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The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice

measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for

which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can

arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative

contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for

extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point

energy is negative, regardless of the sign of the extrinsic curvature term.
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I. INTRODUCTION

The Wilson loop has a privileged status in gauge theory.
Although a nonlocal and composite operator, with dimen-
sional regularization, smooth loops in 3þ 1 dimensions
are rendered finite by the usual renormalization constants
for the gluon [1].

Lattice regularization, however, introduces an additional
divergence. Considering the Wilson loop as the propagator
for an infinitely heavy test quark, the new divergence, E0,
represents mass renormalization for the test quark. E0 has
dimensions of mass, so if a is the lattice spacing,E0 � 1=a,
and multiplies the length of the loop. Extracting the quark-
antiquark potential from the Wilson loop in the usual
manner, E0 corresponds to the zero point energy of the
potential at asymptotically large distances. Although the
(bare) quark-antiquark potential has been measured with
precision [2–5], E0 is usually ignored.

It is thus of interest to know how to renormalize E0 on
the lattice. This is especially important for thermal Wilson
loops, where in a pure gauge theory the Polyakov loop is
the order parameter for deconfinement. While the bare
Polyakov loop vanishes in the continuum limit, the renor-
malized loop does not [6–14]. However, as E0 varies, the

renormalized Polyakov loop ‘ changes as ‘ ! e�E0=T‘;
see, e.g., Appendix C of Ref. [10]. This nonperturbative
ambiguity cannot be fixed by appealing to the perturbative
regime at high temperature.

In the first section of the paper, we follow previous
analysis [6,7,9,10] and suggest that there is a natural way
to renormalize the Wilson loop such that the perturbative
contribution to the zero point energy vanishes identically,

E
pert
0 ¼ 0.
This does not exclude nonperturbative contributions to

the zero point energy. We illustrate this by considering Enon
0

in one possible model of confinement, that of string mod-
els. If � is the string tension, then just on dimensional
grounds, Enon

0 � ffiffiffiffi
�

p
is possible. Even so, in the Nambu

model [15,16], or variants thereof [4,17,18], Enon
0 ¼ 0.

A nonzero value of Enon
0 is generated only by models

with massive modes on the world sheet. This arises by
adding terms for the extrinsic curvature of the world sheet.
A simple computation shows that at one loop order, Enon

0 is

nonzero and negative, whether the coupling for the extrin-
sic curvature term is positive [19–22] or negative [23–26].
On the lattice, numerical simulations find that the quark-

antiquark potential appears to agree well with the simplest
Nambu model down to rather short distances [3]. This
suggests that on the world sheet, any massive modes are
heavy. In this case, the effective string theory is strongly
coupled, so that the results of a one loop computation are
only suggestive.

II. RENORMALIZED ZERO POINT ENERGY

Consider a rectangular Wilson loop of length ttot and
width R. When ttot � R, the vacuum expectation value of
the bare Wilson loop can be used to define the quark-
antiquark potential,

hW i ¼
�
exp

�
ig

I
C
A�dx

�

��
¼ expð�VðRÞttotÞ: (1)

At large distances,

VðR ! 1Þ� �Rþ E0 � �

R
þ � � � : (2)

Here� is the string tension,E0 is the zero point energy, and
� is a constant.
Assume that the theory has no dynamical quarks and

confines, with the loop in the fundamental representation.
Then � � 0, and � is universal,¼ �=12 in four spacetime
dimensions [2]. In quantum mechanics, the value of the
zero point energy simply produces a phase which multi-
plies the wave function, and is of no physical consequence.
The potential above is a bare quantity, but only the zero

point energy is ultraviolet divergent. The Wilson loop is
related to the propagator for a massive test quark, with the
zero point energy the additive shift in the mass. As the
mass of the test field goes to infinity, the integral for this
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mass divergence is over three, instead of four, dimensions:

E
pert
0 ��g2

Z 1=a d3k

ð2�Þ3
1

k2
þ � � �

¼ �c1g
2ð1þ c2g

2 þ � � �Þ 1
a
: (3)

The constants c1, c2, etc., depend upon the representation
of the test particle, the details of lattice discretization, etc.

The possibility of a zero point energy was recognized
when the renormalization of the Wilson loop was first
considered [1]. In perturbative computations it is of little
consequence, because then dimensional regularization is
natural, and the integral in Eq. (3) automatically vanishes,
as a purely powerlike divergence in an odd number of
dimensions. This remains true with other gauge invariant
regulators, such as higher derivatives or Pauli-Villars, since
they also eliminate such power law divergences.

To define a renormalized loop on the lattice, we intro-
duce the renormalization constant ZR, which is a function
of the (bare) coupling, g2:

W bare
R ¼ ZRðg2ÞL=aW ren

R : (4)

With L is the length of the loop, and L=a is the number of
links for the path.

One way of extracting the renormalization constant
ZRðg2Þ is to compute for different values of the lattice
spacing, a, holding the physical length, L, fixed [7,10].
This can be done directly from the numerical simulations,
without using the perturbative expansion of Eq. (3).

Another way of computing ZRðg2Þ is to compare the
potential at short distances, VðRÞ as R ! 0, to the result in
perturbation theory [6,9,10]. In a pure SUð3Þ gauge theory,
the two methods agree with one another to the numerical
accuracy tested [10].

Under this renormalization, it is possible to redefine

ZRðg2Þ ! ZRðg2ÞL=ae� ~E
pert
0

L=Z0; (5)

so that the renormalized Wilson loop becomes

W ren
R ! eþ ~E

pert
0

LZ0W ren
R : (6)

In these expressions Z0 is a pure number, which just
shifts the overall normalization of the loop. We can always
choose this normalization by considering very small loops;
for Polyakov loops, this corresponds to the limit of very
high temperature. For small loops, perturbative corrections
are computable as a power series in �g2ðLÞ � 1= logðLÞ.
We can thus eliminateZ0 by requiring that the small loops,
suitably normalized, approach unity as L ! 0.

Less trivial is the change due to ~Epert
0 , which shifts the

renormalized loop by expð ~Epert
0 LÞ. This cannot be elimi-

nated considering small loops, L ! 0, as ~Epert
0 represents a

correction in a power of L, which in an asymptotically free
theory is nonperturbative.

We suggest that under perturbative renormalization, the

only consistent choice is to take ~Epert
0 ¼ 0. We can renor-

malize the loop at zero temperature, where gluons are
massless. For massless fields, the linearly divergent inte-
gral is uniformly proportional to the ultraviolet cutoff,
which is �1=a. The basic point is that there are no finite
terms �a0.
This depends crucially upon the fact that at zero tem-

perature, gluons are massless order by order in perturbation
theory. Consider how the integral in Eq. (3) changes if the
gluons did have a mass, m:

Epert
0 ðmÞ � �g2

Z 1=a d3k

ð2�Þ3
1

k2 þm2

¼ �g2
�
c1

1

a
� e2mþ e3m

2aþ � � �
�
; (7)

for some constants e2, e3, etc. The ultraviolet divergent
term, �1=a, is independent of the mass m, and so the
coefficient c1 is the same as in Eq. (3). When m � 0,
though, there is a term �e2m which contributes a finite
amount to the zero point energy. There are also terms at
higher order which vanish as a ! 0, �e3m

2a, etc.
Our point is simply that when m ¼ 0, then e2 ¼ 0, and

there is no contribution to the zero point energy. This can
be made more general. Consider first a non-Abelian gauge
theory without dynamical quarks, and let the renormaliza-
tion mass scale of the theory be�ren. To be invariant under

the renormalization group, ~E
pert
0 can only depend upon�ren

as ~Epert
0 ��ren expð�

R
dg=�ðg2ÞÞ, where �ðg2Þ is the

� function for the theory. Doing so, however, means that
~E
pert
0 is a dynamically generated mass scale. Such a non-

perturbative mass scale is inconsistent with perturbative
renormalization.
Strictly speaking, this argument fails in the presence of

dynamical quarks, where one could have ~E
pert
0 �mquark,

with mquark a current quark mass. We suggest that ~Epert
0

vanishes even in the presence of dynamical quarks.
However quarks modify the gluon propagator, the pertur-
bative contribution to the zero point energy arises from a
linearly divergent integral over a massless field, as it does
in the pure glue theory.
The bare zero point energy, Eq. (2), is then a sum of two

contributions,

E0 ¼ Epert
0 þ Enon

0 : (8)

The perturbative contribution is ultraviolet divergent, with

aEpert
0 � 0 as a ! 0. This does not exclude nonperturba-

tive contributions, Enon
0 , for which aEnon

0 ! 0 as a ! 0.
We compute Enon

0 in string models in the next section. Our

point is simply that Epert
0 can be uniquely determined: there

is no freedom to vary E
pert
0 by a finite amount by introduc-

ing ~Epert
0 .
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In particular, this implies that it is not possible to choose

a ~Epert
0 so that the renormalized potential VðRÞ vanishes at a

given distance [8]. Of course the renormalized potential
will vanish at some distance R0, but this cannot be fixed
a priori. Instead, it follows from the renormalized quark-
antiquark potential.

There are several notable examples when the gluon
develops a ‘‘mass,’’ and a finite zero point energy arises
perturbatively. In all of these cases, however, renormaliza-
tion proceeds as form ¼ 0; there is no ambiguity in how to
compute such terms.

The first is at nonzero temperature, where a Debye mass
mDebye � gT arises for A0. Comparing to Eq. (7), this

generates a zero point energy �gmDebye � g3T [11]. The

coefficient e2 is positive, so at asymptotically high tem-
peratures, the renormalized Polyakov loop approaches
unity from above. A related phenomenon is familiar in
Coulombic plasmas.

Another case where a gauge field develops a mass is
when it is coupled to a scalar field, �, which then under-
goes spontaneous symmetry breaking. Then the gauge
fields acquire a Higgs mass, mHiggs, and there is a zero

point energy �g2mHiggs.

The last example where a perturbative zero point energy
arises is for a gauge theory in three spacetime dimensions.
Then the gauge coupling, g23d, has dimensions of mass, and

there can be a perturbative contribution to the zero point
energy �g23d. This cannot be distinguished from the non-

perturbative contribution, since the square root of the string
tension is also �g23d. In this sense, it is much cleaner

separating Enon
0 from E

pert
0 in four, instead of three,

dimensions.
In fact, in three dimensions one cannot avoid a zero

point energy proportional to g23d [1,7]. For a smooth

Wilson loop in three dimensions, the only ultraviolet di-
vergence is at one loop order; instead of Eq. (3), it is

E
pert;3d
0 ��g23d

Z 1=a

1=L

d2k

ð2�Þ2
1

k2
¼ �g23dc

3d
2 log

�
L

a

�
: (9)

This then implies that bare loops vanish in the continuum
limit as

Z div
R ðg23dÞ � expð�CRc3d2 g23dL logðL=aÞÞ �

�
a

L

�
CRc3d

2
g2
3d
L
:

(10)

As in four dimensions, in three dimensions bare loops
vanish in the continuum limit, a ! 0. The suppression in
three dimensions is only by a power of a, though, and is
much weaker than the exponential suppression seen in four
dimensions. This is seen in numerical simulations, where
the bare Polyakov loop approaches unity at temperatures as
low as several times the critical temperature [27].

III. STRING MODELS

To epitomize how a nonperturbative zero point energy
can arise, in this section we consider a string model of the
flux sheet. Of course there are many other models of
confinement; presumably generic models also generate
Enon
0 � 0.
We consider a string action

S ¼
Z

d2z
ffiffiffi
g

p
gabðDax�Þ

�
�þ 1

�
D2 þ 1

�
D4

�
ðDbx

�Þ:
(11)

Here Da are covariant derivatives with respect to the
induced metric gab ¼ @ax

�@bx� on the surface x�ðzÞ;
D2x� ¼ 1=

ffiffiffi
g

p
@að ffiffiffi

g
p

gab@bx
�Þ.

In Eq. (11), � is the string tension, with dimensions of
mass squared. The coupling for the extrinsic curvature
term, �, is dimensionless. Lastly, the coupling � also has
dimensions of mass squared. This action can be considered
as the first terms in a power series of covariant derivatives
on the world sheet. It will be clear later that our qualitative
conclusions will not be altered by the presence of higher
terms.

A. Nambu model

The simplest model is that for which � ¼ � ¼ 1, so the
action only involves the area of the world sheet. In four
dimensions, the exact solution for the potential is [16]

VðRÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � �

6�

r
� �R� �

12R
� �2

288�R3
þ � � � :

(12)

The term �1=R is universal [2,4,20]. The potential is

imaginary when R<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð6�Þp

, which reflects the incon-
sistency of the pure Nambu model in four dimensions.
For our purposes, all we need to recognize is that at large

distances, the potential is �R times a power series in
1=ð�R2Þ. Thus there is no zero point energy in the
Nambu model, Enon

0 ¼ 0.
We shall see in the next section that this arises because

there are only massless modes in the Nambu model. Thus
Enon
0 remains zero for the models of Polchinski and

Strominger [17] and of Lüscher and Weisz [4]. While these
models are rather different, in both higher derivative terms,
like the extrinsic curvature term of Eq. (11), are treated as
perturbations to the Nambu model. Thus there are only
massless modes in such models, and Enon

0 remains zero.

B. Rigid strings

We next consider the model with positive sign for the
coupling to the extrinsic curvature, � > 0, and neglect the
coupling for a higher derivative term, � ¼ 1.
We compute for small fluctuations about a flat sheet and

follow Alvarez [15]. We let the number of spacetime
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dimensions, d, be arbitrary. At one loop order the d� 2
transverse fluctuations contribute to give an effective ac-
tion,

Seff ¼
�
d� 2

2

�
tr logð�@2Þð�@2 þm2Þ;

�@2 ¼ �@2t � @2r ; m2 ¼ ��:

(13)

The time is continuous, so the corresponding momenta! is
continuous. In the spatial direction, the transverse direc-
tions vanish at the end of the flux sheet, x�tr ð0Þ ¼ x�tr ðRÞ ¼
0. Thus the associated momenta are discrete, p ¼ n�=R,
for n ¼ 1; 2; . . . .

The effective Lagrangian involves a product of a mass-
less mode, from the Nambu model, and a massive mode.
The integral over the massless mode generates the term
�1=R. To do the integral over the massive mode, one can
use analytic regularization [15], or consider the derivative
with respect to m2:

@Seff
@m2

¼
�
d� 2

2

�
tr

1

�@2 þm2

¼ ttot

�
d� 2

2

� X1
n¼1

Z d!

2�

1

!2 þ ðn�=RÞ2 þm2
:

(14)

The ! integral can be done either directly, or by contour
integration:

@Seff
@m2

¼ ttot

�
d� 2

4

� X1
n¼1

1

ð!2 þ ðn�=RÞ2 þm2Þ1=2 : (15)

Integrating with respect to m2, we obtain

Seffðm2Þ ¼ ttot

�
d� 2

2

� X1
n¼1

��
n�

R

�
2 þm2

�
1=2

: (16)

The sum over n is highly divergent, but can be done by
using 	-function regularization.

Form ¼ 0, there is a single term,�1=R. The sum over n
gives 	ð�1Þ, and generates the Lüscher term.

Whenm � 0, we can expand the power series in powers
of n�=R. The first term is proportional to m times 	ð0Þ ¼
�1=2, so that the nonperturbative zero point energy is

Enon
0 ¼ �

�
d� 2

4

� ffiffiffiffiffiffiffi
��

p
: (17)

This result was obtained previously [21,22], by comput-
ing in a large d expansion in weak coupling, � � 1.
Braaten, Pisarski, and Tse computed to leading order,
and obtained Eq. (17) [Eq. (16) of [21]]. Braaten and Tse
then computed at next to leading order in �, and so deter-
mined the corrections�� logðmÞ to Eq. (17) [Eq. (4.24) of
[22]].

Expanding Seff in powers of the spatial momenta,
ðn�=RÞ2, in principle we would expect corrections to the
potential proportional to �1=R2, �1=R4, and so on.

However, at one loop order a term �1=ðR2Þ‘ is propor-
tional to 	ð�2‘Þ; this vanishes when ‘ is an integer, as a
‘‘trivial’’ zero of the 	 function. Consequently, at one loop
order there is only a contribution to the zero point energy,
as all other corrections to the potential vanish. It is amusing
to contrast this to the massless case, where simply on
dimensional grounds the only contribution to Eq. (16) is
�1=R.
That corrections �1=ðR2Þ‘ vanish is special to one loop

order. This can be seen by the computations at next to
leading order in � at large d, where from Eq. (4.23) of [22],
at large distances the potential is

VðR ! 1Þ � �R� d

4
m� �d

24

1

R
� �2d2

1152

1

�R3

þ �2d2

384

1

m�R4
þ � � � : (18)

The result for the Nambu model is obtained by taking d !
d� 2; then for d ¼ 4, the terms �1=R and �1=R3 agree
with Eq. (12). It is noteworthy that even at next to leading
order in �, there is no correction�1=R2. We do not know if
this is peculiar to next to leading order, or persists at higher
order.
There is a nonzero contribution �1=R4, which can be

understood as follows. At leading order, Eq. (16), there is a
term �1=ðm3R4Þ times 	ð�4Þ, which vanishes. At next to
leading order there is a contribution � times�1=ðm3R4Þ, or
�1=ðm�R4Þ, which is nonzero.

C. Confining strings

We turn next to the case of confining strings [24–26]. We
take this to mean a theory with negative coupling constant
for the extrinsic curvature, � < 0, and � > 0. The effective
Lagrangian is

Seff ¼
�
d� 2

2

�
tr logð�@2Þðð�@2Þ2 � 2M2

1ð�@2Þ þM4
2Þ;
(19)

where

2M2
1 ¼

�

�
; M4

2 ¼ ��: (20)

As usual, the massless mode generates the usual term
�1=R.
The poles of the massive propagator are at

p2 ¼ M2
1 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

2 �M4
1

q
¼ M2

2e
�2i
;

tanð2
Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M2

M1

�
4 � 1

s
: (21)

For the model to be physical, it is necessary that there are
no poles on the real axis [25]. This gives the constraint,
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M4
2 >M4

1; �2 >
�

4�
: (22)

As in the previous section we compute the derivative of
the effective Lagrangian with respect to M4

2,

@Seff
@M4

2

¼
�
d� 2

2

�
tr

1

ð�@2Þ2 � 2M2
1ð�@2Þ þM4

2

: (23)

In taking this derivative we can assume that M1 is inde-
pendent of M2.

We first compute the zero point energy, neglecting the
dependence upon the spatial momentum. This implies that
the sum over the discrete spatial momenta generates
	ð0Þ ¼ �1=2.

It is then necessary to perform the integral over energies,
!. For rigid strings, the propagator has two poles, at �im.
In the present case there are four poles. Two are in the

upper half plane, M2e
i
 and M2e

ið��
Þ, and two in the

lower half plane, M2e
�i
 and M2e

�ið�þ
Þ. Including the
contribution just of the two poles in the upper half plane,
the pole at M2e

i
 gives a residue �e�i
=ðM3
2 sinð2
ÞÞ,

while that at �M2e
�i
 gives a residue

�eþi
=ðM3
2 sinð2
ÞÞ. Hence,
@Seff
@M4

2

¼ �ttot

�
d� 2

16

�
1

sinð
ÞM3
2

: (24)

Using sinð
Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�M2

1=M
2
2Þ=2

q
, we find the nonpertur-

bative contribution to the zero point energy to be

Enon
0 ¼ �

�
d� 2

2
ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
2 �M2

1

q
: (25)

This vanishes when M2 ¼ M1, but at this point the propa-
gator has poles for real, Euclidean momenta, and the theory
is not well defined [25].

Having obtained this result, one can also go through the
algebra to determine corrections to the potential involving
higher powers of 1=R2. When p ¼ n�=R is included, the
poles in the propagator are shifted. Even so, the only way
that the spatial momentum p enters is as p2. Thus if one
expands the result in powers of p, one will find that
corrections are integral powers in p2. At one loop order,

as for the rigid string this only involves the trivial zeros of
the 	 function, so that once again, the zero point energy is
the only contribution to one loop order. As for the rigid
string, we do not expect that this persists to higher loop
order.
Clearly one could consider higher derivative terms for an

effective string model. By a similar analysis one expects
that at one loop order, the only correction to the Nambu
potential is Enon

0 < 0.

IV. CONCLUSIONS

We argued in Sec. II that a renormalized quark-antiquark
potential can be obtained from numerical simulations on
the lattice, and that perturbative contributions to the asso-
ciated zero point energy vanish. Nonperturbative contribu-
tions were computed in effective string models in Sec. III.
They vanish in the Nambu model, but arise for either rigid
or confining strings, with Enon

0 < 0 at one loop order.

Numerical simulations appear to find that at large dis-
tances, corrections to the Nambu model are small [3]. This
suggests that on the world sheet, any massive modes are
heavy on the scale of

ffiffiffiffi
�

p
. This is a regime of strong

coupling in effective string models, and so the one loop
result for Enon

0 is not definitive. It will be interesting to see

what numerical simulations find for both the sign and
magnitude of Enon

0 .
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