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We investigate the three flavor Nambu–Jona-Lasinio model of neutral quark matter at zero temperature

and finite density, taking into account the scalar, the pseudoscalar, and the Kobayashi-Maskawa-’t Hooft

interactions as well as the repulsive vector plus axial-vector interaction terms (vector extended

Nambu—Jona-Lasinio). We focus on the effect of the vector interaction on the chiral restoration at finite

density in neutral matter. We also study the evolution of the charged pseudoscalar meson energies as a

function of the quark chemical potential.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is accepted nowa-
days as the theory of strong interactions. The phase dia-
gram of strongly interacting matter in the T �� plane,
where T;� denote, respectively, the temperature and the
baryon chemical potential, is one of the most intriguing
research topics in modern theoretical physics. In-
vestigations on the various phases of the QCD phase
diagram enlighten the physics of high temperature and
small density, as well as small temperature and large
density, matter: the former can be created in our laborato-
ries by means of heavy ions collisions; the latter may be
realized in the cores of the compact stellar objects (white
dwarfs and neutron stars). The equation of state of strongly
interacting matter is all that one needs to make theoretical
predictions in the whole T �� regime. Unfortunately,
QCD is analytically treatable only in the perturbative
regime. Moreover, the most interesting phenomena are
not of a perturbative nature. For this reason, the QCD
equation of state is only known in a small slice of the phase
diagram.

The most concrete knowledge about strong interactions
at � ¼ 0 comes from lattice QCD (LQCD). However, at
�> 0 LQCD calculations with three colors suffer from the
sign problem. In order to circumvent this problem several
approaches have been suggested: expansion in �=T [1,2],
reweighting techniques [3], and analytical continuation
from the imaginary chemical potential axes [4,5].
However, none of them has yet been of a practical use at
high chemical potential and small temperature region.
Therefore, to make theoretical investigations on the QCD
phase diagram, and to compute the equation of state in a
wider range of chemical potentials where perturbative
QCD does not work, some effective models are needed.

Among them the Nambu—Jona-Lasinio (NJL) model [6–
9] is probably the most popular one: it shares the global
symmetries of QCD and is simpler to handle than QCD
itself. The main characteristic of the QCD vacuum, that is
spontaneous breaking of the chiral symmetry, is described
in the NJL model in a clear way. Moreover, its minimal
extension to the Polyakov-NJL model [10,11] reproduces
LQCD results at � ¼ 0 as well as at small chemical
potential [12] and at imaginary chemical potential [13].
As a consequence the NJL model is a promising tool to
make calculations of the QCD phase diagram.
In this work, we investigate the three flavor Nambu–

Jona-Lasinio model of neutral and �-equilibrated quark
matter at zero temperature and finite density, taking into
account the scalar, the pseudoscalar, and the Kobayashi-
Maskawa-’t Hooft interactions [14,15] as well as the re-
pulsive vector plus axial-vector interaction terms [16–19].
The introduction of the vector interaction and thus of the
vector excitations is interesting for several reasons: first, it
is well known that vector interactions play a dominant role
in determining the properties of matter at intermediate
densities. Experimental progress on the measurements of
the in-medium properties of vector mesons can be found in
Refs. [20,21]. In these conditions of baryon densities the
main degrees of freedom are nucleons and the lighter
pseudoscalar mesons (� and K), interacting among them
by the exchange of vector mesons (mainly � and !). One
may wish to derive meson-baryon interactions starting
from a microscopic interacting theory of the constituent
quarks. Such a derivation can be obtained by means of the
well-known bosonization and hadronization of the NJL
Lagrangian [22,23]. Keeping in mind the relevance of
vector meson modes on the phenomenology of nuclear
matter at intermediate densities, the vector interaction
(which excites vector and pseudovector mesons) must be
included from the very beginning in the hadronization of
the NJL Lagrangian. Second vector meson exchange might
be responsible for kaon condensation at high density. With
respect to this phenomenon, it is of a certain interest to
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compare the scenario offered by the NJL model with that
obtained within the hidden local symmetry framework, the
latter being consistent with kaon condensation [24–27].
Third, it has been suggested that quark hadron continuity
can be realized by means of the spectral function continu-
ity of the vector mesons [28].

These are only some of the reasons that lead us to
consider the role of the vector interaction in quark matter,
with particular focus on neutral and�-equilibrated systems
which should be realized in the core of neutron stars, if it
exists.

We study in this work the extended NJL model with
vector interaction, with particular emphasis put on the
neutral and equilibrated quark matter. The role of the
vector interaction in the NJL model has been studied
several times [16–19,29–31], but not yet in the regime of
electrical neutrality and � equilibrium. The study of neu-
tral, as well as �-equilibrated, matter is interesting for
astrophysical applications: matter inside a compact star
has to be electrically neutral; moreover, since weak pro-
cesses have a small characteristic time compared to the
lifetime of a compact star, matter inside it should be
equilibrated with respect to weak interactions also. We
can anticipate one of the results of our study; namely, the
phase diagram we compute does not differ qualitatively
from that found in the aforementioned references.
However, this does not diminish the relevance of our
work. As a matter of fact, if one wishes to study the ground
state of the model, having in mind physical applications
such as, for example, the structure of the compact stellar
objects, then neutrality is a necessary requirement that
must be settled on, and not a mere academic problem.

The vector coupling GV in the vacuum can be deter-
mined by the fit of the vector meson spectrum. However, it
is not clear ifGV in the nuclear medium has the same value
it has in the vacuum [31]. Experimental data on the me-
dium modifications of the ! vector meson mass [21] for
densities up to the saturation nuclear density can be repro-
duced within a NJL model with a fixed value of GV but
with additive multiquark interactions [32,33]; the effect of
these interactions can be rephrased simply as density de-
pendent redefinitions of the coupling constants [32–35]. As
a consequence it is not wrong to think of a model in which
only four quark interactions are included but where the
coupling constants run with density. Instead of computing
GV at each value of the chemical potential, in this work we
treat it as a free parameter, and investigate its influence on
the restoration of the approximate chiral symmetry at finite
density. NJL studies with GV ¼ 0 predict a first order
chiral restoration at � of the order of the constituent quark
masses. When GV is switched on, if its magnitude is larger
than a critical value, then the transition becomes a smooth
crossover [19]. We reproduce this scenario with neutral
matter at equilibrium. Also, a strong enough vector inter-
action disfavors the existence of the critical end point of
the phase diagram [31].

We do not include color superconductivity in this study.
This is done for simplicity. Nevertheless our results for the
electron chemical potential and for the densities of the
various species bear some implication of the effects of
the repulsive vector interaction in the color superconduc-
tive phases. A quantitative study on the role of vector (as
well as multiquark) interaction on the two flavor color
superconductor has been performed in Refs. [30,35], but
an analogous study in realistic three flavor quark matter is
still missing.
Another point that we consider in some detail is the

spectrum of the pseudoscalar excitations. This subject
has been considered, within the NJL model but in the
non-neutral case, in Ref. [36]. We first derive the loop
expansion of the meson action. It includes scalar, pseudo-
scalar, vector, and pseudovector mesons. However, we
focus here only on the pseudoscalar modes; therefore, we
specialize our equations to this case. We leave a more
complete study to a future work. This choice is motivated
by the comparison we would be tempted to make with
nuclear matter models, which predict a kaon condensed
phase for densities in the range ð2:5–5Þ�0 [37]. We antici-
pate another result, namely the absence of strangeness
condensation even in the presence of a vector interaction,
although the vector interaction lowers the K� in-medium
energy. This result was anticipated in Ref. [36]. However,
the authors of this paper do not make any attempt to
compute the chemical potential felt by the kaons, which
is a relevant ingredient to exclude definitely meson con-
densation in the ground state, since they are not interested
to the neutral phases. Moreover, they made their analysis
on the basis of the low density approximation within the
lowest linear level in �=�0. Even though at this order some
model independent prediction is possible, one might be
rather interested in the outcome of the model without any
further approximations other than the random phase ap-
proximation together with the mean field approximation.
With this in mind, our work improves, and at the same

time confirms, the results of Ref. [36], since we compute
on the same footing both the meson masses and their
effective chemical potentials, in the neutral phases.
Moreover, at large enough density we find a new collective
mode with K� quantum number but with lower mass,
standing just below the Landau damping threshold. This
is an unexpected feature of the model, which comes out
after the low density approximation is relaxed. Even if we
cannot exclude the possibility that this new excitation is
just a model artifact, it should be stressed that it might
modify the arguments about the critical baryon density for
the onset of strangeness, and therefore it might even bring a
drastic change in the conventional picture for the popula-
tion of strangeness in the compact stars.
We also compare the NJL scenario studied here with that

of a simple nuclear model in which kaon condensation is
realized [38,39]; this comparison is useful since it suggests
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the possible directions to follow in order to reproduce, at
least qualitatively, the scenario accepted by the nuclear
matter physics community. For completeness we notice
that other studies exist in which the kaon condensation
scenario is not favored [40].

The plan of the paper is as follows: in Sec. II we specify
the Lagrangian of the vector extended NJL (VENJL)
model. In Sec. III we derive the mean field effective action
of the VENJL model as well as the effective action for the
meson excitations at the second order in the meson fields.
In Sec. IV we show results for the restoration of the
approximate chiral symmetry at finite baryon chemical
potential. In Sec. V we present a detailed discussion of
the charged pseudoscalar modes in neutral and
�-equilibrated quark matter. In Sec. VI, inspired by our
results, we briefly discuss on the role that vector interaction
might have on color superconductivity. Finally, in Sec. VII
we summarize our results and draw our conclusions.

II. VENJL MODEL

In this work we are interested in neutral and
�-equilibrated quark matter at finite density. We work in
the grand canonical ensemble formalism, introducing a
chemical potential � corresponding to the conserved
baryon number. To be more specific we consider a system
of u, d, and s quarks at a finite chemical potential �
described by the Lagrangian

L ¼ X
f

�c f½i@��� þ��0�c f þLmass þL4 þL6

þLV þLA þ �e½i@����e; (1)

where c f corresponds to the quark field with flavor

f ( ¼ 1; 2; 3 for u; d; s) and e denotes the electron field.
We now specify each term in Eq. (1). A sum over color
indices is understood in Eq. (1).

Equilibrium under weak interactions d ! ue ��, s ! ue ��
implies �d ¼ �s and �d ¼ �u þ�e (we assume neutri-
nos escape from matter; therefore, �� ¼ 01). Moreover, in
order to achieve electrical neutrality we introduce the
Lagrange multiplier �Q associated with the total charge

Q, add the term �QQ̂ to the Lagrangian (1), and minimize

the thermodynamic potential under the stationarity condi-
tion @�=@�Q ¼ 0. The total charge operator is given by

Q̂ ¼ 2

3
uyu� 1

3
dyd� 1

3
sys� eye; (2)

thus adding �QQ̂ to Eq. (1) and recognizing that �Q ¼
��e we get the chemical potentials of the quarks, namely,

�u ¼ �� 2

3
�e; �d ¼ �s ¼ �þ 1

3
�e: (3)

Next we describe the other terms in our Lagrangian (1).
The mass term is

L mass ¼ �X
f

mf
�c fc f (4)

and mf is the current mass. In this work we assume mu ¼
md. The NJL four-fermion and six-fermion interaction
Lagrangians are [7–9]

L 4 ¼ G
X8
a¼0

½ð �c�ac Þ2 þ ði �c�5�ac Þ2�; (5)

L 6 ¼ �K½det �c fð1þ �5Þc f0 þ det �c fð1� �5Þc f0 �;
(6)

where �a are the Gell-Mann matrices in flavor space (�0 ¼ffiffiffiffiffiffiffiffi
2=3

p
1f) and the determinant is in flavor space as well.

Finally, LV þLA denote the following Uð3ÞV �Uð3ÞA
invariant interaction term:

L V þLA ¼ �GV

X8
a¼0

½ð �c���ac Þ2 þ ð �c���5�ac Þ2�;

(7)

where a summation over color and flavor is understood. In
the above equation �a denote the same set of matrices in
the flavor space introduced in Eq. (1). Typical values ofGV

in the vacuum are 0:2 � GV=G � 3 [16,19,29,32,35].

III. EFFECTIVE POTENTIAL AND EFFECTIVE
ACTION OF MESONS

In this section we sketch the derivation of the mean field
effective potential as well as of the effective action of the
meson modes in the VENJL model. The derivation is done
in some detail in order to easily compare our notations and
results with the existing literature. We follow the conven-
tions of Ref. [7].
The easiest way to derive the meson propagators is the

so-called linear approach [45–47]. First, we write the
t’ Hooft term as an effective 4-fermion interaction: this is
a well-known procedure [7]; therefore, we do not insist on
its details. After this is achieved the scalar and pseudosca-
lar interaction is written as

L4 þL6 ¼
X8
a¼0

½Kð�Þ
a ð �c�ac Þ2 þ KðþÞ

a ð �c i�5�ac Þ2�

þLmixing; (8)

where the term Lmixing generates the mixing between �0,

�0, and �8 modes and is not important in this context since
we focus on the charged meson modes. The effective
coupling constants are defined as follows:

1Some interesting possibilities may also arise when the neu-
trinos are trapped in the very early stage of the thermal evolution
of protoneutron stars before the deleptonization. The readers are
referred to [41–44] in this context.
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Kð�Þ
0 ¼ G� K

3
ð�	s � 	u � 	dÞ; (9)

Kð�Þ
1 ¼ Kð�Þ

2 ¼ Kð�Þ
3 ¼ G� K

2
ð�	sÞ; (10)

Kð�Þ
4 ¼ Kð�Þ

5 ¼ G� K

2
ð�	dÞ; (11)

Kð�Þ
6 ¼ Kð�Þ

7 ¼ G� K

2
ð�	uÞ; (12)

Kð�Þ
8 ¼ G� K

6
ð�	s þ 2	u þ 2	dÞ: (13)

In the above equations 	f ¼ h �ffi. Then we define the

following meson fields:


a ¼ Kð�Þ
a

�c�ac ; (14)

�a ¼ KðþÞ
a

�c i�5�ac ; (15)

v�
a ¼ GV

�c���ac ; (16)

a�a ¼ GV
�c���5�ac : (17)

The partition function of the model can be cast in the form
[47]

Z ¼
Z

DMDcD �c eiS; DM � D
D�DvDa;

(18)

with the bosonized action given by

S ¼
Z

d4x �c ½i��@�mþ 2
a
�c�ac þ 2�a

�c i�5�ac

� 2v�
a
�c���ac � 2a�a �c���5�ac �c

�
Z

d4x

�

2

a

Kð�Þ
a

þ �2
a

KðþÞ
a

�
þ
Z

d4x

�
v2
a þ a2a
GV

�
: (19)

In Eq. (19) we have not shown explicitly the contribution
of the free electron gas (it will be inserted at the end of the
calculation). At this stage the meson fields are external
fields (i.e., with no kinetic term). Their kinetic terms as
well as their interactions will arise once the fermions are
integrated out. Before performing this integral we notice
that in our application we expect condensation in some of
the
a and v

�
a channels. These condensations are related to

chiral condensates of the three flavors and to fermion
densities. Thus we define


a ¼ 	a þ �a; (20)

v�
a ¼ V�

a þ ��
a ; (21)

with a ¼ 0; . . . ; 8 and h�ai ¼ h��
a i ¼ 0. With this choice

DM ¼ D�D�D�Da, and the physical meson fields

will be identified with the fluctuations around their expec-
tation value. In principle we should introduce expectation
values for charged pseudoscalar mesons as well, since their
in-medium energies can be lower than the threshold of
condensation. However, we first study the system without
the assumption of charged pseudoscalar meson condensa-
tion: as long as we exclude the possibility of first order
transition [48,49], the evolution of their rest energies as a
function of the baryon density will allow us to establish
wether condensation occurs or not (see the next section for
more details).
The functional integration overDcD �c in the partition

function can be done exactly since the action (19) is
quadratic in the fermion fields. Using textbook relations
we get

Z ¼
Z

DMeiS½
;�;v;a�; (22)

with the effective action S½
;�; v; a� given by

S½
;�; v; a� ¼ �iTr log½S�1
0 þ 2�a�a þ 2i�a�5�a

� 2��
a ���a � 2a�a ���5�a�

�
Z

d4x

�
	2

a þ �2
a þ 2�a	a

Kð�Þ
a

þ �2
a

KðþÞ
a

�

þ
Z

d4x

�
V2
a þ �2

a þ 2Va�a þ a2a
GV

�
;

(23)

and

S�1
0 ¼ i��@

� �mþ��0 þ 2	a�a � 2V�
a ���a: (24)

For the sake of compactness we introduce the total fluctu-
ating meson field

M a ¼ �a þ i�a�5 � �
�
a �� � a

�
a ���5: (25)

Expanding the log term we finally cast the effective action
in the form

S½
;�; v; a� ¼ SMF � i
X1
n¼1

ð�1Þnþ1

n
Tr½ðS02�aMaÞn�

�
Z

d4x

�
�2
a þ 2�a	a

Kð�Þ
a

þ �2
a

KðþÞ
a

�

þ
Z

d4x

�
�2
a þ 2Va�a þ a2a

GV

�
; (26)

where SMF denotes the contribution of the effective action
that does not depend on the fluctuating fields,

SMF ¼ �iTr logS�1
0 �

Z
d4x

�
	2

a

Kð�Þ
a

�
þ
Z

d4x

�
V2
a

GV

�
:

(27)

The sum in Eq. (26) is a loop expansion that generates the
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kinetic terms for the mesons as well as their interactions.
We now examine SMF and this loop expansion separately.

A. Mean field effective potential

We now focus on the mean field term in Eq. (27). First,
we have to specify the expectation values in Eqs. (20) and
(21). We assume that in the ground state condensation
occurs only in the channels h �ffi and hfyfi (the latter being
relevant at finite quark density). Here f denotes the quark
with flavor f. This implies that in Eqs. (20) and (21) only
the terms with a ¼ 0; 3; 8 and � ¼ 0 survive, the remain-
ders being zero. It is easy to show that S�1

0 takes the simple

form

S�1
0 ¼

hu 0 0
0 hd 0
0 0 hs

0
@

1
A; (28)

where

hf ¼ ðp0 þ�f � 4GV�fÞ�0 � p � ��Mf; (29)

and

Mf ¼ mf � 4G	f þ 2K	fþ1	fþ2 (30)

denotes the mean field (or constituent) quark mass. In the
above equation

	f ¼ �iNc TrSf (31)

denotes the chiral condensate of the flavor f, where Sf is

the propagator of the quark of flavor f, Nc is the number of
colors, and the trace is on spinor indices only. Also, we
have defined	4 ¼ 	u,	5 ¼ 	d. Analogously �f ¼ hfyfi
denotes the number density of f.

From Eq. (29) the role of the vector interaction in the
mean field approximation is clear: it shifts the quark
chemical potentials (3) to

�f ! �f � 4GV�f: (32)

Thus, depending on the sign ofGV , the chemical potentials
will be shifted either upwards or downwards once the
number density �f � 0.

We notice that the flavor channels �0, �3, and �8 in the
vector interaction generate coupling of the quark currents
to the total quark number density �u þ �d þ �s, the iso-
spin density �u � �d, and to the hypercharge density �u þ
�d � 2�s, respectively. This is similar to what happens in
the relativistic mean field nuclear models [38], where the
coupling of the isospin nuclear current to the isovector
�� ¼ ð��

1 ; �
�
2 ; �

�
3 Þ and of the nuclear current to the vector

!� meson gives rise at the mean field level to expectation
values of the zeroth component of the !� and �

�
3 fields,

which result proportional, respectively, to the total baryon
and to the isospin densities. We simply mention here that
one cannot identify the vectors of the channels �0, �3, and
�8 with the physical !, �0, and 
 fields since a mixing

among them occurs in the vacuum as well as at finite
density. Keeping this in mind, with an abuse of notation,
we define

h!0i ¼ GVhuyuþ dydþ sysi ¼ GVð�u þ �d þ �sÞ;
(33)

h�0
3i ¼ GVhuyu� dydi ¼ GVð�u � �dÞ; (34)

h
0i ¼ GVhuyuþ dyd� 2sysi ¼ GVð�u þ �d � 2�sÞ;
(35)

or equivalently

�u ¼ 1

6GV

ð2h!0i þ 3h�0
3i þ h
0iÞ; (36)

�d ¼ 1

6GV

ð2h!0i � 3h�0
3i þ h
0iÞ; (37)

�s ¼ 1

6GV

ð2h!0i � 2h
0iÞ: (38)

The above equations allow one to rephrase the effective
chemical potential in Eq. (32) in terms of the expectation
values of the vector meson fields.
Finally, writing

e��V� ¼ Z (39)

with Z given in Eq. (22), we get the mean field effective
potential:

�MF ¼ �4K	u	d	s þ 2G
X

f¼u;d;s

	2
f � 2GV

X
f¼u;d;s

�2
f

þ Vlog; (40)

with

Vlog ¼ �T
Xþ1

n¼�1

Z d3p

ð2�Þ3 Tr log
1

T

hu 0 0
0 hd 0
0 0 hs

0
@

1
A

2
64

3
75:
(41)

In the above equations we have introduced a finite tem-
perature T in order to easily handle infrared divergencies
that arise when the chemical potential of the flavor f is
larger than its mean field mass Mf. At the end of the

calculations we make the limit T ! 0þ.
The ground state of the model at hand is characterized

by the numerical values of the condensates and of the quark
number densities. We determine the values of the chiral
condensates by looking for the global minima of the total
effective potential:

� ¼ �MF � �4
e

12�2
; (42)

where the second addendum on the right-hand side (rhs) is

NEUTRAL QUARK MATTER IN A NAMBU–JONA-LASINIO . . . PHYSICAL REVIEW D 80, 074019 (2009)

074019-5



the thermodynamic potential of the free electron gas that
will neutralize the net quark charge. At a fixed value of �
we choose the value ��e of �e which neutralizes the
system, which is defined by the stationarity condition

0 ¼ @�

@�e

���������e¼ ��e

: (43)

The complete numerical strategy will be described in the
next section.

B. Effective action of meson fluctuations at the
second order

We now discuss the action of meson fluctuations in
Eq. (26). The term with n ¼ 1, when summed to the linear
terms in the second and third line of the same equation,
gives rise to terms of the form �aFa or �aGa, where Fa and
Ga schematically denote the gap equations whose solutions
determine the physical values of the chiral condensate and
the quark number densities [47]. Since for these values
both Fa andGa vanish, the linear terms do not appear in the
effective action.

Next we consider the term with n ¼ 2. This gives rise to
the kinetic terms of the meson fields as well as to the
mixing of some of the modes. Since the linear terms
vanish, we can write the effective action at the second
order as

S½�;�; �; a� ¼ 2i
Z

d4xd4yTr½S0ðx; yÞ�aMaðyÞS0ðy; xÞ

	 �bMbðxÞ� �
Z

d4x

�
�aðxÞ2
Kð�Þ

a

þ �aðxÞ2
KðþÞ

a

�

þ
Z

d4x

�
�aðxÞ2 þ aaðxÞ2

GV

�
; (44)

where we have not written explicitly the terms proportional
to 	2

a; V
2
a since they contribute only to SMF. In the above

equation the trace is understood over color, flavor, and
Dirac indices.

By means of the loop expansion in Eq. (44) we could
study every meson fluctuation at the second order in the
meson field about the mean field solution. However, in this
paper we focus our attention on the charged pseudoscalar
modes, reserving a more complete study for a future paper.

The propagator of these modes is easily obtained from
Eq. (44). We are interested in the rest energies of the meson
modes. We have verified by a direct calculation that there is
no mixing between the pseudoscalar and the longitudinal
component of the pseudovector mode in the case in which
we put the spatial momentum of the meson Q ¼ 0.
Moreover, parity conservation in strong interactions is
enough to ensure that mixing at the second order in the
fields does not arise between pseudoscalar mesons and the
vector or the scalar ones. Thus the remaining term to be
computed is that of order Oð�a�bÞ of Eq. (44). Fourier
transforming both the fields and the propagators we have

S½�a� ¼ �
Z d4q

ð2�Þ4 �að�qÞ�bðqÞ

	
�
�ab

KðþÞ
b

þ 2i
Z d4‘

ð2�Þ4

	 TrðS0ð‘Þ�5�aS0ð‘þ qÞ�5�bÞ
�
: (45)

Since at the second order there is no mixing among the
pseudoscalar and the other fields, at least in the rest system
of the mesons, we identify the matrix in parenthesis in
Eq. (45) with half of the inverse meson propagator in
momentum space:

1

2
DabðqÞ�1 ¼ � �ab

KðþÞ
b

� 2i
Z d4‘

ð2�Þ4
	 Tr½S0ð‘Þ�5�aS0ð‘þ qÞ�5�b�: (46)

Consider, for example, the charged kaons whose fields
are defined as

K� ¼ �4 � i�5ffiffiffi
2

p ; (47)

then using D�1
44 ¼ D�1

55 � D and D�1
45 ¼ �D54 � i�D�1

it is easy to show that

Z d4q

ð2�Þ4
1

2
ð�4ð�q; Þ; �5ð�qÞÞ D�1ðqÞ i�DðqÞ

�i�DðqÞ D�1ðqÞ

 !

	 �4ðqÞ
�5ðqÞ

 !

¼
Z d4q

ð2�Þ4 K
þð�qÞðD�1ðqÞ � �D�1ðqÞÞK�ðqÞ

þ K�ð�qÞðD�1ðqÞ þ �D�1ðqÞÞKþðqÞ;
the condition D�1ðq0 ¼ !K; q ¼ 0Þ � �D�1ðq0 ¼
!K; q ¼ 0Þ ¼ 0 with !K being positive defines the rest
energy of charged Kþ. Since D�1ð�q0; qÞ ¼ D�1ðq0; qÞ
and �D�1ð�q0; qÞ ¼ ��D�1ðq0; qÞ can be easily shown,
it follows that the negative energy solution to D�1 �
�D�1 ¼ 0 corresponds to the positive energy solution to
D�1 þ �D�1 ¼ 0 indicating that we need only one equa-
tion D�1 � �D�1 ¼ 0 to extract both the K� and Kþ
energies. Similar results hold for the remaining mesons.

IV. NEUTRAL GROUND STATE OF THE VENJL
MODEL

In this section we discuss the neutral and �-equilibrated
ground state of the VENJL model at zero temperature,
obtained by the procedure of minimization of the effective
potential� under the neutrality condition (43). We present
results for the following set of parameters [50]:

mu ¼ md ¼ 5:5 MeV; (48)
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ms ¼ 140:7 MeV; (49)

� ¼ 602:3 MeV; (50)

G ¼ 1:835=�2; (51)

K ¼ 12:36=�5; (52)

but the results are qualitatively similar to those that we
obtain with the different set of Ref. [51]. First, we are
interested in the effect of the vector interaction on the
neutral ground state of the model.

The value ofGV can (and should) be fixed in the vacuum
in order to reproduce the spectrum of the vector mesons;
see, for example, [18]. However, it is not clear how large
the modification of GV is in the medium [31]; therefore,
instead of fixing it by the meson spectrum in the vacuum
we treat it as a free parameter in order to grasp its effects on
the chiral restoration transition at finite density, as well as
on the in-medium meson properties. We measure the
strength of the vector interaction in terms of the scalar
coupling G and introduce the ratio

rV ¼ GV

G
: (53)

In the vacuum we find rV 
 0:6 in order to reproduce the
neutral � meson mass m� ¼ 775 MeV. We notice that

because of the shift in Eq. (29) the quark number density
for the flavor f in the mean field approximation is self-
consistently defined by the equation

�f ¼ Nc

3�2
½ð��Q�e � 4GV�fÞ2 �M2

f�3=2

	 �½ð��Q�e � 4GV�fÞ2 �M2
f�; (54)

where Mf denotes the in-medium quark mass. The rhs of

the above equation is nothing but the number density of a
degenerate Fermi gas with a density dependent Fermi
momentum given by

½ð��Q�e � 4GV�fÞ2 �M2
f�1=2:

It is interesting to note that Eq. (54) is equivalent to the
partial derivative of the effective potential with respect to
�f, which is related to condensations of !, �0, and 


through Eqs. (33)–(35); i.e.,

@�MF

@�f
¼ 0: (55)

In this case �MF should be regarded as a function of eight
variables, i.e., f	f; �f;�e;�g [30]. It turns out that the

ground state is realized as the maximum with respect to
variables �f when GV > 0 (repulsive vector interaction).

However, it does not immediately mean the ground state is
unstable against the vector meson fluctuation. Actually, the
vector meson mode is not tachyonic, as we always find a

positive and real mass for � meson. This means the curva-
ture of the effective potential cannot help us to judge if the
system is unstable against small fluctuations in the vector
channel. The total charge is given by

0 ¼ 2

3
�u � 1

3
�d � 1

3
�s � �e; (56)

with quark number densities identified with the solutions of
Eq. (54).
Since the number densities in the case rV � 0 have to be

computed self-consistently by virtue of Eq. (54) the nu-
merical calculations are slightly more involved than for the
case rV ¼ 0. Our numerical strategy is as follows: for each
value of � we solve Eq. (54) for each flavor; this allows us
to define three numerical functions �f ¼ �fð�e;MfÞ, one
for each flavor f. Moreover, we define a fourth numerical
function which relates the physical electron chemical po-
tential (namely the value of �e that corresponds to a
vanishing total electric charge) to the in-medium quark
masses. This is achieved by means of the total charge
Eq. (56) and densities defined above. We insert the four
functions into the effective potential, that now depends
only on the in-medium masses (or equivalently on the
chiral condensates). The global minimum of the effective
potential in the space ðMu;Md;MsÞ gives the physical
values of the in-medium masses. Once these are known
we can step backward and compute the numerical value of
�e and of the number densities.
The phase diagram of the model can be described equiv-

alently in terms either of the chiral condensates or of the
mean field quark masses. We prefer the latter point of view
since it is physically more intuitive. From the qualitative
point of view the behavior of the constituent quark masses
as a function of � is similar in the cases rV ¼ 0 and rV �
0. In both cases there exist a critical value of � such that
Mf for f ¼ u; d suddenly decreases from its vacuum value

M0 
 367 MeV to a lower one, typically a few tens of
MeV. However, the order of the transition depends on the
value of rV . For rV < 0 we find a first order transition as in
the case rV ¼ 0. In this case the critical chemical potential
is lowered with respect to the case rV ¼ 0. The first order
character of the transition remains even for small and
positive values of rV . At rV � rcV 
 0:5 the first order
transition becomes a crossover. In this case we identify
the crossover point with the value of� where jdMu=d�j is
maximum. The magnitude of jdMu=d�j at the critical
point is lowered as rV is increased above the rcV , indicating
that the crossover becomes more smooth. These results are
in qualitative agreement with those obtained within the
non-neutral and non-�-equilibrated VENJL [19,29]; they
are also in agreement with the results obtained within the
three flavor Polyakov-Nambu-Jona Lasinio model in
Ref. [31], where it is shown that the first order line dis-
appears from the T �� phase diagram when GV is in-
creased above a critical value. We summarize these results
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in Fig. 1 where we plot Mu and Ms against � for three
representative values of rV (left-hand panel), as well as the
critical chemical potential as a function of rV (right-hand
panel). For comparison we plot, by dashed line in the right-
hand panel of Fig. 1, the critical chemical potential com-
puted without requiring the neutrality condition and by
setting �e ¼ 0. We notice that the neutrality condition
has an effect similar to that of the repulsive vector inter-
action: it stabilizes the chiral symmetry broken phase with
respect to the restored phase, as it increases the critical
chemical potential upwards. The same effect can also be
induced by increasing the strength of repulsive vector
interaction. Interestingly enough, the value of critical
chemical potential at which the first order phase transition
turns into a smooth crossover is not so much affected by the
neutrality condition. However, the required value of the
strength of repulsive vector interaction is significantly
reduced if the condition of neutrality is taken into account.
As a consequence, the neutrality constraint actually helps
to make the transition smoother at fixed vector coupling.

In Fig. 2 we plot the baryon density �B defined as

�B ¼ 1

3
ð�u þ �d þ �sÞ (57)

as a function of� for four different values of the ratio rV ¼
GV=G. The densities of each flavor are computed by means
of Eq. (54) with the values of �e and Mf obtained by the

minimization procedure. In the figure the dot-dashed line
corresponds to rV ¼ �0:2, the dashed line to rV ¼ 0, and
the solid line to rV ¼ 1:1. An interesting consequence of
the change from first order phase transition to crossover
into the approximate chiral restored phase when rV � 0:5
is that the baryon density as a function of� is a continuous

function of �. Thus the system smoothly passes from a
dilute Fermi gas to a dense one, the size of the smoothness
depending on the precise value of rV . This does not happen
when the transition is of first order.
In the left-hand panel of Fig. 3 we plot the electron

chemical potential of neutral quark matter as a function
of � for some value of rV . In the right-hand panel we plot
the same chemical potential against the baryon density �B.
The latter plot is obtained by assembling data from the left-
hand panel and from Fig. 2. It is interesting to notice that at
a given value of�, the larger the magnitude of rV the larger

FIG. 1. Left-hand panel: Mean field up-quark mass (thick lines) and strange quark mass (thin lines) against � for three different
values of the ratio rV ¼ GV=G in neutral and �-equilibrated quark matter: dot-dashed line corresponds to rV ¼ �0:2, dashed line to
rV ¼ 0, solid line to rV ¼ þ1:1. Right-hand panel: Critical value of� for restoration of the approximate chiral symmetry as a function
of rV . Bold line denotes first order phase transition, solid thin line corresponds to a smooth crossover. For comparison, the same
quantity computed without requiring electrical neutrality is shown by dashed line.

FIG. 2. Baryon density in neutral quark matter, in units of the
saturation density �0 ¼ 0:16 fm�3, against � for four different
values of the ratio rV ¼ GV=G: dot-dashed line corresponds to
rV ¼ �0:2, dashed line to rV ¼ 0, and solid line to rV ¼ 1:1.
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the numerical value of �e. For example, at � ¼ 440 MeV
we find �eðrV ¼ 0Þ 
 95 MeV, to be compared with
�eðrV ¼ þ1:1Þ 
 120 MeV. For comparison, at the
same value of � we find �eðrV ¼ �0:2Þ 
 80 MeV. The
change of the sign of the slope of the curves at large � (or
�B) occurs in correspondence with the condition �s > 0 (at
lower values of � we find �s ¼ 0), which implies that
strange quarks take a role in the neutralization of the
system and a lower number of electrons is needed.

V. MESON ENERGIES AND (ABSENCE OF)
CONDENSATION

In this section we compute the pseudoscalar meson
energies as a function of the mean quark chemical potential
� at T ¼ 0. To achieve this result we solve the pole
equation in the rest frame for the appropriate channel as
discussed in a previous section. We focus on the charged
modes here because they are interesting in the context of
meson condensation driven by the electron chemical po-
tential [48,49,52–59].

Meson energies and in-medium meson propagator

Taking into account the results discussed in the previous
section [see Eq. (45)] we write the equation for the energy
of the charged kaons as

ReFK�ð!Þ ¼ 0; FK�ð!Þ � 1� 2KðþÞ
4 �K�ð!; 0Þ;

(58)

where the polarization function is defined as

�K�ð!;QÞ ¼�2iNc

Z d4p

ð2�Þ4 Tr
�
�5

1

huðpÞ�5

1

hsðpþQÞ
�
;

(59)

where Q ¼ ð!;QÞ with Q being the three momentum of
kaon, and Re denotes the real part. In the above equation
the trace is understood on Dirac indices only. Performing
the trace the pole equation (58) in the rest frame reads:

24Re
Z d3p

ð2�Þ3 T
Xþ1

n¼�1

MuMs þ p2 � ði!n þ�uÞði!n þ i�m þ�sÞ
½ði!n þ�uÞ2 � p2 �M2

u�½ði!n þ i�m þ�sÞ2 � p2 �M2
s �

¼ 1

2KðþÞ
4

: (60)

Once again we have introduced a finite temperature T in
order to handle infrared divergencies that arise when the
chemical potential of the flavor f equals its mean field
mass Mf. At the end of the calculation we put T ! 0þ. In
the above equation �m ¼ �Tn is the boson Matsubara
frequency.

The retarded real time propagator is obtained via i�m !
!þ i0þ after summation over fermion Matsubara fre-

quencies. The result turns out to depend on the external
energy ! only on the combination

Q0 ¼ !þ�s ��u ¼ !þ�e þ 4GVð�u � �sÞ: (61)

Thus also the kaon Lagrangian in momentum space de-
pends only on Q0. This implies that in the derivative
expansion one can build only terms that contain the cova-
riant derivative

FIG. 3. Left-hand panel: Electron chemical potential in neutral quark matter against � for four different values of the ratio rV ¼
GV=G. Dot-dashed line corresponds to rV ¼ �0:2, dashed line to rV ¼ 0, solid line to rV ¼ 1:1. Right-hand panel: Electron chemical
potential against baryon density. The line sketch is as in the left-hand panel. The change of the sign of the slope of the curves at large�
(or �B) occurs in correspondence of the creation of strange quark Fermi spheres (�s >Ms).
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iD0 � i@0 þ�e þ 4GVð�u � �sÞ: (62)

We make analytically the sum over Matsubara frequen-
cies in Eq. (60). After continuation to real external energies
we take the limit T ! 0þ, and we get an expression that
depends on energy only throughQ0. We do analytically the
integral over jpj. Finally we solve Eq. (60) in the variable
Q0. The solution of the pole equation in the Q0 variable
defines the in-medium kaon mass m?

K� . Within our con-

vention in Eq. (59) the positive (negative) energy solution
of Eq. (60), Q0 ¼ m?

K� (Q0 ¼ �m?
Kþ) corresponds to the

K� (Kþ) in-medium mass. Once the pole equation is
solved at a given value of �, we obtain the in-medium
energies trivially from Eq. (61):

!Kþ ¼ �e þ 4GVð�u � �sÞ þm?
Kþ ; (63)

!K� ¼ ��e � 4GVð�u � �sÞ þm?
K� : (64)

AtGV ¼ 0 the chemical potential felt by kaons is�q�e

where q denotes the electric charge (in units of the electron

charge) of the meson. When GV is switched on, the kaon
chemical potential is shifted from �q�e by virtue of the
strong interactions. As a matter of fact, since the quark
densities are related to the expectation values of the �, !,
and 
 mesons, see Eqs. (36) and (38), the GV terms in the
meson energies can be interpreted as due to the interactions
of kaons with the aforementioned vector mesons (there is
also a modification of m?

K when GV is switched on). We

stress, however, that these interactions do not exist at the
tree level within the model we study in this work, but arise
only as loop effects: the quarks interact with the expecta-
tion values of the vectors, and the quark loops, that gen-
erate the mass and the kinetic terms of the pseudoscalar
mesons, will depend on these expectation values. Another
source of interactions among pseudoscalar and vectors (as
well as axial vectors) are the terms of the cubic order in
meson fields in the loop expansion of Eq. (26), that we do
not consider in this study for simplicity and will be the
subject of a future paper.
The other pseudoscalar channels are treated in a similar

way. The pole equation for the charged pions reads

24Re
Z d3p

ð2�Þ3 T
Xþ1

n¼�1

MuMd þ p2 � ði!n þ�uÞði!n þ i�m þ�dÞ
½ði!n þ�uÞ2 � p2 �M2

u�½ði!n þ i�m þ�dÞ2 � p2 �M2
d�

¼ 1

2KðþÞ
1

; (65)

and in this case the polarization tensor depends on external energy only through the combination

Q0 ¼ !þ�d ��u ¼ !þ�e þ 4GVð�u � �dÞ: (66)

In this way we have

!�þ ¼ �e þ 4GVð�u � �dÞ þm?
�þ ; (67)

!�� ¼ ��e � 4GVð�u � �dÞ þm?
�� : (68)

Similarly, the equation for the neutral kaons is given by

24Re
Z d3p

ð2�Þ3 T
Xþ1

n¼�1

MdMs þ p2 � ði!n þ�dÞði!n þ i�m þ�sÞ
½ði!n þ�dÞ2 � p2 �M2

d�½ði!n þ i�m þ�sÞ2 � p2 �M2
s �

¼ 1

2KðþÞ
6

; (69)

with

Q ¼ !þ�s ��d ¼ !þ 4GVð�d � �sÞ: (70)

The in-medium energies are given by

!K0 ¼ 4GVð�d � �sÞ þm?
K0 ; (71)

! �K0 ¼ �4GVð�d � �sÞ þm?
�K0 : (72)

We solve Eqs. (60), (65), and (69) by using the values of
	f and �e that correspond to the neutral global minimum

of the effective potential (42). In Fig. 4 we plot the solu-
tions of the real part of the pole equations for charged
kaons (upper panels), corresponding to Eqs. (63) and (64);
neutral kaons (middle panels), corresponding to Eqs. (67)
and (68); and charged pions (lower panels), corresponding
to Eqs. (71) and (72). They are plotted against� for rV ¼ 0
(left-hand panels) and rV ¼ þ1:1 (right-hand panels).
Results for intermediate values of rV do not differ qualita-
tively from those shown in the figure. Also, for negative
values of rV the difference with the case rV ¼ 0 is that the
location of the discontinuity in the in-medium energies is
shifted to lower values of the quark chemical potential.
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The plots of Fig. 4 are interesting for several reasons.
A general feature of the vector interaction is the stabiliza-
tion of the charged pseudoscalar states: the comparison
at the same chemical potential of the in-medium energies
of a meson with and without taking into account
the repulsive vector interaction shows that they are higher
in the latter case than in the former one. Secondly,
we notice that the effect of the vector interaction on the
K� and �K0 in-medium energies is to lower them in the
� regime where chiral symmetry is approximately re-
stored. For example, at � ¼ 460 MeV we find !K� 


406 MeV for rV ¼ 0, to be compared with !K� 

290 MeV for rV ¼ 1. This is in part due to a mild
lowering of m?

K as GV is increased, but mainly to the
effective chemical potential arising from interaction of
K� and �K0 with the expectation values of the vector meson
fields via the quasiquarks in the loop, as is clear in the
expressions, Eq. (64) and (72). In the case of K� there is
still a further lowering of the energy due to the larger value
of�e; see Fig. 3: at � ¼ 460 MeV we find �e 
 95 MeV
for rV ¼ 0, to be compared with �e 
 120 MeV for
rV ¼ þ1:1.
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FIG. 4. Solutions of the pole equations in neutral quark matter for charged kaons (upper panel), neutral kaons (middle panel), and
charged pions (lower panel) as a function of � for two different values of rV .
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For completeness, in Fig. 5 we plot the separate contri-
butions to the in-medium kaon energies. The solid lines
indicated by mK?

� express the in-medium kaon masses

while �e is the electron chemical potential. The in-

medium kaon mass mK?� should be compared with �s �
�u ¼ �e þ 4GVð�u � �sÞ, which is effective chemical
potential felt by K�: it is shifted from the bare charge
chemical potential �e means of the vector interaction.
Both the electron chemical potential and the vector inter-
action tend to lower the in-medium K� energy, even
though the lowering is not enough for the kaon condensate
to form.
The shape of the inverse K� propagator at rest as a

function of energy and � has an interesting feature. In
Fig. 6 we plot the real and the imaginary part of FK�ð!Þ �
1� 2Kþ

4 �K�ð!; q ¼ 0Þ for rV ¼ þ1:1 and two values of

�. They are represented, respectively, by the solid line and
the dashed line. At � ¼ 0 we have ReFK�ðmKÞ ¼
ReFK�ð�mKÞ ¼ 0 and ImFK�ð!Þ ¼ 0 for j!j<Mu þ
Ms. Here mK denotes the vacuum kaon mass. As � is
increased above the chiral transition, FK�ð!Þ develops
two singularities at intermediate values of !; see the
right-hand panel of Fig. 6. Moreover, two new zeros ap-
pear. Thus in principle at large � four kaon modes appear.
The solutions we have chosen to draw Fig. 6 are those with
the larger magnitude.
In order to make clear the physical content of the inter-

mediate singularities at ! ¼ !1; !2, we will take a de-
tailed look at the imaginary part of FK�ð!Þ from now on. It
is possible to find some analytic formula for the imaginary
part which is physically related to the K� decay rate in the

FIG. 5. The various contributions to in-medium kaon energies.
Effective in-medium kaon masses mK?

� , the electric chemical

potential �e and �s ��u as a function of �. mK�? � ð�s �
�uÞ correspond to the two curves in the top right-hand figure of
Fig. 4. The deviation of �s ��u from �e comes from the
repulsive vector interaction.

FIG. 6. Upper panel: Real and (minus) imaginary part of FK�ð!Þ � 1� 2Kþ
4 �K�ð!; q ¼ 0Þ as a function of ! for GV ¼ þ1:1G,

for two different values of �. Solid line corresponds to the real part, dashed line to the imaginary part. Lower panel: Corresponding
spectral function of kaonic propagator �ð!Þ ¼ Imð1=FK�ð!ÞÞ.
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medium. By use of the formula Imð1=ð!þ xþ i�ÞÞ ¼ �i��ð!þ xÞ, we find

ImFK�ð!Þ ¼ � 6KðþÞ
4

�

Z 1

0
dp

EuEs þMuMs þ p2

EuEs

ð1� f �u � fsÞ�ðQ0 � Eu � EsÞ (73a)

þ 6KðþÞ
4

�

Z 1

0
dp

�EuEs þMuMs þ p2

EuEs

ðfu � fsÞ�ðQ0 þ Eu � EsÞ (73b)

þ 6KðþÞ
4

�

Z 1

0
dp

�EuEs þMuMs þ p2

EuEs

ðf�s � f �uÞ�ðQ0 � Eu þ EsÞ (73c)

þ 6KðþÞ
4

�

Z 1

0
dp

EuEs þMuMs þ p2

EuEs

ð1� fu � f �sÞ�ðQ0 þ Eu þ EsÞ; (73d)

where Q0 is again the shifted energy defined by Eq. (61), Eu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

u þ p2
p

and Es ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s þ p2
p

are the u and s quark
energies, and f’s are the Fermi blocking factors defined by fi ¼ �ð�i � EiÞ for the quark Fermi distribution, and f�i ¼
�ð��i � EiÞ for the antiquark Fermi distribution. Since the momentum integral is definitely convergent, we have removed
the cutoff from the evaluation of the imaginary part. As easily guessed from the blocking factors and delta function
guaranteeing the energy conservation, (73a) expresses the two body decay from K� to ðs �uÞ, (73b) expresses the Landau
damping process of K� absorbing on-shell u quark decaying into s quark, (73c) represents the inverse Landau damping of
K� absorbing anti-s quark decaying into anti-u quark, and (73d) is for the decay of K� by absorbing u quark and anti-s
quark. The p integral is extremely trivial due to delta functions, yielding

ImFK�ð!Þ ¼ �
�
6KðþÞ

4 p�
�

E�
uE

�
s þMuMs þ p2�
E�
u þ E�

s

ð1� f �u � fsÞ
�
�½Q0 >Mu þMs� (74a)

þ
�
6KðþÞ

4 p?

�

�E?
uE

?
s þMuMs þ p2

?

jE?
u � E?

s j ðfu � fsÞ
�
�½0<Q0 <Ms �Mu� (74b)

þ
�
6KðþÞ

4 p?

�

�E?
uE

?
s þMuMs þ p2

?

jE?
u � E?

s j ðf�s � f �uÞ
�
�½�Ms þMu <Q0 < 0� (74c)

þ
�
6KðþÞ

4 p�
�

E�
uE

�
s þMuMs þ p2�
E�
u þ E�

s

ð1� fu � f �sÞ
�
�½Q0 <�Mu �Ms�; (74d)

where E�ð?Þ
i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i þ p2
�ð?Þ

q
, and fp�; p?g are now to be

determined through the condition of energy conservation,

E�
u þ E�

s ¼ jQ0j for jQ0j>Mu þMs;

E?
s � E?

u ¼ jQ0j for jQ0j<Ms �Mu;
(75)

each of which has a unique solution at fixed Q0 in its
domain of definition. It turns out both have the same
functional dependence on Q0, i.e.,

p�ð?Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððMs �MuÞ2 �Q2

0ÞððMs þMuÞ2 �Q2
0Þ

q
2jQ0j : (76)

We now consider in which condition the Landau damping
process labeled by (74b), uþ K� ! s [and the inverse
production process ðs ! uþ K�Þ] is possible. As demon-
strated above, the energy conservation E?

s ¼ Q0 þ E?
u has

a unique solution when Q0 is in the interval:

0<Q0 <Ms �Mu: (77)

From Eq. (76), we see p? is a decreasing function of Q0,
and when Q0 approaches zero, p? diverges. In addition to
the energy conservation, the Pauli principle should also be

satisfied: when p? >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

u �M2
u

p
, or equivalently E?

u >
�u, there is no u quark available to contribute to the
absorption process uþ K� ! s. This can be also seen in
the blocking factor fu � fs in Eq. (74b): This factor comes
from the sum of two blocking factors, fuð1� fsÞ for the
decay and �fsð1� fuÞ for the corresponding creation
process, s ! uþ K�. Then in order for the total decay
rate to be nonzero, either ffu ¼ 1; fs ¼ 0g or ffu ¼
0; fs ¼ 1g should hold. In our case Ms >Mu is always
realized so we need to consider only the former condition,
that is, pFs < p? < pFu, where the Fermi momentum is

defined as pFi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð0; �2

i �M2
i Þ

q
. Solving this condi-

tion together under the kinematic constraint Eq. (77), we

obtain the condition:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s þ p2
Fu

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

u þ p2
Fu

q
<Q0 <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
s þ p2

Fs

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

u þ p2
Fs

q
, which, combined with Q0 ¼

!þ�s ��u, translates into

!1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s þ p2
Fu

q
��s �maxðMu ��u; 0Þ;

!2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

u þ p2
Fs

q
þ�u þmaxðMs ��s; 0Þ:

(78)
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We have checked that these equations reasonably repro-
duce the numerical values of f!1; !2g in the right-hand
panel of Fig. 6. We conclude that the imaginary part in the
range !1 <!<!2 is nonvanishing due to the Landau
damping of K� by absorption of on-shell u quark in the
system. What is more intriguing is that below this Landau
damping threshold, there appears a new pole implying a
new collective mode with the same quantum numberK� as
shown in Fig. 6. We have checked that this pole appears
only at high density, � & 420 MeV, as depicted in Fig. 7.
At the moment we cannot discern if this new light mode is
an artifact of the NJL model itself, as well as of the random
phase approximation. However, if this is not the case, it is
of great interest since it might change the low temperature
behavior of the thermodynamics (e.g., strangeness popula-
tion) in a compact star. We leave the detailed investigation
of the nature of this new pole to a forthcoming paper.

A third point that deserves discussion is the missed
symmetry in the K0= �K0 spectrum. This splitting is present
even in the case GV ¼ 0. It is due in this case to the fact
that K0  ðd�sÞ and �K0  ðs �dÞ: on-shell d quarks in the
system tend to reduce the binding energy for the K0 state
by Pauli blocking. This is the reason why we see that MK0

is higher thanK �K0
. The splitting is more pronounced by the

vector interaction, see right-hand panel in Fig. 4, because
of the induced effective chemical potential, Eqs. (71) and
(72).

We finally comment on the absence of kaon condensa-
tion in our model. It is well established that at in the range
of baryon densities ð2:3–5Þ�0 and for neutral and

�-equilibrated nuclear matter, kaon condensation occurs;
see, for example, [60–62] and references therein. The main
results of [60–62] are in agreement with those that can be
obtained within a simple relativistic mean field model
[38,39]. In all of these models the numerical value of �e

at a given baryon density �B is larger (at least a factor of 2)
than the �e we obtain in our calculations. Also the effec-
tive potential felt by kaons and due to interactions with �
and ! mesons is enhanced in neutral nuclear matter, while
in the model we study here it has only a mild dependence
on �B. We guess that these two factors are the main source
of difference between our results and the nuclear matter
literature. At the moment we have not yet found a solution
for this problem. A first possibility could be the hadroni-
zation of the NJL model [23], that would allow one to
describe the system in terms of protons and neutrons
instead of quarks. Probably the neutralization and� equili-
bration of this system would result in a larger value of �e.
Secondly, the expansion of the effective action of the
meson fields to higher orders would introduce in the theory
the direct coupling of kaons with ! and � mesons.
However, a dimensional analysis shows that these contri-
butions are parametrically suppressed by powers of
h!0i=mK; thus, they should not be important. In order to
verify this, a direct calculation of the relevant diagrams
should be performed. Thirdly, we cannot exclude that
multiquark interactions, that are known to be useful in
the stabilization of nuclear matter [22,32,63], can play a
role in increasing the strength of the effective kaon poten-
tials. Tensor interactions might also lead to an enhance-
ment of the attractive interaction felt by the kaons in the
medium. Last (but not the least), there is the possibility to
include a density dependence of GV via a fit to experimen-
tal data on the ! meson mass [33]. Some of these aspects
are under current investigation.

VI. VECTOR INTERACTION AND COLOR
SUPERCONDUCTIVITY

We briefly comment on the effect that our results might
have on color superconductivity [64–67]. At large baryon
density color superconductive phases, neglected in this
paper for simplicity, could play a relevant role in the
determination of the ground state. In the two flavor case
the interactions in the quark-antiquark and diquark chan-
nels have been considered, for example, in Ref [35]. In
order to understand how vector interaction can interplay
with superconductivity in the three flavor model under
investigation here, we compare the various quark densities
at � ¼ 550 MeV for rV ¼ 0 and rV ¼ 1:1; see Fig. 8.
In the case rV ¼ 0 we find �u 
 12:9�0, �d 
 14:2�0,

�s 
 11:6�0; the in-medium quark masses are Mu 

Md 
 7 MeV and Ms 
 197 MeV; the Fermi momenta
of the different flavors are pu

F 
 538 MeV, pd
F 


556 MeV, and ps
F 
 520 MeV. It is well established that

in these conditions quarks condense to the color-flavor-

FIG. 7. The energy of the collective modes in the (!-�) plane.
The new collective mode with quantum number K� induced by
the Landau damping. The shaded area corresponds to the region
where the response function suffers from imaginary part due to
the Landau damping. !K� and !Kþ are the same as two curves
in the top right-hand figure of Fig. 4. The points where the solid
lines turn into the dashed ones indicate the thresholds for the
continuum: across the points, the modes become no longer
stable, decaying into the constituents.
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locked phase state [50,68,69]. On the other hand, for the
case rV ¼ 1:1 we find �u 
 4:35�0, �d 
 5:95�0, �s 

2:71�0; the in-medium quark masses are Mu 
 Md 

20 MeV and Ms 
 390 MeV; the Fermi momenta of the
different flavors are pu

F 
 374 MeV, pd
F 
 415 MeV, and

ps
F 
 320 MeV. It is not clear in this case which super-

conductive state could be favored, if any, since a self-
consistent calculation in color superconductivity that takes
into account the vector interaction is missing in the three
flavor case.

If we suppose that color superconductivity sets in, in
order to guess which state could be a good candidate in
these conditions we compute the ratio M2

s=�. We find
M2

s=� 
 276 MeV. In these conditions, since pu
F � ps

F 

pd
F � pu

F 
 2ðpd
F � ps

FÞ 
 50 MeV, probably the three
flavor crystalline Larkin-Ovchinnikov-Fulde-Ferrel phase
state is the best candidate in the weak coupling regime
[51,70–72]. If the diquark coupling is high enough at this
value of the chemical potential, then a two flavor color
superconductive phase could be the ground state. In addi-
tion to this, there is probably room for spin-1 condensates.
We also guess that because of the smooth crossover (see
right-hand panel of Fig. 8) and the nontrivial coupling
between the diquark and meson excitations a coexistence
region might be created, as already discussed in
Refs. [35,73]. Of course these are just some of the possi-
bilities that should be either supported or not by a dynami-
cal calculation. We notice finally that our reasonings are
not beyond the capabilities of the model even if we take
� ¼ 550 MeV since the Fermi momenta in the case rV ¼
1:1 are quite small compared to the ultraviolet cutoff �
(they are smaller than the vacuum kaon mass).

VII. CONCLUSIONS

We have explored the consequence of the vector inter-
action in �-equilibrated and neutral three flavor quark
matter at finite density. Neutrality and � equilibrium are

required to reproduce the conditions that could be realized
in cold neutron stars. The extension of the NJL model to
the VENJL one has not only an academic interest. As a
matter of fact, in view of vector manifestation the vector
mesons can play a relevant role in the restoration of chiral
symmetry at large baryon density [26,27]. Moreover, if we
wish to describe the intermediate baryon density region of
the NJL phase diagram in terms of a bosonized (and
eventually hadronized) action, we need to take into account
the effects of! and �meson exchange to be more realistic.
Even if it is possible to choose the value of the vector

coupling GV in the vacuum, it is not clear what its value is
in the medium. For this reason we have fixed the scalar
coupling G and treated the ratio rV ¼ GV=G as a free
parameter. We have found the interesting result that there
exists a critical value of rV 
 0:5 above which the approxi-
mate chiral restoration becomes a crossover (at rV ¼ 0 the
NJL model predicts a first order transition). This result is
summarized in Fig. 1. Our result is in agreement with
Klimt, Lutz, and Weise [19] and with Fukushima [31],
where neutrality and � equilibrium were not required.
We have also started a systematic study of the meson

energies as a function of the baryon density and on the
influence of the vector coupling, focusing in this explor-
ative work on the pseudoscalar channels and leaving a
more complete study to a future project. In particular, our
findings on the K� energy show that kaon condensation is
quite hard to realize within the present version of the
model. This is in disagreement with other results
[38,39,60–62], but we argue that the source of the disagree-
ment is mainly the still poor description of the meson-
quark interactions in matter at densities of the order of few
times �0 that we have within the VENJL model. We have
itemized some improvements that might lead to a better
description of matter in the intermediate density region,
and some of the aforementioned research lines are cur-
rently under investigation.
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FIG. 8. Quark number densities against � for rV ¼ 0 (left-hand panel) and rV ¼ þ1:1 (right-hand panel).
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