distant
from any pole as is possible to improve convergence of the
integration. In Fig. 4 we show the position of the poles in
the z plane.
This contour shift applies to the case of the rainbow

diagram Fig. 3(a) but is not necessary for the tadpole graph
in Fig. 3(b) as the poles in the gluon propagator corre-

p p + k p p p

k k

(a) (b)

FIG. 3. Diagrams to be evaluated: (a) rainbow diagram and
(b) tadpole diagram. Numerical calculations show that contribu-
tions to the heavy-quark self-energy from diagram (b) are
approximately an order of magnitude bigger than those of
diagram (a), demonstrating the crucial importance of tadpole
improvements for any lattice-based perturbation theory calcula-
tion.

z− zh

z+

z  =R| |

z  =1| |

4z=exp[ik ]

FIG. 4 (color online). Position of poles in the complex z plane
and integration contour (dashed circle). The two poles in the
Wilson gluon action are z
 with zþz� ¼ 1 whereas the heavy-
quark pole can be found at zh. If zh > z� we shift the contour
according to z � Rz with R ¼ ffiffiffiffiffiffiffiffiffiffi

zhzþ
p

> 1.
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sponding to solutions moving forward/backward in time
always come in pairs with zþz� ¼ 1.

Finding the pole of the heavy-quark propagator is
straightforward as the Lagrangian only contains first order
time derivatives [53]. Exact expressions for the position of
the poles of the Wilson gluon action can also be derived.
These and the extension to more complicated gauge ac-
tions are discussed in Appendix F. There we show that

jzðimpÞ� j< z� < 1< zþ < jzðimpÞ
þ j so that the contour shift

derived for the Wilson action remains valid.
The additional contour shift which is necessary when

formulating the theory in Euclidean space has been dis-
cussed in the literature [54,55]. In Ref. [54], Aglietti,
Crisafulli, and Masetti conclude that deriving Feynman
rules for heavy-quark effective theory in the Euclidean
theory is problematic as a simple Wick rotation will gen-
erate unphysical solutions propagating backwards in time.
However, in a subsequent paper [55], Aglietti extends the
analysis and realizes that this is due to an incorrect rotation
of the integration contour to Euclidean time. To avoid
crossing the heavy-quark pole at v � k it is necessary to
rotate the contour around �� ¼ v � k� � instead of the
origin of the k0 plane (see Fig. 5).

G. Treatment of infrared divergences

To deal with infrared divergences, we note that any
lattice theory has the same infrared behavior as the equiva-
lent continuum theory. Therefore we consider the diagrams
of Fig. 3 where lattice Feynman rules have been replaced
by equivalent continuum ones [noting that the two-gluon
vertex is still present in continuum (m)NRQCD].

To analyze the infrared behavior of these diagrams we
first perform the integration over the temporal component
of the loop momentum as a contour integration, then look

at the behavior of the remaining three-dimensional spatial
integral for small loop momentum.
In the nonmoving case (v ¼ 0) this can conveniently be

done in spherical polar coordinates; for the moving case we
need to take into account the fact that the external velocity
introduces a preferred direction. It is convenient to take the
velocity to lie along the x axis, for instance.
After performing these calculations we see that the rain-

bow diagram Fig. 3(a) as well as the tadpole diagram
Fig. 3(b) and all derivatives of the tadpole diagram are
infrared-finite; however, the derivatives of the rainbow
diagram behave for low momentum as �R

dk
k and thus

are logarithmically divergent. To regulate this divergence
we introduce a small gluon mass �, which we may do
because the rainbow diagram has Abelian color structure.
To find the infrared behavior of �1, �2, and �v we

perform the analytic calculations as detailed above, keep-
ing track of all prefactors in the integration. After doing
this, we obtain the infrared-divergent part of the derivative
of the rainbow diagram:

� 2

3�
log�2 (59)

which is the same as the IR divergence in continuum QCD,
using the same regulator in both theories. In the matching
coefficients between lattice mNRQCD and QCD the loga-
rithmic dependence on the gluon mass will cancel out and
we can set � ¼ 0 at the end of the calculation.
We discuss three approaches to verify that this same

divergence is present in the full lattice Feynman integrals.

1. Infrared subtraction function

The first approach is to construct a suitable subtraction
function which can be integrated analytically and has the
same infrared behavior as the lattice integrand. The sub-
tracted lattice integral is then infrared-finite and the full
result can be obtained by adding the analytical expression
for the integral over the subtraction function. This method
was also used in the current matching in Ref. [53].
Only the wave function renormalization (in Feynman

gauge) is infrared-divergent. All other renormalization
constants are IR finite and can be computed directly. To

construct a suitable subtraction function fðsubÞ for �Zc we

start from the continuum integral in heavy-quark effective

theory. (Note that in principle fðsubÞ is arbitrary as long as it
agrees with the lattice integrand for small loop momenta k,
is ultraviolet-finite in d ¼ 4 dimensions, and can be inte-
grated analytically.)
The logarithmic UV divergence can be regulated with-

out changing the infrared behavior by replacing

�i

k0 � iv � k �
2�m

ðkþmuÞ2 þm2
(60)

in the (Euclidean) heavy-quark propagator. The resulting
integral (which is not restricted to the Brillouin zone) is

ωh
ω+

0

0

Im{k  }

∆

ω− Re{k  }

FIG. 5 (color online). Wick rotation to Euclidean space for
continuum heavy-quark effective theory; the integration contour
is shown as a dashed line. If the heavy-quark pole at !h ¼ v � k
lies to the left of the imaginary axis the contour has to be rotated
around �� ¼ v � k� �. The gluon poles are denoted by !
.
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readily evaluated and gives

�ZðsubÞ
c ¼ � 2

3�
log�2 þOð�=mÞ: (61)

This is exactly the logarithmic divergence found in (59).
The subtracted integral � �Zc is evaluated numerically,

defined through

�Zc ¼
Z d4k

ð2�Þ4 ð�BZðkÞf
ðlatÞðkÞ � fðsubÞðkÞÞ þ �ZðsubÞ

c

	 � �Zc � 2

3�
log�2; (62)

where �BZðkÞ is equal to 1 inside the Brillouin zone and
vanishes for any jk�j>�=a.

While this method is easy to carry out for the case of the
self-energy and vertex correction calculations, it becomes
increasingly complicated when considering other
calculations.

2. Direct calculation for different �

The alternative, more generic way of isolating the IR
divergent behavior is to run our integration for different
values of � and then obtain the desired log�2 behavior by
numerically fitting a line through the points. For example,
in Fig. 6 we show the wave function renormalization for �2

varying from 10�8 to 10�4. Using a logarithmic scale on

the horizontal axis we see a very clear linear behavior,
which demonstrates the desired dependence on log�2. The
fit to C0 þ CIR log�

2 yields, with a �2 per degree of free-
dom of 0.17, CIR ¼ �0:212 20ð14Þ log�2, which agrees
well with the analytic result �2=ð3�Þ ¼ �0:2122 . . . .
The latter method can be applied to all kinds of calcu-

lations such as current matching calculations in mNRQCD.
It can also be used when the expressions for the diagrams
are so complex that obtaining the infrared counterterms
analytically is not feasible. For the integrands considered
here this method is not very resource- or time-intensive;
even a preliminary investigation, with short integration
runs and a small number of sampling points, can yield a
plot with a very good fit, demonstrating clear log�2 depen-
dence. For more complicated integrands, subtraction func-
tions may still be necessary: the computer time required for
VEGAS to sufficiently reduce the statistical errors as we

lower �2 may well be prohibitive, and in addition, strong
IR divergences can confuse the importance sampling used
by VEGAS.

3. Twisted boundary conditions

Alternatively infrared divergences can be regulated by
working on a lattice of finite size and using twisted peri-
odic boundary conditions [41,52] which provide a lower
momentum cutoff. We have successfully implemented and
tested this method but will not discuss it further here. More
details will appear in a forthcoming publication.

H. Tadpole improvement

The tadpole improvement of the action was described in
Sec. IVB. We define u0 to be the mean link in Landau

gauge. In perturbation theory u0 ¼ 1� �su
ð2Þ
0 þ . . . , with

uð2Þ0 ¼ 0:750 for the Symanzik-improved gluon action [56].

Mean-field corrections are then included as counterterms
in the action. This leads to

�j ! �j þ�
ðtadpoleÞ
j ; (63)

where �
ðtadpoleÞ
j are the resulting tadpole factors which we

give explicitly below.
We choose the form of the time derivative in (26) so that

the wave function renormalization is immune from mean-
field corrections [14]. Thus we expect (and, indeed, find)
that the tadpole improvement contributions to �0 and �1

are exactly equal and opposite. The approximate repara-
metrization invariance implies that the radiative correc-
tions to Zp should be small, which suggests the tadpole

corrections to�2 and to�v should be very similar. Again,
we find this to be the case.
The computation of the tadpole factors was checked in

two separate calculations. We find
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fit C0 + CIR log(λ2)
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FIG. 6 (color online). Plot of the wave function renormaliza-
tion for different values of the infrared regulator �. The results
exhibit a very clear dependence on log�2, and by fitting a straight
line through the points one obtains CIR ¼ �0:212 20ð14Þ ’ � 2

3�

and C0 ¼ �0:1291ð18Þ with a reduced �2 of 0.17. The value of
C0 agrees well with �0:131 24ð52Þ, the value of � �Zc obtained

directly with �2 ¼ 10�6 (a less precise value is obtained by
adding �0 and �1 in Table XVII). The inset shows the data
divided by the fit. We use the simple action setup described in
Appendix E 1. The frame velocity is v ¼ 0:3 in this example.
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�ðtadpoleÞ
0 ¼ ��ðtadpoleÞ

1

¼ uð2Þ0

�
1þ 7

3� v2

6�m
� 3� 6v2 þ 5v4

2�3m3
þ 1

4n

�
�v2 þ�3þ 2v2 � v4

�2m2

�
þ 1

6n2
�5v2 þ 3v4

�m
� nþ 2

16n3
v4

�
;

�
ðtadpoleÞ
2 ¼ �uð2Þ0

�
5

3
þ 7

3� v2

6�m
þ 3� 3v2

�2m2
� 3� 6v2 þ 5v4

2�3m3
þ 1

4n

�
�v2 þ�3þ 2v2 � v4

�2m2

�

þ 1

6n2

�
2v2 þ�5v2 þ 3v4

�m

�
� nþ 2

16n3
v4

�
;

�
ðtadpoleÞ
v ¼ �

ðtadpoleÞ
2 � uð2Þ0

�
2v2

�2m2
� v2

6n2

�
:

For v ¼ 0 these expressions reduce to the ones obtained in
[57]. Numerical values are given below in Table III.

We give the corresponding expression for an alternative
treatment of tadpole cancellation in Appendix D and list
the tadpole improvement factors for other, simpler actions
in Appendix E.

I. Perturbative results

In this section we present one-loop perturbative results
for the renormalization of the mNRQCD propagator.
Further results for a variety of simpler mNRQCD actions
are given in Appendix E.

To obtain agreement with our numerical simulations, it
is important that we use the Lüscher-Weisz gauge action
[58,59] which is used for the generation of MILC lattices
[60]. For the heavy-quark self-energy at one-loop level,
this action is equivalent to the tree-level Symanzik-
improved gauge action

SG ¼ �
X
x

�<�

�
5

3
P��ðxÞ � 1

12
R���ðxÞ � 1

12
R���ðxÞ

�

þOð�sÞ;

where P, R are 1� 1 and 2� 1Wilson loops, respectively.
Oð�sÞ denotes possible radiative corrections and tadpole
improvements of the action that only contribute at higher
loop orders in the perturbative calculation of the heavy-
quark self-energy.
For the squared gluon mass we choose a value of �2 ¼

10�6. The infrared-finite part of the wave function renor-
malization was extracted using a suitable subtraction func-
tion and we also checked that our results are indeed
infrared-finite by varying �. The stability parameter is n ¼
2 and for the heavy-quark mass we use m ¼ 2:8.
In Table II we list numerical results for�j for a range of

frame velocities before including mean-field corrections.
We only give the finite parts of the �j; the infrared

TABLE II. Infrared-finite part of �j for the full Oð1=m2; v4
relÞ

action. The gluon action is Symanzik-improved with �2 ¼ 10�6

and we use m ¼ 2:8, n ¼ 2. Mean-field corrections are not
included and the errors shown are purely statistical from the
VEGAS integration.

v �0 �1 �2 �v

0.00 �2:366 85ð40Þ 2.030 45(62) 3.0487(13) � � �
0.01 �2:366 72ð39Þ 2.030 42(62) 3.0470(13) 3.039(18)

0.10 �2:355 34ð40Þ 2.020 33(62) 3.0276(13) 3.0192(24)

0.20 �2:320 49ð39Þ 1.989 00(62) 2.9668(13) 2.9695(16)

0.30 �2:262 05ð38Þ 1.936 75(62) 2.8646(14) 2.8857(14)

0.40 �2:176 78ð37Þ 1.860 81(61) 2.7199(14) 2.7636(13)

0.50 �2:063 18ð35Þ 1.759 64(61) 2.5330(15) 2.6023(12)

0.60 �1:915 98ð33Þ 1.629 28(62) 2.3020(17) 2.4059(12)

0.70 �1:726 66ð31Þ 1.461 50(63) 2.0220(20) 2.1623(11)

0.75 �1:612 72ð30Þ 1.361 28(65) 1.8614(24) 2.0247(11)

0.80 �1:482 24ð28Þ 1.248 47(69) 1.6828(29) 1.8794(11)

0.85 �1:330 83ð27Þ 1.125 28(82) 1.4925(41) 1.7275(12)

0.90 �1:151 25ð25Þ 1.0118(11) 1.2930(68) 1.5972(15)

0.95 �0:927 38ð24Þ 1.0698(21) 1.236(19) 1.6559(25)

TABLE III. Tadpole improvement corrections �ðtadpoleÞ
j for the

full Oð1=m2; v4
relÞ action. The heavy-quark mass is m ¼ 2:8 and

the stability parameter n ¼ 2. Note that �
ðtadpoleÞ
1 ¼ ��

ðtadpoleÞ
0 .

v �ðtadpoleÞ
0 =uð2Þ0 �ðtadpoleÞ

2 =uð2Þ0 �ðtadpoleÞ
v =uð2Þ0

0.00 2.133 84 �3:183 16 � � �
0.01 2.133 75 �3:183 00 �3:183 02
0.10 2.124 59 �3:167 13 �3:169 23
0.20 2.096 50 �3:119 15 �3:127 28
0.30 2.048 63 �3:039 67 �3:056 82
0.40 1.979 63 �2:929 63 �2:957 25
0.50 1.887 97 �2:790 71 �2:828 13
0.60 1.772 21 �2:625 61 �2:669 39
0.70 1.630 91 �2:437 93 �2:481 27
0.75 1.549 99 �2:336 77 �2:376 12
0.80 1.461 43 �2:231 03 �2:263 13
0.85 1.363 79 �2:120 13 �2:141 18
0.90 1.253 65 �2:001 63 �2:007 14
0.95 1.120 74 �1:866 25 �1:851 10
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divergence�2=ð3�Þ log�2 is not included in the results for
�1, �2, and �v.

We give results for the tadpole improvement coefficients

�
ðtadpoleÞ
j in Table III (see Table XVI in Appendix D for an

alternative prescription). Finally we show the infrared-
finite renormalization parameters, including mean-field
corrections, in Table IV and Fig. 7. In particular, note that
the one-loop coefficient renormalizing the momentum is
indeed small, as expected from the arguments presented in
Sec. VC.

VI. NUMERICAL SIMULATION RESULTS

In addition to the perturbative calculations described in
the previous sections, we have performed a wide range of
nonperturbative computations with the full mNRQCD ac-
tion on unquenched gluon configurations. We have com-
puted two-point correlation functions for various heavy-
heavy and heavy-light mesons at different momenta and
boost velocities. These allow the extraction of both ener-
gies and amplitudes. From the combination of simulation
energies at different momenta, we have obtained nonper-
turbative results for the external momentum renormaliza-
tion, the energy shift and the kinetic masses of the mesons.
We have also examined the dependence of several energy
splittings on the boost velocity. In addition to these spectral
properties, we studied the behavior of decay constants.
The next section describes the simulations with heavy-

heavy mesons and is followed by a section on heavy-light
mesons. All results are given in lattice units.

A. Heavy-heavy mesons

1. Methods

We begin by constructing ‘‘smeared’’ interpolating
fields for quarkonium. To demonstrate the effect of the
moving NRQCD field redefinition, we start the construc-

tion with the QCD fields ��, �. A meson with momentum
p can be obtained from

O�ðp; �Þ ¼
X
x1;x2

��ðx1; �Þ�ðx1 � x2Þ�ðx2; �Þe�ipððx1þx2Þ=2Þ;

where �ðrÞ is a Dirac-matrix-valued smearing function. We
do not include gauge links in �ðrÞ; instead we fix the gauge
configurations to Coulomb gauge. The (continuum) quan-
tum numbers and corresponding functions �ðrÞ used in the
simulations are listed in Table V.
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FIG. 7 (color online). Heavy-quark renormalization parame-
ters for the full Oð1=m2; v4

relÞ action. The gluon action is

Symanzik-improved with �2 ¼ 10�6 and we use m ¼ 2:8, n ¼
2. � �Zc is the infrared-finite part of the wave function renormal-

ization as defined in (62). Violation of reparametrization invari-
ance is very small, as indicated by the smallness of �Zp.

TABLE IV. Heavy-quark renormalization parameters for the full Oð1=m2; v4
relÞ action. The gluon action is Symanzik-improved with

�2 ¼ 10�6 and we usem ¼ 2:8, n ¼ 2. All mean-field corrections are included and the results are infrared-finite. The errors shown are
purely statistical from the VEGAS integration.

v E0 � �Zc �Zm �Zv �Zp �Cv

0.00 �0:766 47ð40Þ �0:336 39ð48Þ 0.2313(12) � � � � � � �0:0425ð12Þ
0.01 �0:766 41ð39Þ �0:336 30ð47Þ 0.2297(12) �0:221ð18Þ �0:002ð18Þ �0:0441ð12Þ
0.10 �0:761 90ð40Þ �0:335 01ð47Þ 0.2275(12) �0:2154ð23Þ 0.0061(20) �0:0454ð12Þ
0.20 �0:748 12ð39Þ �0:331 49ð48Þ 0.2194(12) �0:2074ð15Þ 0.0025(12) �0:0510ð12Þ
0.30 �0:725 58ð38Þ �0:325 30ð48Þ 0.2037(12) �0:1928ð12Þ �0:0087ð10Þ �0:0626ð12Þ
0.40 �0:692 06ð37Þ �0:315 97ð49Þ 0.1789(13) �0:1696ð11Þ �0:021 31ð89Þ �0:0799ð13Þ
0.50 �0:647 20ð35Þ �0:303 54ð50Þ 0.1421(13) �0:1376ð10Þ �0:041 75ð86Þ �0:1039ð14Þ
0.60 �0:586 82ð33Þ �0:286 70ð52Þ 0.0910(15) �0:1037ð10Þ �0:069 74ð87Þ �0:1350ð16Þ
0.70 �0:503 49ð31Þ �0:265 16ð55Þ 0.0158(17) �0:063 05ð91Þ �0:109 43ð92Þ �0:1731ð19Þ
0.75 �0:450 23ð30Þ �0:251 44ð58Þ �0:0337ð19Þ �0:043 80ð89Þ �0:1394ð10Þ �0:1964ð23Þ
0.80 �0:386 16ð28Þ �0:233 77ð63Þ �0:0901ð24Þ �0:029 67ð90Þ �0:1746ð11Þ �0:2256ð29Þ
0.85 �0:307 98ð27Þ �0:205 54ð77Þ �0:1502ð32Þ �0:019 15ð93Þ �0:2235ð11Þ �0:2580ð40Þ
0.90 �0:211 01ð25Þ �0:1395ð11Þ �0:1933ð51Þ �0:0203ð10Þ �0:2966ð13Þ �0:3127ð67Þ
0.95 �0:086 82ð24Þ 0.1425(21) �0:038ð14Þ �0:0383ð13Þ �0:4374ð16Þ �0:402ð18Þ
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We now express �� and� through the tree-level moving
NRQCD field redefinition. To lowest order one has

�ðxÞ ¼ 1ffiffiffiffi
�

p Sð�Þe�i�mð�i��v�xÞ�̂0
�vðxÞ;

��ðxÞ ¼ 1ffiffiffiffi
�

p ��vðxÞei�mð�i��v�xÞ�̂0
Sð�Þ:

Let us, for example, consider the� states with polarization
j ¼ 1, 2, 3. We allow different smearing at source and sink,
so that �scðrÞ ¼ �̂jfscðrÞ and �skðrÞ ¼ �̂jfskðrÞ. Using

Sð�Þ�̂jSð�Þ ¼ �j
��̂

�; (64)

we obtain

O�sk
ðp; �ÞOy

�sc
ðp; �0Þ

¼ 1

�2
e�2�mð���0Þ X

x1;x2;x
0
1
;x0

2

e�ikððx1þx2Þ=2Þfskðx1 � x2Þ

� eikððx01þx0
2
Þ=2Þfscðx01 � x02Þ�j

l�
j
m�

y
vðx1; �Þ

� �lc vðx2; �Þc y
vðx02; �0Þ�m�vðx01; �0Þ þ . . . (65)

(no summation over j here) where

k 	 p� 2�mv: (66)

The ellipsis in (65) denotes terms that do not contribute to
the connected meson correlator for � > �0. The correlator
is then given by

hO�sk
ðp; �ÞOy

�sc
ðp; �0Þi

¼ 1

N

X
U

1

�2
e�2�mð���0Þ X

x1;x2;x
0
1
;x0

2

e�ikððx1þx2Þ=2Þ

� fskðx1 � x2Þeikððx01þx02Þ=2Þfscðx01 � x02Þ�j
l�

j
m

� Trð�l½GU;v
c v

ððx2; �Þ; ðx02; �0ÞÞ�
� �m½GU;�v

c v
ððx1; �Þ; ðx01; �0ÞÞ�yÞ; (67)

where we average over N gauge configurations U. The
trace is over color and spin indices. We have also used

Eq. (25) to express the antiquark green function GU;v
�v

in

terms of the quark green function GU;�v
c v

with the opposite

boost velocity.

The summations over all quark and antiquark source
locations would render the lattice computation too expen-
sive. Therefore, using translation invariance, we remove
the summation over the antiquark source location x01.
Furthermore, we remove the factor of e�2�mð���0Þ which
corresponds to the tree-level energy shift. Hence, the quan-
tity

Cð�sk;�sc; k; �; �
0Þ ¼ 1

N

X
U

1

�2

X
x1;x2

e�ikððx1þx2Þ=2Þ

� fskðx1 � x2Þ�j
l�

j
m

� Trð�l½ ~GU;v
c v

ððx2; �Þ; ðx01; �0ÞÞ�
� �m½GU;�v

c v
ððx1; �Þ; ðx01; �0ÞÞ�yÞ

with

~GU;v
c v

ððx2; �Þ; ðx01; �0ÞÞ ¼
X
x0
2

eikððx01þx0
2
Þ=2Þfscðx01 � x02Þ

�GU;v
c v

ððx2; �Þ; ðx02; �0ÞÞ (68)

is computed on the lattice. The correlator (68) can be
computed by using the function

eikððx01þx0
2
Þ=2Þfscðx01 � x02Þ (69)

as the initial condition in the mNRQCD evolution Eq. (28).
The momentum-dependent phase factor expðikðx01 þ
x02Þ=2Þ at the source improves the overlap with the momen-
tum considered. However, since there is no sum over x01,
one may omit this factor to allow the calculation of corre-
lators with different momenta from the same source.
In order to maintain the periodic boundary conditions,

we set fðrÞ to zero for jrj> Rs with some cutoff radius Rs

smaller than half the length of the lattice.
On the finite volume lattice with periodic boundary

conditions, the momentum k takes on discrete values, kj ¼
2�nj=Lj where Lj are the spatial extents of the lattice.

However, the physical meson momentum p is expected to
deviate from the tree-level relation (66), since mass and
velocity are renormalized. One has

p ¼ 2ZpP0 þ k with P0 ¼ �mv: (70)

We fit a matrix of correlators with different smearings at
source and sink with the functional form

Cð�sk;�sc; k; �; �
0Þ ! AskðAscÞ�

�
e�Eð���0Þ þ Xnexp�1

n¼1

Bsk
n ðBsc

n Þ�

� e�ðEþ�E1þ...þ�EnÞð���0Þ
�
; (71)

where E is the energy of the meson ground state, Asc and
Ask are the (real) ground state amplitudes of the operators
at source and sink, and Bsc

n , B
sk
n are (real) amplitudes for the

nth excited state, relative to the ground state amplitude. We
use the constrained fitting method described in [61], and

TABLE V. Some (continuum) quantum numbers and smearing
functions for the bottomonium system.

Name n L S J P C �ðrÞ
�bð1SÞ 1 0 0 0 � þ exp½�jrj=rs��̂5

�bð2SÞ 2 0 0 0 � þ ½1� jrj=ð2rsÞ� exp½�jrj=ð2rsÞ��̂5

�ð1SÞ 1 0 1 1 � � exp½�jrj=rs��̂j

�ð2SÞ 2 0 1 1 � � ½1� jrj=ð2rsÞ� exp½�jrj=ð2rsÞ��̂j

�b1ð1PÞ 1 1 1 1 þ þ exp½�jrj=ð2rsÞ�ðr� �̂Þj=rs
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increase the number of exponentials until the fit results and
error estimates become independent of nexp.

The full (physical) energy differs from the energy E ¼
EvðkÞ obtained from the fit by twice the mNRQCD energy
shift,

Ephys ¼ EvðkÞ þ 2Cv: (72)

In perturbation theory, one has

Cv ¼ ZmZ��mþ E0: (73)

Given expression (70) for the full (physical) momentum,
we expect that, up to lattice artifacts,

Ephys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

kin

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ZpP0 þ kÞ2 þM2

kin

q
; (74)

where Mkin is the kinetic mass of the meson.
Using (74), we can obtain nonperturbative results forCv,

Zp, and Mkin from the energies at various nonzero lattice

momenta in combination with the energy at k ¼ 0:

Cv ¼ 1

2

k2? � ðE2
vðk?Þ � E2

vð0ÞÞ
2ðEvðk?Þ � Evð0ÞÞ ; (75)

Zp ¼ E2
vðkkÞ � E2

vð�kkÞ þ 4CvðEvðkkÞ � Evð�kkÞÞ
4kk � 2P0

;

(76)

Mkin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEvðkÞ þ 2CvÞ2 � ð2ZpP0 þ kÞ2

q
: (77)

Here, kk is parallel to v, and k? is perpendicular to v. In
order to fully take into account correlations in the energies
at different momenta, we use the bootstrap method, per-
forming fits on 500 bootstrap ensembles and computing the
final quantity 500 times. The errors are then estimated as
the 68% width of the resulting distribution.

Ultimately we will be interested in semileptonic B decay
matrix elements. As a simpler test we first study the decay
of the �bð1SÞ meson via a fictitious axial vector current.
The corresponding decay constant is defined by

h0jJ�5 ð0Þj�bð1SÞ;pi ¼ if p�: (78)

Here, J�5 is the mNRQCD field operator associated with

the axial current

J
�
5 ðxÞ ¼ ��ðxÞ�̂5�̂��ðxÞ: (79)

For simplicity, we have only considered the temporal
component and, as above, used only the leading-order
tree-level mNRQCD field redefinition to construct the
lattice current. To extract the amplitude, we compute 2�
2 matrix correlators with the local smearing function

�ðrÞ ¼ �ðrÞ�̂5�̂0 (80)

for the temporal axial current, and the �bð1SÞ smearing
function from Table V. The product of the ground state

amplitudes in (71) is given by

AskðAscÞ� ¼ 1

2Ephys

h�bð1SÞ;pjO�sk
ð0Þj0i

� h0jO�sc
ð0Þj�bð1SÞ;pi; (81)

as can be seen from the spectral decomposition of the two-
point correlator. Using (78) with p0 ¼ Ephys (72) and (81),

we obtain

f ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

EvðkÞ þ 2Cv

s
; (82)

where A ¼ Ask=sc is the amplitude from the fit correspond-
ing to �sk=sc ¼ �ðrÞ�̂5�̂0.

2. Lattice parameters

The computations were performed using 400 MILC
gauge configurations (fixed to Coulomb gauge) of size
203 � 64 with 2þ 1 flavors of rooted staggered light
quarks, at  ¼ 6:76 [60]. The light quark masses were
mu ¼ md ¼ 0:007 and ms ¼ 0:05 (in the MILC conven-
tion for lattice masses). The Landau gauge mean link, used
in the mNRQCD action, was u0 ¼ 0:836. The inverse
lattice spacing of these ‘‘coarse’’ MILC configurations is
known to be approximately 1.6 GeV [62].
Heavy-quark propagators were computed using full

mNRQCD lattice action described in Sec. IV and used in
the perturbative calculation. The bare heavy-quark mass
was set to m ¼ 2:8, which gave the correct � kinetic
masses using nonmoving NRQCD [62]. The boost velocity
was always pointing in the x direction, v ¼ ðv; 0; 0Þ. The
stability parameter was set to n ¼ 2.
In order to increase statistics, between 16 and 120

correlators with different origins ðx01; �0Þ spread over the
lattice were calculated and averaged over on each gauge
configuration. These origins were also shifted randomly to
reduce autocorrelations. The smearing parameter rs was
set to 1 for the S wave states and 0.5 for the P wave states.

3. Results

Results for the �bð1SÞ kinetic mass Mkin and the renor-
malization parameters Zp, Cv are shown in Table VI. The

energies were obtained from 6-exponential fits to 2� 2
matrix correlators with the �bð1SÞ smearing and the local
axial current. For the calculation of Cv using (75), we
averaged the results over the 4 different perpendicular
lattice momenta

k? 2
	
2�

L
ð0;
1; 0Þ; 2�

L
ð0; 0;
1Þ

�
: (83)

The momentum parallel to the boost velocity in (76) was
chosen to be kk ¼ 2�

L ð1; 0; 0Þ, and in (77), for the measure-

ment of Mkin, we use k ¼ 0.
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Because the lattice is of finite extent, L ¼ 20 in our test
case, the estimates for Cv and Zp will be affected by the

choice of momenta in (75) and (76) since the formulas are
accurate only in the limit that the momenta are infinitesi-
mal. Note that the uncertainty due to using noninfinitesimal
momenta will decrease for larger lattices for which smaller
momenta are available.

To estimate the size of the resulting systematic error we
also performed the calculations with the larger momenta

k? 2
	
2�

L
ð0;
2; 0Þ; 2�

L
ð0; 0;
2Þ

�
; kk ¼ 2�

L
ð2; 0; 0Þ:

(84)

For Cv, the results from jk?j ¼ 2�=L agree with those
obtained from jk?j ¼ 4�=L within statistical errors, in-
dicating that the systematic error is small and does not
increase significantly when increasing the momentum per-
pendicular to v in the measurement. For the measurement
of Zp at jvj ¼ 0:6 we find a 6% (2�) change in Zp when

going from jkkj ¼ 2�=L to jkkj ¼ 4�=L. At jvj ¼ 0:4
and smaller boost velocities the results are equal within
statistical errors. For the kinetic mass, which depends on
both Cv and Zp, we again find agreement within statistical

errors between the results from the two different momenta
for all boost velocities considered. At small velocities, we
find that both Zp and Cv=ð�mÞ are close to their tree-level

value of 1, demonstrating that renormalizations are indeed
small.

We also obtained the amplitude for the axial current and
extracted the pseudoscalar decay constant from the same
2� 2matrix fits using (82). For the energy shift Cv in (82)
we used the result from jk?j ¼ 2�=L. The meson momen-
tum is given by p ¼ 2Zp�mvþ k. In the following we

compare two methods of reaching large jpj. First, at v ¼ 0,
i.e., with standard NRQCD, we computed the decay con-
stant at large nonzero lattice momentum k; the results are
shown in Table VII. Second, we computed the decay
constant with k ¼ 0 and three different boost velocities
v; the results are shown in Table VIII. In this case the
uncertainty in Zp leads to an uncertainty in the meson

momentum.
A plot of the decay constant against the total momentum

[with Zp from (76) with jkkj ¼ 2�=L] for the two methods

is shown in Fig. 8. The decay constant is a Lorentz scalar
and should be independent of the momentum. However,
with NRQCD we see large deviations due to both relativ-
istic and discretization errors. With moving NRQCD the
deviation is very small, giving evidence that the formalism
works very well. Small deviations are still expected here,
since only the leading-order current was used; i.e., TFWT

and ADt
were set to unity in (21) for this calculation.

Next, we studied the velocity-dependence of various
energy splittings between the bottomonium states listed
in Table V. For the � and �b states, we used 6-exponential
2� 2 matrix fits with the 1S and 2S smearings; for the �b1

states a 6-exponential single-correlator fit with the 1P
smearing at both source and sink was used. The results
for the �ð2SÞ ��ð1SÞ, �b1ð1PÞ ��ð1SÞ, and �ð1SÞ �
�bð1SÞ splittings are listed in Tables IX, X, and XI,
respectively.
Note that the energy splittings are not Lorentz scalars.

Using (74), we expect that the splitting between two states
A and B at zero lattice momentum is given by

TABLE VI. Nonperturbative results [using the �bð1SÞ] for Mkin, Zp, Cv.

jk?j ¼ jkkj ¼ 2�=L jk?j ¼ jkkj ¼ 4�=L
jvj Zp Mkin Cv=ð�mÞ Zp Mkin Cv=ð�mÞ
0 � � � 5.974(48) 1.0182(86) � � � 5.979(37) 1.0190(65)

0.2 1.008(19) 5.95(10) 1.015(18) 1.009(12) 5.969(62) 1.017(11)

0.4 0.9953(78) 5.931(44) 1.0084(77) 0.9830(65) 5.954(40) 1.0101(70)

0.6 0.898(27) 6.22(18) 1.010(28) 0.843(27) 6.37(15) 1.011(21)

TABLE VIII. �bð1SÞ decay constant with mNRQCD at k ¼ 0
computed with several values of meson momentum jpj by
varying jvj.
jvj jpj f

0 0 0.4724(23)

0.2 1.152(22) 0.4739(38)

0.4 2.433(19) 0.4810(36)

0.6 3.77(11) 0.499(11)

TABLE VII. �bð1SÞ decay constant with standard NRQCD
(i.e., v ¼ 0) computed with several values of meson momentum
jpj by varying jkj.
jpjL=ð2�Þ jpj f

0 0 0.4724(23)

1 0.314 16 0.4731(23)

2 0.628 32 0.4755(24)

3 0.942 48 0.4772(43)

4 1.256 64 0.4835(77)

5 1.570 80 0.4971(78)

6 1.884 96 0.5209(46)

7 2.199 11 0.5527(44)

8 2.513 27 0.6006(45)

9 2.827 43 0.6740(49)

10 3.141 59 0.715(29)
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EA
vð0Þ � EB

vð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Zp�mvÞ2 þ ðMA

kinÞ2
q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Zp�mvÞ2 þ ðMB

kinÞ2
q

:

If we set Zp ¼ 1 and expand the splitting at velocity v

relative to v ¼ 0 in powers of the boost velocity, we obtain

EA
vð0Þ � EB

vð0Þ
EA
0 ð0Þ � EB

0 ð0Þ
¼ 1�

�
2m2

MA
kinM

B
kin

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

�0:5

v2 þOðv4Þ;

that is, we expect a quadratic decrease like 1� 0:5jvj2.
The numerical results, shown in Fig. 9, are consistent with
this estimate as desired.

Finally, for the�ð1SÞmeson, we studied the dependence
of the energy on the polarization direction. If moving
NRQCD works well, then there should be no difference
for polarizations parallel and perpendicular to the boost
velocity. In Table XII we show the difference between the
energy with definite polarization direction, Evð0Þjj and the
polarization-direction-averaged energy 1

3 ðEvð0Þj1 þ
Evð0Þj2 þ Evð0Þj3Þ. No significant dependence on the po-
larization direction can be seen (except maybe at v ¼ 0:6,
where a 1:8� deviation in the energies was found).

B. Heavy-light mesons

1. Methods

Starting with the standard Dirac fields, we construct
interpolating fields for the Bs and B

�
s mesons with momen-

tum p from

O�ðp; �Þ ¼
X
x;y

��lðx; �Þ�ðx� yÞ�Hðy; �Þe�ip�y; (85)

where �l is the Dirac spinor for the valence strange quark
and�H is the Dirac spinor for the b quark. We use �ðrÞ ¼
�̂5fðrÞ for the Bs pseudoscalar meson, �ðrÞ ¼ �̂jfðrÞ with
j ¼ 1, 2, 3 for the B�

s vector meson, and �ðrÞ ¼ �̂5�̂0fðrÞ
for the computation of the decay constant fBs

. We compute

0 1 2 3 4 5
p

0

0.2

0.4

0.6

0.8

1
f

NRQCD
mNRQCD

FIG. 8 (color online). Heavy-heavy decay constant in NRQCD
and mNRQCD for different values of the meson’s momentum,
jpj=ð2�=LÞ ¼ 0 . . . 10 (NRQCD) and p ¼ Zp2�mv for jvj ¼
0:2, 0.4, 0.6 (mNRQCD). The horizontal line indicates the value
at p ¼ 0.

TABLE XI. �ð1SÞ � �bð1SÞ energy splitting as a function of
the boost velocity.

jvj �Evð0Þ �Evð0Þ
�E0ð0Þ

0.0 0.0314 69(98) 1

0.2 0.030 39(20) 0.9656(71)

0.4 0.02837(85) 0.901(27)

0.6 0.0281(28) 0.894(88)

TABLE IX. �ð2SÞ ��ð1SÞ energy splitting as a function of
the boost velocity.

jvj �Evð0Þ �Evð0Þ
�E0ð0Þ

0.0 0.3334(68) 1

0.2 0.329(10) 0.986(37)

0.4 0.320(15) 0.958(48)

0.6 0.20(11) 0.59(33)

TABLE X. �b1ð1PÞ ��ð1SÞ energy splitting as a function of
the boost velocity.

jvj �Evð0Þ �Evð0Þ
�E0ð0Þ

0.0 0.2703(89) 1

0.2 0.264(12) 0.976(56)

0.4 0.270(23) 0.998(91)

0.6 0.227(57) 0.84(21)

0 0.2 0.4 0.6

v

0

0.5

1

1.5

∆E
v  

/
∆E

0

Υ(2S) − Υ(1S)
χb1(1P) − Υ(1S)

Υ(1S) − ηb(1S)

1 − 0.5v
 2

FIG. 9 (color online). Bottomonium energy splittings relative
to v ¼ 0 as a function of the boost velocity. Points are offset
horizontally for legibility. The data agree with an estimate for the
leading v2 dependence (see text).
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2� 2matrix correlators with Gaussian and local smearing,

fðrÞ ¼ e�jrj2=r2s , �ðrÞ.
In terms of the standard Dirac propagators, the two-point

function reads

hO�sk
ðp; �ÞOy

�sc
ðp; �0Þi ¼ 1

N

X
U

X
x;y;x0;y0

Tr½�skðx� yÞGlðx0; xÞ

��y
scðx0 � y0ÞGHðy; y0Þ�

� e�ip�yeip�y0 ; (86)

with x ¼ ðx; �Þ, y ¼ ðy; �Þ, x0 ¼ ðx0; �0Þ, y0 ¼ ðy0; �0Þ. For
� > �0, the tree-level leading-order mNRQCD field redefi-
nition (21) leads to the following expression for the b
propagator:

GHðy; y0Þ ¼ 1

�
e��mð���0Þþi�mv�ðy�y0ÞSð�Þ

� Gc v
ðy; y0Þ 0
0 0

� �
�Sð�Þ:

For the light quark, we use the ASQTAD staggered fermion
action [34]. The four-component naı̈ve light quark propa-
gator can be obtained from the one-component staggered
propagator G�ðx0; xÞ via

Glðx0; xÞ ¼ G�ðx0; xÞ ��ðx0Þ�yðxÞ (87)

with

�ðxÞ ¼ ð�̂0Þx4ð�i�̂1Þx1ð�i�̂2Þx2ð�i�̂3Þx3 : (88)

(Recall our convention for the Dirac matrices is as given in
Appendix A.) We also employ �̂5 hermicity

Glðx0; xÞ ¼ �̂5Gy
l ðx; x0Þ�̂5; (89)

to interchange the points x and x0 for the light quark

propagator. As before, we remove the factor of e��mð���0Þ
and the summation over x0.

In the case where �sk and �sc contain the same Dirac
matrix, we arrive at the following expression:

Cð�sk;�sc; k; �; �
0Þ ¼ 1

N

X
U

1

�

X
x;y

fskðx� yÞe�ik�y�ðx; x0Þ

� Tr

�
Gy

�ðx; x0Þ �Sð�Þ�ðx0Þ�yðxÞSð�Þ

�
~Gc v

ðy; x0Þ 0

0 0

 !�
(90)

with k 	 p� �mv and

~G c v
ðy; x0Þ ¼X

y0
fðx0 � y0Þeik�y0Gc v

ðy; y0Þ:

The phase factor �ðx; x0Þ in (90) depends on the Dirac
matrix in �sk and �sc. It is given by

�ðx; x0Þ ¼
8><
>:
1 for �̂5

ð�1Þx0j�xj for �̂j

ð�1Þ
P
j

ðxjþx0jÞ
for �̂5�̂0:

As before, we set fðrÞ to zero for jrj> Rs with some cutoff
radius Rs smaller than half the length of the lattice.
The staggered/naı̈ve light quark action used here suffers

from the doubling problem. As shown in [34], the spatial
doublers do not contribute to the correlators. However, the
temporal doubler leads to a coupling to additional opposite
parity states, which manifest themselves as oscillating
exponentials in the correlators. We therefore fit the
heavy-light correlators to

Cð�sk;�sc;k;�;�
0Þ!AskðAscÞ�

�
e�Eð���0Þþ Xnexp�1

n¼1

Bsk
n ðBsc

n Þ�

�e�ðEþ�E1þ...þ�EnÞð���0Þ
�
þð�1Þ���0þ1

� ~Askð ~AscÞ�
�
e� ~Eð���0Þþ Xmexp�1

m¼1

~Bsk
m ð ~Bsc

mÞ�

�e�ð ~Eþ�~E1þ...þ�~EmÞð���0Þ
�
:

The quantitiesCv, Zp,Mkin and the decay constants fB, fBs

can be extracted in a completely analogous manner as for
the heavy-heavy-mesons, with the replacements 2Cv !
Cv and 2P0 ! P0, since now there is only one heavy
quark.

2. Lattice parameters

The heavy-light simulations have been performed with
the same gauge configurations as the heavy-heavy simula-
tions, and the same heavy-quark action and parameters
were used. Again, the boost velocity was always pointing
in x direction, v ¼ ðv; 0; 0Þ. The valence strange quark
mass for the Bs and B�

s mesons was set to 0.040. Four
staggered propagators with source times �0 ¼ 0, 16, 32, 48
were used for each gauge configuration. Both forward- and
backward-propagating meson correlators were computed

TABLE XII. Dependence of the �ð1SÞ energy on the polar-
ization direction. �Evð0Þjj is the difference between Evð0Þjj and
the polarization-averaged energy.

jvj �Evð0Þj1 �Evð0Þj2 �Evð0Þj3
0 �0:000 009ð63Þ �0:000 039ð68Þ 0.000 053(73)

0.2 �0:000 12ð26Þ �0:000 05ð28Þ 0.000 17(30)

0.4 �0:000 46ð56Þ 0.000 55(62) �0:000 10ð57Þ
0.6 �0:0176ð96Þ 0.0107(62) 0.0069(75)
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to increase statistics. The smearing parameter rs was set to
2.5.

3. Results

Results for the Bs kinetic mass Mkin and the renormal-
ization parameters Zp, Cv are shown in Table XIII. The

energies and the amplitude required for the calculation of
the decay constant were obtained from 8-exponential (4 of
which are oscillating) fits to 2� 2 matrix correlators with
the Gaussian smearing and the local axial current. Two
sample plots of these correlators at v ¼ 0 and v ¼ 0:4 are
shown in Fig. 10. This also demonstrates the worsening of
the signal-to-noise ratio as the boost velocity increases, in
accordance with (4).

For the calculation of Cv, we again averaged the results
over the 4 different lattice momenta perpendicular to v,

k? 2
	
2�

L
ð0;
1; 0Þ; 2�

L
ð0; 0;
1Þ

�
; (91)

and the momentum parallel to the boost velocity required
for the determination of Zp was chosen to be kk ¼ 2�

L �
ð1; 0; 0Þ.
As expected, the statistical errors are larger than for the

heavy-heavy mesons, partly due to a much smaller number
of origins (four) per gauge configuration. The results for Zp

and Cv agree with those obtained using heavy-heavy me-
sons in Sec. VIA 3.
The results for the decay constant fBs

at k ¼ 0 and v ¼
0,0.2, 0.4, 0.6 are listed in Table XIVand plotted against the
total momentum in Fig. 11. In the calculation of the decay
constant, we used Cv and Zp determined from the �bð1SÞ
dispersion relation since this is more precise. We find that
the decay constant is independent of the boost velocity
within statistical errors. [Even when working with non-
moving NRQCD, the discretization errors in the heavy-
light decay constant do not appear to grow as severely with
momentum [63] as in the heavy-heavy decay constant
(Fig. 8).]
We also computed the B�

s � Bs energy splitting as a
function of v; the results are shown in Table XV. The

TABLE XIII. Bs results for Mkin, Zp, Cv.

v Zp Mkin Cv=ð�mÞ
0 3.37(15) 1.002(52)

0.2 1.05(15) 3.72(47) 1.13(16)

0.4 1.05(18) 3.66(68) 1.10(23)
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FIG. 10 (color online). Bs matrix correlators at k ¼ 0 and v ¼
0 (upper panel), jvj ¼ 0:4 (lower panel).

TABLE XIV. Bs decay constant (unrenormalized, and in lat-
tice units) with mNRQCD at k ¼ 0.

jvj jpj fðk ¼ 0Þ
0 0 0.1626(27)

0.2 0.576(11) 0.1608(52)

0.4 1.2163(96) 0.1634(94)

0.6 1.885(57) 0.174(17)
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p
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0.05

0.1

0.15

0.2

0.25

f

FIG. 11 (color online). The Bs decay constant at k ¼ 0 and
v ¼ 0, 0.2, 0.4, 0.6 plotted against the total momentum p ¼
Zp�mvþ k. The horizontal line indicates the value at v ¼ 0.
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statistical errors are so large that no definite statement can
be made about the velocity dependence.

VII. COMPARISON OF PERTURBATIVE AND
NONPERTURBATIVE RESULTS

In the following we compare our perturbative results
given in Sec. V I to the nonperturbative numbers obtained
in Secs. VIA 3 and VIB 3.

We use the strong coupling constant defined in the
potential scheme [36] and choose q? (for each quantity
and each value of v) using the Brodsky-Lepage-Mackenzie
procedure [64]. The q� values range approximately be-
tween 0:5=a and 3=a. As a reference, 2=a ¼ 3:2 GeV on
the coarse MILC configurations [62]. Using the running of
the strong coupling constant �VðqÞ [65] this gives
�Vð2=aÞ � 0:3.

In Figs. 12 and 13 we show both perturbative and non-
perturbative results for the renormalization of the external
momentum and the energy shift between QCD and
mNRQCD (see Sec. VB). The discrepancies we find at
v ¼ 0:6 indicate sizable higher-order loop contributions as
v grows. High- simulations verify the one-loop perturba-

tive calculation as described earlier, and preliminary esti-
mates of the gluonic (i.e., quenched) two-loop contribution
using high- simulations show that higher-order loop cor-
rections reduce this discrepancy; further work is in
progress and will be presented in a forthcoming
publication.

VIII. CONCLUSION

We have derived the mNRQCD action through
Oð1=m2; v4

relÞ and discretized it with errors starting at

Oð�sa
2Þ [tree-level errors begin at Oða5Þ]. The one-loop

renormalizations of the wave function, the external mo-
mentum, the frame velocity, and the energy shift E0 have
been computed and presented here. In the cases of the
external momentum and the energy shift, we compared
perturbative and nonperturbative results. Nonperturbative
calculations of heavy-heavy meson and heavy-light meson
properties were undertaken, with the aim of testing the
specific action and the general method. Figure 8 is particu-
larly instructive; it shows the reduction in discretization
errors obtained by using mNRQCD compared to nonmov-
ing NRQCD to compute the fictitious �b decay constant.
Whether mNRQCD will prove indispensable in determi-
nations of heavy-to-light form factors is still to be seen.
Nevertheless, lattice calculations of these form factors are
a pressing need, and the more tools we have at our disposal,
the more quickly can we understand and reduce the errors
in our calculations. In particular, these methods will enable
us to explore the q2 ! 0 limit needed for the rare decay
B ! K�� while maintaining control over lattice discreti-
zation errors for the light vector meson. In future work we
will employ mNRQCD, and other tools, to move towards
this goal.

TABLE XV. B�
s � Bs energy splitting as a function of v.

v �Evð0Þ �Evð0Þ
�E0ð0Þ

0.0 0.0261(35) 1

0.2 0.0262(65) 1.00(28)

0.4 0.0310(80) 1.18(34)
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FIG. 13 (color online). Renormalization of the energy shift Cv

compared to the tree-level value �m. We show perturbative and
nonperturbative results for heavy-heavy and heavy-light mesons,
with a slight horizontal offset for legibility. Uncertainties are
presented as in Fig. 12.
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FIG. 12 (color online). Renormalization Zp of the external
momentum P0 ¼ �mv. We show perturbative and nonperturba-
tive results for heavy-heavy and heavy-light mesons, with a
slight horizontal offset for legibility. The uncertainties shown
on the data points for the perturbative results are purely statis-
tical due to the VEGAS integration. The strong coupling constant
is taken to be �s ¼ �Vðq�Þ and the error band is obtained by
varying the matching point in the range ½q�=2; 2q��.
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APPENDIX A: NOTATION

In this appendix we summarize for convenience our
choices of notation and convention detailed throughout
the main text.

(i) Lorentz boost:

� ¼ � �vk

�vj �jk þ �2

1þ� v
jvk

 !

with � ¼ ð1� v2Þ�1=2.
(ii) Gamma matrices:

�̂ 0 ¼ �0 0
0 ��0

� �
; �̂j ¼ 0 �j

��j 0

� �
;

�̂5 ¼ i�̂0�̂1�̂2�̂3 ¼ 0 �0

�0 0

� �

with the Pauli matrices �j. We define �0 ¼ 12�2.
(iii) Spinorial Lorentz boost:

Sð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ �Þp 1þ � �� � v

�� � v 1þ �

� �
:

(iv) Covariant derivatives and field strength tensor:

D� ¼ @

@x�
þ igA�; ½D�;D�� ¼ igF��:

(v) Chromoelectric and chromomagnetic fields in
Minkowski space:

Ek ¼ F0k; Bj ¼ �1
2�jklFkl:

(vi) Chromoelectric and chromomagnetic fields in
Euclidean space:

Ek ¼ �F4k; Bj ¼ �1
2�jklFkl:

APPENDIX B: REMOVING TIME DERIVATIVES IN
H AT ORDER 1=m2

In this section we show in detail how additional time
derivatives can be removed from the mNRQCD
Lagrangian at Oð1=m2Þ. In particular we give an explicit
expression for the operator V in (17).
The field redefinition (17) results in

L ¼ � �~�ð2Þ
�
O0 þ 1

�m
Oð2Þ1 þ 1

ð�mÞ2 Oð2Þ2
�
~�ð2Þ

þOð1=m3Þ

with

Oð2Þ1 ¼ Oð1Þ1; Oð2Þ2 ¼ Oð1Þ2 þ fV;O0g;

and we need to write Oð1Þ2 ¼ Oð2Þ2 � fV;O0g with some

operator V such that Oð2Þ2 does not contain time deriva-

tives. We will treat the different terms in Oð1Þ2 [see (15)]

individually. Note that the last term, �f� 1
2U

2; O0g, is

already in the desired form. The time derivative in the
original O2, defined after (14), can be treated as follows:

ig

8
��̂0�jkl�

j�0
kfD0; E

0
lg ¼ � ig

8
��̂0�jkl�

j�0
kfv �D; E0

lg

� f� g

8
��jkl�

j�0
kE

0
l; O0g:

(B1)

Next, using

U ¼ 1

4
ð�2 � 1ÞO0 þ i

2
�̂0v �D (B2)

we obtain
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UO0U ¼ 1

2
fU2; O0g þ 1

2
½U; ½O0; U�� ¼ 1

2
fU2; O0g þ 1

2

�
U;

�
O0;

1

4
ð�2 � 1ÞO0 þ i

2
�̂0v �D

��

¼ 1

2
fU2; O0g þ 1

2

�
U;

�
i�̂0ðD0 þ v �DÞ; i

2
�̂0v �D

��
¼ 1

2
fU2; O0g � 1

4
½U; ½D0;v �D��

¼ 1

2
fU2; O0g � i

16
½�̂0ðð�2 � 1ÞD0 þ ð�2 þ 1Þv �DÞ; igv �E�

¼ �
	
� 1

2
U2; O0

�
þ g

16
�̂0ðð�2 � 1ÞDad

0 þ ð�2 þ 1Þv �DadÞðv �EÞ (B3)

and

fU;O1g ¼
	
1

4
ð�2 � 1ÞO0 þ i

2
�̂0v �D; O1

�
¼
	
i

2
�̂0v �D; O1

�
�
	
� 1

4
ð�2 � 1ÞO1; O0

�

¼
	
i

2
�̂0v �D; Oð1Þ1

�
�
	
i

2
�̂0v �D; fU;O0g

�
�
	
� 1

4
ð�2 � 1ÞO1; O0

�

¼
	
i

2
�̂0v �D; Oð1Þ1

�
þ
�
U;

�
i

2
�̂0v �D; O0

��
�
		
i

2
�̂0v �D; U

�
� 1

4
ð�2 � 1ÞO1; O0

�
: (B4)

Let us now consider the nested commutator in (B4):�
U;

�
i

2
�̂0v �D; O0

��
¼
�
U;

�
i

2
�̂0v �D; i�̂0D0

��
¼
�
i

4
�̂0ðð�2 � 1ÞD0 þ ð�2 þ 1Þv �DÞ; ig

2
v �E

�

¼ �g

8
�̂0ðð�2 � 1ÞDad

0 þ ð�2 þ 1Þv �DadÞðv �EÞ:

We conclude from (15), (B1), (B3), and (B4) that

V ¼ �g

8
��jkl�

j�0
kE

0
l þ

	
i

2
�̂0v �D; U

�
� 1

4
ð�2 � 1ÞO1 �U2 (B5)

and

Oð2Þ2 ¼ g

8
��̂0ðDad

� u�F
�� þ i�jkl�

j�m
kfDm;E

0
lg � i�jkl�

j�0
kfv �D; E0

lgÞ

� g

16
�̂0ðð�2 � 1ÞDad

0 þ ð�2 þ 1Þv �DadÞðv �EÞ þ i

4
�̂0fv �D;D2 � ðv �DÞ2 þ g� �B0g

¼ g

8
�2�̂0ðDad �E� v � ðDad �BÞÞ þ ig

8
��̂0� � ðD�E0 �E0 �DÞ � ig�2

8ð1þ �Þ �̂
0fv �D;� � ðv�E0Þg

þ i

4
�̂0ðfv �D;D2g � 2ðv �DÞ3Þ þ ig

4
�̂0fv �D;� � B0g þ ð2� v2Þg�2

16
�̂0ðDad

0 � v �DadÞðv �EÞ:

APPENDIX C: LATTICE DERIVATIVES AND
FIELD STRENGTH

In this section we give explicit expressions for the dis-
cretized derivatives we use in our lattice action, Eqs. (30)
and (31). All expressions are constructed from the elemen-
tary forward, backward, and symmetric derivatives

�þ
�c ðxÞ ¼ U�ðxÞc ðxþ �̂Þ � c ðxÞ;

��
�c ðxÞ ¼ c ðxÞ �U��ðxÞc ðx� �̂Þ;

�

�c ðxÞ ¼ 1

2½U�ðxÞc ðxþ �̂Þ �U��ðxÞc ðx� �̂Þ�:
For performance reasons, we construct higher-order opera-
tors to be maximally local by balancing the occurrence of
these three types. We also symmetrize the expressions.

Unimproved derivatives:

�ð2Þ ¼ X3
j¼1

�þ
j �

�
j ;

�ð2Þ
v ¼ 1

2

X3
j;k¼1

vjvkð�þ
j �

�
k þ ��

j �
þ
k Þ;

�ð3Þ
v ¼ 1

2

X3
j;k;l¼1

vjvkvlð�þ
j �



k �

�
l þ��

j �


k �

þ
l Þ;

�ð4Þ
v ¼ 1

2

X3
j;k;l;m¼1

vjvkvlvmð�þ
j �

�
k �

þ
l �

�
m

þ ��
j �

þ
k �

�
l �

þ
mÞ:
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Improved derivatives :

~�

j ¼ �


j � 1

6
�þ

j �


j �

�
j ;

~�ð2Þ ¼ �ð2Þ � 1

12

X3
j¼1

�þ
j �

�
j �

þ
j �

�
j ;

~�ð2Þ
v ¼ �ð2Þ

v þ 1

4

X3
j;k¼1

vjvk�þ
j �

�
j �

þ
k �

�
k � 1

12

� X3
j;k¼1

vjvkð�þ
j �

�
j �

þ
j �

�
k þ��

j �
þ
j �

�
j �

þ
k

þ�þ
j �

�
k �

þ
k �

�
k þ��

j �
þ
k �

�
k �

þ
k Þ:

Unimproved adjoint derivative:

�ad
�
~F	�ðxÞ ¼ 1

2½U�ðxÞ ~F	�ðxþ �̂ÞUy
�ðxÞ

�U��ðxÞ ~F	�ðx� �̂ÞUy��ðxÞ�:

Improved field strength tensor:

~F��ðxÞ ¼ 5
3F��ðxÞ � 1

6ðU�ðxÞF��ðxþ �̂ÞUy
�ðxÞ

þU��ðxÞF��ðx� �̂ÞUy��ðxÞ � ð� $ �ÞÞ;

where

F��ðxÞ ¼ �i

2g
ð���ðxÞ ��y

��ðxÞÞ;

���ðxÞ ¼ 1

4

X
fð�;Þg��

U�ðxÞUðxþ �̂Þ

�U��ðxþ �̂þ ̂ÞU�ðxþ ̂Þ

with

fð�;Þg�� ¼ fð�; �Þ; ð�;��Þ; ð��;��Þ; ð��;�Þg
for � � �:

APPENDIX D: TADPOLE IMPROVEMENT

In the perturbative calculation it is possible to explicitly
work out every path appearing in the evolution and cancel-
ing the tadpole factors which appear in every instance of
U�ðxÞUy

�ðxÞ. Here we give analytical expressions of the

tadpole improvement corrections for this case for the full
Oð1=m2; v4

relÞ action.
Numerical results for m ¼ 2:8 and n ¼ 2 can be found

in Table XVI and should be compared to Table III.

�̂
ðtadpoleÞ
0 ¼ ��̂ðtadpoleÞ

1

¼ uð2Þ0

�
1� v2

3
� 19v4

768
� v6

1024
þ 2688� 852v2 þ 11v4 � 13v6

768�m

� 3456� 4920v2 þ 2497v4 � 264v6 þ 15v8

3072�2m2
� 516� 1264v2 þ 1058v4 þ 275v6 � 15v8

768�3m3

��591þ 1460v2 � 1358v4 þ 448v6 þ 5v8

256�4m4
� 81� 216v2 þ 246v4 � 128v6 þ 25v8

64�5m5

�
:

�̂
ðtadpoleÞ
2 ¼ uð2Þ0

�
� 5

3
þ 7v2

32
þ 13v4

512
þ v6

2048
þ�10880þ 4480v2 � 215v4 þ 35v6

3072�m

þ�12480þ 10288v2 þ 4321v4 � 360v6 þ 15v8

6144�2m2
þ 2412� 4864v2 þ 3974v4 þ 311v6 � 15v8

1536�3m3

þ�879þ 2100v2 � 1982v4 þ 640v6 þ 5v8

512�4m4
þ 81� 216v2 þ 246v4 � 128v6 þ 25v8

128�5m5

�
:

TABLE XVI. Tadpole improvement corrections �̂
ðtadpoleÞ
j for

the full Oð1=m2; v4
relÞ action and cancellation of U�U

y
� as

described in the main text. The heavy-quark mass is m ¼ 2:8

and the stability parameter n ¼ 2. Note that �̂
ðtadpoleÞ
1 ¼

��̂
ðtadpoleÞ
0 .

v �̂
ðtadpoleÞ
0 =uð2Þ0 �̂

ðtadpoleÞ
2 =uð2Þ0 �̂ðtadpoleÞ

v =uð2Þ0

0.00 2.106 10 �3:143 36 � � �
0.01 2.106 00 �3:143 19 �3:143 21
0.10 2.095 92 �3:126 39 �3:128 98
0.20 2.065 07 �3:075 57 �3:085 73
0.30 2.012 67 �2:991 12 �3:013 21
0.40 1.937 22 �2:873 58 �2:910 83
0.50 1.836 66 �2:724 04 �2:777 87
0.60 1.708 36 �2:544 38 �2:613 51
0.70 1.549 00 �2:337 43 �2:416 72
0.75 1.456 25 �2:224 76 �2:305 57
0.80 1.353 55 �2:106 33 �2:185 13
0.85 1.239 10 �1:981 82 �2:054 02
0.90 1.109 11 �1:849 23 �1:908 80
0.95 0.952 62 �1:700 37 �1:739 01
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�̂
ðtadpoleÞ
v ¼ uð2Þ0

�
� 5

3
þ 11v2

48
þ 29v4

1536
þ v6

2048
þ�5440þ 1860v2 � 51v4 þ 16v6

1536�m

� 12480þ 712v2 � 3521v4 þ 320v6 � 15v8

6144�2m2
þ 2412� 3016v2 þ 2306v4 þ 299v6 � 15v8

1536�3m3

þ�879þ 1812v2 � 1614v4 þ 544v6 þ 5v8

512�4m4
þ 81� 216v2 þ 246v4 � 128v6 þ 25v8

128�5m5

�
:

It should be noted that the expressions for partial can-
cellation are significantly simpler. Numerically we find
that the difference is of the order of 10% in the one-loop
coefficient (see Tables III and XVI). We conclude that it is
sufficient to avoid multiplying U�U

y
� by 1=u20 within H0

and �H separately.

APPENDIX E: FURTHER PERTURBATIVE
RESULTS

In this appendix, we present one-loop perturbative re-
sults for the renormalization of the mNRQCD propagator
for various simpler forms of the mNRQCD action.

1. Simplest case

We considered the simplest, unimproved mNRQCD
action, i.e.,

H0 ¼ �iv ��
 ��ð2Þ � �ð2Þ
v

2�m
; �H ¼ 0

coupled to the Wilson gluon action. The gluon propagator
in Feynman gauge is

D�1ðkÞ ¼ 4
X
�

sin2
k�

2
þ �2

¼ 2� w� w�1 þ 4
X
j

sin2
kj
2
þ �2

with w ¼ eik4 . The gluon mass was set to �2 ¼ 10�6.
The case �H ¼ 0 is very simple, as all propagators and

vertices are diagonal in spinor and color space, and the
calculations can be performed in reasonable time on a
workstation. We used a heavy-quark mass of m ¼ 2:8
and the stability parameter is n ¼ 2.
In Table XVII we list�j for this action before including

mean-field corrections. We only give the finite parts of the
�j; the infrared divergence�2=ð3�Þ log�2 is not included

in the results for �1, �2, and �v.
The mean-field corrections, canceling U�U

y
� factors as

described in the main text, are

�ðtadpoleÞ
0 ¼ ��ðtadpoleÞ

1 ¼ uð2Þ0

�
1þ 3� v2

�m

�
;

�ðtadpoleÞ
2 ¼ �ðtadpoleÞ

v ¼ �uð2Þ0

�
2þ 2n� 1

2n

3� v2

�m

�
;

(E1)

whereas the corresponding expressions for tadpole cancel-
lation described as in Appendix D are (n ¼ 2)

�̂
ðtadpoleÞ
0 ¼ ��̂ðtadpoleÞ

1

¼ uð2Þ0

�
1� v2

8
þ 3� v2

�m
� 3� 2v2 þ v4

8�2m2

�
;

�̂
ðtadpoleÞ
2 ¼ �̂ðtadpoleÞ

v

¼ uð2Þ0

�
�2þ v2

16
þ�9þ 3v2

4�m
þ 3� 2v2 þ v4

16�2m2

�
:

(E2)

The renormalization parameters of the heavy-quark action
(including mean-field corrections) are plotted in Fig. 14.

For the one-loop coefficient of u0 we use uð2Þ0 ¼ 0:9735
[51], and as for the full action, we use cancellation of
U�U

y
� described in the main text.

We have also computed the renormalization parameters
for the action discussed in [19,33],

TABLE XVII. Infrared-finite part of �j for the unimproved
action with kinetic term H0 only, as described in Appendix E 1.
The gluon action is the Wilson action with �2 ¼ 10�6 and we
use m ¼ 2:8, n ¼ 2. Mean-field corrections are not included; the
errors shown are statistical due to the VEGAS integration.

v �0 �1 �2 �v

0.00 �2:9851ð24Þ 2.8619(24) 3.9967(29) � � �
0.01 �2:9879ð24Þ 2.8645(24) 3.9987(29) 4.003(23)

0.10 �2:9721ð24Þ 2.8483(25) 3.9889(29) 3.9741(39)

0.20 �2:9299ð23Þ 2.8033(24) 3.9567(29) 3.9474(31)

0.30 �2:8564ð23Þ 2.7252(24) 3.9022(29) 3.8826(29)

0.40 �2:7490ð22Þ 2.6092(23) 3.8218(29) 3.7898(28)

0.50 �2:6085ð22Þ 2.4540(22) 3.7104(30) 3.6702(27)

0.60 �2:4260ð20Þ 2.2462(21) 3.5651(33) 3.5087(27)

0.70 �2:2057ð18Þ 1.9859(20) 3.3833(39) 3.3157(25)

0.75 �2:0832ð18Þ 1.8335(20) 3.2742(45) 3.2110(26)

0.80 �1:9371ð17Þ 1.6482(19) 3.1333(57) 3.0851(26)

0.85 �1:7790ð16Þ 1.4343(20) 3.0029(80) 2.9447(26)

0.90 �1:5992ð15Þ 1.1742(22) 2.820(13) 2.7790(29)

0.95 �1:3887ð13Þ 0.8223(29) 2.480(29) 2.5639(36)
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H0 ¼ �iv ��
 � �ð2Þ � ðv ��
Þ2
2�m

; �H ¼ 0;

where a different (less local) discretization of the operator
ðv �DÞ2 is used. We used exactly the same simulation
parameters as given there, m ¼ 2:0, n ¼ 2, and found
agreement with their results for�j within statistical errors.

2. More improved case

We now consider a more improved action, including the

spin-dependent � � ~B0 term and the spatial and temporal
lattice spacing improvement:

H0 ¼ �iv ��
 � �ð2Þ ��ð2Þ
v

2�m
;

�H ¼ � g

2�m
� � ~B0 þ �Hcorr;

where �Hcorr is the same as in (38). We use the Symanzik-
improved gluon action so that the Landau gauge mean-link

one-loop coefficient is uð2Þ0 ¼ 0:750 [56].

Again, we consideredm ¼ 2:8 and n ¼ 2, and as for the
full Oð1=m2; v4

relÞ action discussed in the main text the

gluon mass was taken to be �2 ¼ 10�6. The results for
the �j obtained from the VEGAS integration are given in

Table XVIII and we show the renormalization parameters
(including mean-field corrections) as a function of the
frame velocity in Fig. 15.

APPENDIX F: POLES OF THE IMPROVED GLUON
PROPAGATOR

As the heavy-quark action contains only first order time
derivatives finding the poles in the propagator is trivial. It is
also straightforward to find the poles of the simple, unim-
proved Wilson gluon propagator. However, this is not the
case for the Symanzik-improved gluon action. In this
section we analyze the position of poles in the
Symanzik-improved gluon propagator described in
Ref. [66].

TABLE XVIII. Infrared-finite part of �j for the Oð1=mÞ ac-
tion with chromomagnetic term, as described in Appendix E 2.
The gluon action is the Symanzik-improved action with �2 ¼
10�6 and we use m ¼ 2:8, n ¼ 2. Mean-field corrections are not
included; the errors shown are statistical from the VEGAS inte-
gration.

v �0 �1 �2 �v

0.00 �2:3938ð19Þ 2.0790(20) 2.8211(23) � � �
0.01 �2:3910ð19Þ 2.0761(20) 2.8180(23) 2.816(20)

0.10 �2:3751ð19Þ 2.0621(20) 2.8039(23) 2.7780(32)

0.20 �2:3403ð19Þ 2.0327(20) 2.7728(23) 2.7437(25)

0.30 �2:2813ð19Þ 1.9830(19) 2.7230(23) 2.6729(23)

0.40 �2:1895ð18Þ 1.9033(18) 2.6367(22) 2.5670(22)

0.50 �2:0624ð17Þ 1.7912(17) 2.5208(22) 2.4222(20)

0.60 �1:9070ð16Þ 1.6525(17) 2.3810(23) 2.2484(19)

0.70 �1:7105ð14Þ 1.4765(16) 2.1985(26) 2.0375(18)

0.75 �1:5932ð14Þ 1.3716(15) 2.0890(29) 1.9160(18)

0.80 �1:4613ð13Þ 1.2555(15) 1.9695(35) 1.7893(18)

0.85 �1:3094ð12Þ 1.1314(15) 1.8435(46) 1.6597(18)

0.90 �1:1285ð11Þ 1.0166(16) 1.7173(76) 1.5480(20)

0.95 �0:9135ð11Þ 1.0892(26) 1.731(20) 1.6439(30)
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FIG. 15 (color online). Heavy-quark renormalization parame-
ters for the Oð1=mÞ action with chromomagnetic interaction
term �H. The gluon action is the Symanzik-improved action
with �2 ¼ 10�6 and we use m ¼ 2:8, n ¼ 2. All mean-field
corrections are included. Note improvement drastically reduces
�Zm.
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FIG. 14 (color online). Heavy-quark renormalization parame-
ters for the simple, unimproved action with kinetic term H0 only.
The gluon action is the Wilson action with �2 ¼ 10�6 and we
use m ¼ 2:8, n ¼ 2. All mean-field corrections are included and
the results are infrared-finite. Note �Zp is small due to small

violation of reparametrization invariance. Also note �Zm is large
for this unimproved action.

R. R. HORGAN et al. PHYSICAL REVIEW D 80, 074505 (2009)

074505-30



We restrict our discussion to Feynman gauge where the
gluon two-point function is given by

M�� ¼
�X

	

q�	k̂
2
	 þ �2

�
��� þ ð1� q��Þk̂�k̂� (F1)

with q�� ¼ 1þ 1
12 ðk̂2� þ k̂2�Þ and k̂� ¼ 2 sinðk�=2Þ.

To find the poles of the propagator, first we compute the

determinant of this matrix which is a polynomial in k̂2j and

! ¼ k̂20. For a given three-momentum kj 2 ½��;�� the
zeros of this expression in the z ¼ eik0 plane can be ob-
tained by solving detMð!Þ ¼ 0 and then using ! ¼ 2�
z� 1=z. It turns out that the determinant can be factored as

detMð!Þ ¼ ð!þ k̂2 þ �2Þ det ~Mð!Þ, with k̂2 ¼
4
P

3
j¼1 sin

2ðkj=2Þ, so that one solution coincides with the

root of the naı̈ve propagator. Numerically, for small a2�2

also one of the solutions of det ~Mð!Þ ¼ 0 is very close to
the naı̈ve solution. Note that the solutions come in pairs,
ðzþ; z�Þ with zþz� ¼ 1, so one of them lies inside the unit
circle and the other outside.

For a given spatial momentum there are 14 solutions. In
Fig. 16 these are plotted in the complex z plane for 1000

randomly chosen kj. For the gluon mass a value of �2 ¼
10�6 was chosen.
To compare the poles in the improved propagator to the

naı̈ve poles, their absolute value is computed and it is
compared to that of the naı̈ve poles given by

zðna€	veÞ
 ¼ 1
2ð2þ k̂2 þ �2 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk̂2 þ �2Þðk̂2 þ �2 þ 4Þ

q
Þ:
(F2)

In Fig. 17 these absolute values are plotted for the same
random three momenta. As can be seen from this plot the
absolute value of an improved pole is either larger than

zðna€	veÞþ or smaller than zðna€	veÞ� but it never lies between these
values.
We performed a similar analysis for the propagator in

Coulomb gauge and find that also in this case the poles of
the Symanzik-improved propagator always lie outside the

band defined by zðna€	veÞ� < jzj< zðna€	veÞþ .
Hence, it is legitimate to use the position of the naı̈ve

poles when deforming the integration contour in the deter-
mination of the heavy-quark renormalization parameters.
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