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We derive the threshold-resummed total cross section for heavy quark production in hadronic collisions

accurate to next-to-next-to-leading logarithm, employing recent advances on soft anomalous dimension

matrices for massive pair production in the relevant kinematic limit. We also derive the relation between

heavy quark threshold resummations for fixed pair kinematics and the inclusive cross section. As a check

of our results, we have verified that they reproduce all poles of the color-averaged q �q ! t�t amplitudes at

two loops, noting that the latter are insensitive to the color-antisymmetric terms of the soft anomalous

dimension.
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I. INTRODUCTION

Heavy quark production has a long and continuing
history of phenomenological interest. Top-pair production
is among the most important standard model processes in
the context of searches for new physics. It is also among
the most challenging in computation. Indeed over 20 years
passed between the landmark first next-to-leading order
(NLO) calculations of heavy quark production [1] and the
derivation [2] of analytic expressions for the inclusive
cross section.

As in many hard hadronic processes, higher order per-
turbative calculations contain logarithmic enhancements,
associated with the approach to partonic threshold, that is,
configurations where the initial-state partons have just
enough energy to produce the observed final state.
Threshold resummation [3] organizes such logarithms, in
a manner we review below. The current state of the art for
heavy quark production is next-to-leading log (NLL) re-
summation matched onto exact NLO results. In this paper,
we study the extension of this formalism to next-to-next-
to-leading log (NNLL) resummation and beyond in the
production of heavy quark-antiquark pairs at hadron col-
liders. In this context, we derive the NNLL inclusive cross
section, generalizing the NLL results of [4], starting from
the resummation formalism at fixed parton kinematics
described in [5]. The numerical impact of our present
work will be detailed elsewhere.

While our considerations are reasonably general and can
be applied to a larger class of processes, we choose to
present our results and their derivation for heavy quark
production because recent advances [6–8] make it possible
for us to determine the essentially two-loop inputs neces-
sary for explicit NNLL resummation in this case. These
inputs are the so-called soft anomalous dimension matrices
for heavy quark pair production [5] which we exhibit

below in the relevant kinematic configuration for the total
cross section. Drawing from the formalism of Ref. [5], we
will perform a single one-loop calculation, corresponding
to a boundary condition in the evolution of soft gluon
emission, which is necessary for the complete NNLL
result. As noted at the level of NLL, for the inclusive cross
section, resummation can be carried out separately for pair
production in the s-channel color singlet and octet states,
without color mixing. We will find the same structure at
NNLL, and present our final results in a form that follows
the NLL formalism of Ref. [4].
We begin with a review of threshold resummation for

semi-inclusive cross sections at fixed kinematics for the
partonic scattering process, in the formalism developed in
Ref. [5], and applicable in principle to any logarithmic
approximation. This formalism relies on the factorization
of color-diagonal ‘‘jet’’ functions associated with the ex-
ternal energetic and/or massive partons that take part in the
scattering at short distances and a ‘‘soft function’’ describ-
ing the exchange of low-energy quanta between these
particles. We identify, in particular, a scheme to resolve
the ambiguity between the jet and soft functions, based on
the singularities of form factors in dimensional regulariza-
tion. We go on in Section III to show how an expression for
the threshold-resummed inclusive cross section may be
derived from the resummation at fixed kinematics. With
this result in hand, we determine two-loop soft anomalous
dimension matrices in Sec. IV, which we need to determine
the soft functions at NNLL. We describe a very nontrivial
check of these results, which fully reproduce the two-loop
pole structure of heavy quark pair production in light quark
annihilation. In Sec. V, we assemble the remaining ingre-
dients in the NNLL resummation, including the one-loop
boundary condition mentioned above. We conclude with a
summary and a few comments on prospects for future
work.
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II. THRESHOLD RESUMMATION AT FIXED
KINEMATICS

In this section, we review the threshold resummation
formalism of Ref. [5], which is adapted to semi-inclusive
reactions characterized by fixed partonic scattering kine-
matics, as in, for example,

f1ðp1Þ þ f2ðp2Þ ! faðpaÞ þ fbðpbÞ; (1)

where fiðpiÞ denotes a parton of flavor fi and momentum
pi. We have shown a 2 ! 2 process, but final states with
more than two particles are also possible, so long as all
invariants pi � pj are large. The formalism we sketch in this

section applies to processes involving light quarks and
gluons, and also to the production of heavy quarks. In the
latter case, we can also study the inclusive cross section,
for which threshold resummation has been developed from
a related point of view [4]. In Sec. III we will derive
resummed inclusive cross sections for heavy quark pro-
duction from their semi-inclusive forms.

A. Factorization near partonic threshold

Our starting point for the resummation of observables
involving initial and/or final-state hadrons is the formalism
of Ref. [5]. To be specific, we restrict our discussion to the
2 ! 2 processes of Eq. (1), although many of our consid-
erations can be directly generalized. For the production of
a pair of particles with mass m, the kinematics can be
described by the invariant mass M and rapidity y of the
partonic final state and the pair center-of-mass rapidity
difference �̂. Assuming that m � �QCD, this cross section

can be written in standard factorized form as

M4
d�h1h2!Q �Q

dM2dyd�̂
¼ X

f

Z 1

�
dz
Z dxa

xa

dxb
xb

�f=h1ðxa; �2Þ

�� �f=h2
ðxb; �2Þ�

�
z� �

xaxb

�

� �

�
y� 1

2
ln
xa
xb

�
!f �f!Q �Q

�
z; �̂;

M2

�2
;

m2

�2
; �sð�2Þ

�
; (2)

where we have normalized the cross section so that all
quantities are dimensionless. The purpose of threshold
resummation is to organize plus distributions in the vari-
able

z ¼ �

xaxb
¼ M2

xaxbS
; (3)

with xa and xb the usual fractional momenta. Partonic
threshold is defined as the limit z ! 1, at which the in-
coming partons provide just enough energy to produce the

observed final state. The mismatch between real gluon
emission and virtual corrections gives rise to singular
distributions at z ¼ 1. These distributions appear in the
nth order expansion of the perturbative function !f �f!Q �Q

up to the level of �n
s ½ln2n�1ð1� zÞ=ð1� zÞ�þ.

In Ref. [5], it was observed that as z ! 1, partonic cross
sections can be factorized into a set of universal factors
associated with the incoming and outgoing partons of the
underlying process, along with process-dependent factors
that describe the coherent interactions of those partons, at
short and long distances. The resummed dependence in
1� z is conveniently generated by taking Mellin moments
with respect to z, schematically,

�ðNÞ ¼
Z 1

0
dzzN�1�ðzÞ

¼
Z 1

0
dze�ðN�1Þð1�zÞ�ðzÞ þOð1=NÞ: (4)

For example, in the inclusive Drell-Yan process, the cor-
responding kinematical variable is z ¼ Q2=s, where s is
the partonic c.m. energy [3]. For resummation of the total
inclusive cross section of heavy quark pair production at
hadron colliders the corresponding variable is z ¼ 4m2=s
where m is the mass of the top quark. Another example
relevant for this paper is the invariant mass M2

t�t ¼ ðpt þ
p�tÞ2 distribution of a top quark-antiquark pair; the relevant
partonic variable is z ¼ M2

t�t=s. In any case we assume that

the partonic variable is defined such that threshold kine-
matics is attained in the limit z ! 1. In moment space this
corresponds to the limit N ! 1. The analysis of Ref. [5]
exploits factorization near threshold, according to which
the cross section can be written as a convolution in an
appropriate momentum component of the soft radiation
associated with a set of functions [9]. In threshold resum-
mation for hadronic collisions, this component is the en-
ergy, E�

i , of each final-state particle in the center-of-mass
frame of the hard collision. That is, for any threshold
resummation at hadronic collisions, we can identify

1� z ¼ X
particles i

2E�
iffiffiffi
s

p ; (5)

where the partonic variable s � xaxbS equalsM2 at thresh-
old, with M the invariant mass of the observed pair of
heavy particles. The cross section then factorizes into
simple products in the corresponding moment space.
Dependence on the moment variable enters only through
the transform, and is therefore always in the form N=M, up
to corrections that decrease as powers of N.
As a result of this analysis, the partonic cross section

takes a factorized form in moment space, which we can
represent as
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!P

�
N; �̂;

M2

�2
;
m2

�2
; �sð�2Þ

�
¼ J1ðN;�sð�2ÞÞ . . . JkðN;M=�;m=�;�sð�2ÞÞTr

�
HP

�
M2

�2
;
m2

�2
; �̂; �sð�2Þ

�

� SP

�
N2�2

M2
;
M2

m2
; �̂; �sð�2Þ

��
þOð1=NÞ; (6)

where the label P refers to a particular partonic process, for
example q �q ! t�t, with q a light flavor. The Mellin moment
N is conjugate to the kinematical variable z. As shown, the
various functions appearing in Eq. (6) depend on other
kinematical variables and masses as well as the factoriza-
tion and renormalization scales. These functions depend on
the specific process. Below, we will give them more ex-
plicitly in the specific examples considered here. We will
refer to the factors Ji appearing in Eq. (6) as the jet
functions for the underlying process. They are color diago-
nal functions that describe the factorized dynamics of
initial and/or final state hard partons, whether massive or
massless, and as such are independent of the details of the
hard subprocess. Jet functions for initial-state partons ab-
sorb the collinear subtractions necessary to define the hard
scattering function ! in Eq. (6), so that they are infrared
safe. Jet functions for final-state partons are automatically
infrared safe for the differential and inclusive cross sec-
tions that we discuss here. The formalism can be extended
as well to a variety of jet observables and to single-hadron
cross sections. The number k of such functions in Eq. (6)
corresponds to the number of hard colored partons in the
process being considered.

The functionsH and S appearing in Eq. (6) are known as
hard and soft functions, respectively. They are both matri-
ces in the space of tensors that describe the exchange of
color at short distances [5]. Examples for quark-antiquark
scattering are color singlet or octet in the s- or t-channel.
We will denote these tensors in boldface, and their product

is traced over the combinations of color tensors in the
amplitude and its complex conjugate. In the limit N ! 1
the hard function H is free of logarithmic dependence on
N; it is obtained from a dedicated, process-specific
calculation.

B. Moment-dependence and the soft anomalous
dimension matrix

The soft function S contains terms due to wide-angle
soft emissions and thus contributes a single power of lnðNÞ
per loop. It is also process dependent, and in the general
case is dependent on the four-velocities f�ig of the partons
that take part in the hard scattering. For processes involv-
ing four or more colored hard partons it is a matrix in the
space of color tensors. Assuming fixed-angle scattering,
the soft function depends on the scalar products of these
velocities, in addition to a single overall scale, which we
will take to beM, the invariant mass of the pair for the case
of heavy quark production. For a massive quark of velocity
�q, we shall set �2

q ¼ m2
q=M

2, and for most of this dis-

cussion, treat this ratio as a number of order unity.
As noted above, all N-dependence is of the form N=M.

As a result, in the dimensionless soft function,
N-dependence appears only in the combination M=ðN�Þ.
In Ref. [5], it was shown that the N-dependence of the soft
function SðN; . . .Þ entering the cross section Eq. (6) can be
made explicit in terms of a ‘‘soft anomalous dimension
matrix,’’ �S. Making the natural choice, � ¼ M, we have

S

�
N2�2

M2
; �i � �j; �sð�2Þ

����������¼M
¼ �P exp

�
�
Z M

M= �N

d�0

�0 �
y
S ð�i � �j; �sð�02ÞÞ

�
Sð1; �i � �j; �sðM2= �N2ÞÞ

� P exp

�
�
Z M

M= �N

d�0

�0 �Sð�i � �j; �sð�02ÞÞ
�

¼ �P exp

�Z 1

0
dx

xN�1 � 1

1� x
�y
S ð�i � �j; �sðð1� xÞ2M2ÞÞ

�
Sð1; �i � �j; �sðM2=N2ÞÞ

� P exp

�Z 1

0
dx

xN�1 � 1

1� x
�Sð�i � �j; �sðð1� xÞ2M2ÞÞ

�
; (7)

where the second expression is accurate to next-to-next-to
leading logarithms (i.e. terms ��n

s ln
n�1N in the cross

section) for �N ¼ Ne	E , with 	E the Euler constant.
Throughout this paper �s ¼ �sð�2Þ is the standard MS
coupling evolving with NL light flavors. Decoupling of the
heavy flavor will simplify our results significantly. The
relation between the bare �b

s and renormalized couplings

reads

�b
sS
 ¼ �sð�2Þ

�
1� �0

4


�sð�2Þ
�

þOð�2
sÞ
�
; (8)

where S
 ¼ ð4�Þ
 expð�
	EÞ and �0 ¼ ð11=3ÞCA �
ð4=3ÞTFNL. The color factors in an SUðNÞ-gauge theory
are CA ¼ N, CF ¼ ðN2 � 1Þ=ð2NÞ and TF ¼ 1=2.
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The structure of Eq. (7) follows from the renormaliza-
tion group equation satisfied by the soft function
SðN2�2=M2; . . .Þ, where �S plays the role of a matrix of
anomalous dimensions [5]. The function Sð1; . . .Þ plays the
role of a boundary condition, which is chosen to be the soft
function at unit N, that is, with unit weight. In general, this
factor contributes a single lnðNÞ starting from two loops,
which is due, however, entirely to the presence of N in the
scale of the running coupling in its one-loop expression. To
determine this contribution one need only calculate the soft
function in Eq. (6) through one loop.

At N ¼ 1, the computation of the soft function is given
by a total eikonal cross section, subtracted for eikonal jet
functions to eliminate collinear enhancements [5]. In the
formalism of Ref. [5], virtual corrections are pure counter-
terms, because the corresponding eikonal diagrams are
scaleless and vanish in dimensional regularization. In the
full soft function, however, the hard scale sets a maximum
total energy for the soft function at N ¼ 1, and the corre-
sponding integrals are not scaleless. Their infrared poles
are cancelled by the virtual diagrams, but finite corrections
may remain.

In summary, the soft function S at N ¼ 1 takes the form

Sð1; �i � �j; �sðM2=N2ÞÞ

¼ Sð0Þ þ �sðM2=N2Þ
�

Sð1Þð1; �i � �jÞ þ . . . ; (9)

where Sð0Þ is a constant diagonal matrix independent of the

coupling and Sð1Þð1; �i � �jÞ is free of dependence on N,

but can depend on the eikonal velocities that define the soft

function. Explicit expressions for Sð0Þ relevant to heavy
quark production can be found in [10]. We will give the
one-loop correction below, after specifying a scheme that
defines the soft function unambiguously. At this stage, we
note that to compute the soft function fully at next-to-next-
to-leading logarithm it is necessary to compute the two-
loop anomalous dimension matrix and the one-loop soft
function.

C. The form factor scheme

The soft function is not unique, but is ambiguous at the
level of single logarithmic contributions that can be ab-
sorbed into the jet functions. These ambiguities, must be
proportional to the unit matrix in the color exchange space
(since the jet functions are diagonal in color). To resolve
this ambiguity one has to specify a prescription for the
definition of the anomalous dimension matrix �S, which
we discuss next.

A fundamental observation of Ref. [5] is that the matrix
�S appearing in Eq. (7) can be extracted from the corre-
sponding (virtual) amplitude for the process under consid-
eration. To review how this can be done, we first observe
that any on-shell, renormalized scattering amplitude at
fixed angles can be factorized as follows [11]:

MIð
; . . .Þ ¼ j1ð
; . . .Þ . . . jsð
; . . .Þ � hJð. . .Þ � sIJð
; . . .Þ:
(10)

Here I, J are indices that label color exchange tensors; in
particular, they indicate that the amplitude M can be
thought of as a vector in the space of color representations
[12]. In order to emphasize the similarity between the
objects appearing in Eqs. (6) and (10) we have used the
same letters to denote jet, soft and hard functions. It should
be stressed, however, that these are not the same objects. In
particular, the moment N does not appear in an amplitude.
To distinguish clearly between the objects appearing in the
cross section and in the amplitude we use lower case
letters, and explicitly show the dependence on the infrared
regulator 
 where d ¼ 4� 2
.
For both massive and massless external partons the

amplitude soft function sIJð
; . . .Þ appearing in Eq. (10)
is fully determined by its (matrix) anomalous dimension
�IJ. It can be computed order by order in perturbation
theory, as a series in the coupling �sð�2Þ. The properties
of �IJ have been studied extensively in the massless [13–
16] and in the massive [6–8] cases. To unambiguously fix
the soft function in the massless case, a natural and con-
venient scheme was proposed in Ref. [17]. There, the jet
functions for each external parton were identified with the
square root of the massless on-shell spacelike form factor
for the corresponding parton. We will assume this prescrip-
tion, which we call the form factor scheme by default from
now on. In this scheme, the jet functions for massless
particles are series in the coupling �sð�2Þ with coefficients
that are 
-dependent numbers. A natural extension [18] in
the massive case is to identify the jet function with the
small-mass limit of the corresponding massive spacelike
QCD form factor. Therefore, in the massive case the jet
function contains also powers of lnð�2=m2Þ, wherem is the
pole mass of the heavy quark.
In the form factor scheme, we can derive an explicit

expression for sð
; . . .Þ in terms of the matrix soft anoma-
lous dimension,

s ð
; . . .Þ ¼ P exp

�
�
Z 1

0

dx

1� x
�Sð ��s½ð1� xÞ2Q2�Þ

�
;

(11)

where �S ¼ ða=�Þ�ð1Þ
S þ ða=�Þ2�ð2Þ

S þOð�3
sÞ, and a

stands for either �sð�2Þ or ��s. The coupling ��sðk2Þ is the
d-dimensional strong coupling constant [19,20], known
through NNLO [21]. It is a function of the usual four
dimensional coupling �sð�2Þ and the dimensional regula-
tor 
 (the explicit relation we use here can be found in
Refs. [18,22]). The result of Eq. (11) depends on the
vanishing of the running coupling �sð�2Þ at� ¼ 0 for 
 <
0, that is, in more than four dimensions.
Note the similarity between Eq. (11) and (7): the ampli-

tude term can be directly obtained from one of the expo-
nents in Eq. (7) by simply ignoring the term with xN�1 and
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replacing the four dimensional coupling with the
d-dimensional one. Such duality is not accidental; physi-
cally both exponents can be thought of as two different
regularizations of the soft limit with regulators, respec-
tively, 
 and lnðNÞ. This relation has been explored and
detailed, for example, in Ref. [18].

Without affecting the value of the soft anomalous di-
mension matrix, one has the freedom to add finite 
-terms
in the soft function which amounts to a redefinition of the
hard function h. In Eq. (11) we choose a minimal,

MS-inspired scheme, where only 
 poles are kept in the
soft function. With this scheme defining the separation
between the soft and hard functions, the explicit relation
between the soft function and the anomalous dimension
matrix through two loops reads:

ln sð
; . . .Þ ¼�sð�2Þ
�

�ð1Þ
S

2

þ
�
�sð�2Þ

�

�
2
�
��0�

ð1Þ
S

16
2
þ�ð2Þ

S

4


�
:

(12)

To summarize our discussion up to here, we have shown
that the soft function in Eq. (6) can be fully specified by (7)
and (9) in terms of the anomalous dimension matrix �S

which in turn is derived solely from the knowledge of the
purely virtual corrections to the same process. Ambiguities
in �S are fixed by choosing a prescription at the level of the
amplitude and we work with the form factor prescription
for both massless and massive partons. Once the soft
function in Eq. (6) has been fixed, in order to perform
NNLL resummation in observables, one has to determine
the number and the form of the various jet functions related
to that observable in a manner consistent with the prescrip-
tion implicit in the definition of the soft function. We turn
to this next.

In the spirit of the form factor scheme that we employ
here, we will associate a jet function in (10) for each of the
hard partons, both massless and massive. The number of
hard partons in the same underlying process determines
also the number of jet functions in the decomposition of an
observable (6). To derive the expressions for various jet
functions in the following we use their process indepen-
dence to either calculate them directly or to extract them
from known results.

D. Jet functions for incoming partons

We start with the jet function Jin for an initial state hard
parton (quark or gluon) which is basic for all hadron
collider processes. To this end, we can use the well-known
results from Drell-Yan vector boson or Higgs boson pro-
duction. In these reactions, Eq. (6) takes the form

�PðN;QÞ ¼ ½JPinðN;QÞ�2HðQÞSðN;QÞ þOð1=NÞ; (13)

for P 2 ðq $ DY; g $ HiggsÞ. In the two processes, the
hard scale Q is simply the virtuality of the outgoing color
singlet vector boson in DYor the mass of the Higgs boson.

Since in these two reactions exactly two hard colored
partons are involved, the hard and soft functions are just
1� 1 matrices, i.e. the color structure is trivial. Upon
setting lnð�2=sÞ ¼ 0 in the results of Ref. [13], it follows
that the soft-anomalous dimension matrix vanishes through
two-loops (and possibly to all orders [13–16]). Therefore,
in Drell-Yan and Higgs boson production we have simply
SðN;QÞ ¼ 1. Thus, the jet function Jin is simply the square
root of the corresponding Sudakov factors, see, for ex-
ample, Refs. [23,24]:

lnJPinðN;QÞ ¼ 1

2

Z 1

0
dx

xN�1� 1

1� x

�Z ð1�xÞ2Q2

�2
F

dq2

q2
2APð�s½q2�Þ

þDPð�s½ð1� xÞ2Q2�Þ
�
: (14)

The functions AP, P ¼ ðq; gÞ and DP, P ¼ ðq; gÞ are cur-
rently known through three loops ([23,25–28], respec-
tively). The factorization scale �F appearing in Eq. (14)
is related to the factorization of the nonperturbative parton

distributions, assumed to be defined in the MS scheme.
Utilizing a perturbative distribution function [29–31] one
can also extend that result to processes initiated by massive
partons [18].
The derivation of the jet functions for final state hard

partons is more involved since these depend on the defini-
tion of the observable. Similarly to Drell-Yan/Higgs, one
can use the vanishing of the soft anomalous dimension
matrix (and thus the absence of nontrivial soft-gluon cor-
relations) in any process involving two hard colored par-
tons in order to extract various jet factors. For example, jet
functions for ‘‘observed’’ outgoing hard partons (fragmen-
tation) can be derived from semi-inclusive eþe� annihila-
tion to hadrons [32–35]. Extension to the massive case can
be done in a fashion similar to the case of Drell-Yan
discussed above.
Of particular interest to us in this work are observables

with inclusive final states; a very well known example is
inclusive DIS [3,24] which can be treated similarly to
Drell-Yan and eþe�, as discussed above. We are further-
more interested in processes with nontrivial color correla-
tions, like the resummation of soft gluons at NNLL in t�t
hadro-production. In order to calculate all jet factors that
enter that observable we need to first specify the soft
anomalous dimension matrix in this process which is
done in Sec. IV. The calculation of the final-state jet factors
and the final result for the cross section are relegated to
Sec. V.
Finally we would like to comment on the process inde-

pendence of the various jet factors discussed above. In
principle, the presence of a process-dependent hard scale
Q indicates process dependence of the whole result. What
is process independent is the functional form of the corre-
sponding jet functions, while the dependence of the hard
scale should be thought of as a sort of functional argument
related to the phase-space for soft-gluon radiation available
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in the given process. Therefore in different processes the
‘‘argument’’ of the jet functions will in general be different
but their functional form stays the same.

III. FROM DIFFERENTIALTO INCLUSIVE CROSS
SECTIONS

The resummed partonic hard scattering function !PðzÞ
at fixed invariant mass is found from its moments with
respect to z ¼ M2=s, with M the pair invariant mass and s
the partonic center-of-mass energy squared. The fully in-
clusive hard scattering cross section is then found by
integrating over M, or equivalently, over z, and the result
is a function of

� � 4m2

s
(15)

only. We must also integrate over the center-of-mass scat-
tering angle (equivalently, �̂ above), but as we shall see,
this does not affect our reasoning, and we suppress this
integral for simplicity of notation. In expressing our re-
sults, we will find it useful to note that the ratio of pair and
particle masses obeys the relation

4m2

M2
¼ �

z
: (16)

We denote the inclusive cross section at parton level as
�Pð�; sÞ. It is related to the differential cross section in z at
fixed s by simply integrating over z, with lower limit �,

�Pð�; sÞ ¼
Z 1

�
dz!Pðz;M;mÞ: (17)

We have observed that the singular dependence of !P on z
can be found in turn by an inverse transform,

!Pðz;M;mÞ ¼
Z dN

2�i
z�N!res

P ðN;M;mÞ: (18)

The z-resummed cross section is taken at fixed pair invari-
ant mass M, and therefore fixed velocity in the hard-
scattering c.m.,

�2
M � 1� 4m2

M2
¼ 1� �

z
: (19)

Our goal is to relate the expression for !resðN;M;mÞ at
fixed M to the inclusive resummed cross section �Pð�; sÞ
with respect to �, as an inverse transform from moment
space in terms of that variable.

The resummed expression for !ðNÞ is given in Eq. (6).
For the following analysis, we make a slight change in
notation, and recognize that the hard-scattering function
H, which describes the short-distance part of the cross
section, vanishes linearly in the center-of-mass velocity
at absolute threshold, and lowest order in �s. Since �M

depends only on the ratio m=M, this quantity is fixed for
Mellin moments with respect to z. It will, however, be
important for �P. To make this trivial but important factor

explicit, we change the notation slightly, and write

H P

�
M2

�2
;
m2

�2
; �sð�2Þ

�
! �MH

P

�
�

z
;
M2

�2
; �sð�2Þ

�
; (20)

so that Eq. (6) becomes

!res
P ðN;M;mÞ ¼ �M

Y
i

JiðNÞTr
�
HP

�
�

z
;
M2

�2
; �sð�2Þ

�

� SP

�
N2�2

M2
;
M2

m2
; �sð�2Þ

��
; (21)

where we have represented the jet functions schematically.
We emphasize that moments in z at fixedM are equivalent
to integrals over s. They thus leave �M, but not �, fixed.
Dependence on � enters only after the integral overM2, or
equivalently z, as in Eq. (17).
We now relate the inclusive cross section, which de-

pends on �, to the fixed-M2 z moments of ! by

�Pð�; sÞ ¼
Z 1

�
dz
Z dN

2�i
z�N!res

P ðN;M2; m2Þ

¼
Z dN

2�i

Z 1

�
dzz�N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

z

r Y
i

JiðNÞ

� Tr

�
HP

�
�

z
;
M2

�2
; �sð�2Þ

�

� SP

�
N2�2

M2
;
z

�
; �sð�2Þ

��
; (22)

where in the second form we have observed that !PðzÞ
vanishes for z > 1, and have exchanged the N and z
integrals. We note that when we choose � ¼ cm, with c
some constant of order unity, the full right-hand side of
Eq. (22) depends onM only through logarithms of the ratio
4m2=M2 ¼ �=z, see Eq. (16). Making such a choice of
renormalization scale and changing variable from z to


 � z

�
¼ 1

1� �2
M

; (23)

we derive the desired form of an inverse transform,

�Pð�; sÞ ¼
Z dN

2�i
��Nþ1�PðN;mÞ; (24)

with

�PðN;mÞ �
Z 1

1
d

�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
�1

q Y
i

JiðN; 
; �sÞ

� Tr½HPð
;�sð�2ÞÞSPðN2
; 
; �sÞ�: (25)

Here we have simplified the notation for the arguments of
the jet, hard and soft functions somewhat to emphasize
their 
-dependence. The scale of the running coupling is,
as indicated above, of order of the quark mass, m. The
relationship between the N-dependence of the resummed
cross section at fixedM in !res

P ðNÞ and in �PðN;mÞ can be
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found readily in the large-N limit, by noting that the
integral over 
 in (25) is dominated by the factor


�N � eN lnð1��2
MÞ; (26)

which forces M2 towards 4m2. Center-of-mass velocities

�M � 1=
ffiffiffiffi
N

p
are thus exponentially suppressed.

Correspondingly, the scale of energy evolution in the soft
cross section, Eq. (7) is over an interval from m to m=N 	
m�2

M. For this range of energies, the evolution variable �
0

in (7) is larger than the kinetic energy of the pair in their
center of mass. We shall assume below that, as suggested in
Ref. [36], radiation in this energy range decouples from the
pair, whose interactions give rise to Coulomb enhance-
ments that appear as inverse powers of �M. In the soft
anomalous dimension matrix appropriate to this range of
energies, the pair of heavy quark eikonals is effectively
replaced by a singlet or octet eikonal line, with a separate
term that describes the evolution of the pair. This approxi-
mation results in a smooth limit at absolute threshold
�M ¼ 0 [37].

Corrections due to the logarithmic 
-dependence in the
jet and soft factors are suppressed by inverse powers of N.
Up to such corrections, the result is the Born cross section
for heavy quark production in process P times the remain-
ing jet, hard and soft functions, which we write as

�PðN;mÞ ¼ �P
BornðNÞY

i

JiðN; 1; �sÞTr½ĤPð1; �sð�2ÞÞ

� SPðN; 1; �sÞ�
�
1þO

�
1

N

��
; (27)

where the hat on the hard matrix indicates that have
factored out the N-dependence of the Born cross section,
which behaves at leading power in N as

�P
BornðNÞ �

Z 1

1
d

�Nþ1=2

ffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p

¼
ffiffiffiffi
�

p
2

1

N3=2

�
1þO

�
1

N

��
: (28)

Equation (27) is the form that we will use below. As
suggested above, we will evaluate the soft function
SPðN; 1; �sÞ using Eq. (7) computed with a soft anomalous
dimension appropriate to the range energy rangem>�0 >
�2

Mm.

IV. THE TWO-LOOP ANOMALOUS DIMENSION
MATRIX ATABSOLUTE THRESHOLD

In this section we derive the relevant result for the two-
loop anomalous dimension matrix �S. We also show that
these results are enough to predict the full pole structure of
the two-loop color-averaged amplitudes for q �q ! t�t.

The one-loop massive anomalous dimension matrix for
an amplitude with n colored partons, N m of which are
massive and with equal mass m has been known for some
time [5,40]:

�ð1Þ
S ¼ 1

2

Xn
ði�jÞ¼1

Ti � Tj ln

�
��2

�ij

�
þ 1

2

X
ði�jÞ2N m

Ti � Tj

�
�
lnð1þ x2ijÞ þ

2x2ij

1� x2ij
lnðxijÞ

�
; (29)

where sij ¼ ðpi þ pjÞ2 and �ij ¼ 2pi � pj ¼ sij �m2
i �

m2
j (with mi;j ¼ f0; mg). The spacelike variables xij read

[41]:

m2

sij
¼ � xij

ð1� xijÞ2
; xij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

sij

q
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

sij

q
þ 1

; (30)

when, in the unphysical spacelike kinematics, all invariants
sij < 0. In specific applications some of them have to be

continued to timelike kinematics. This can be done with
the help of the replacement xij ¼ �yij þ i
, where sij is

now in the physical region sij 	 4m2 and the ‘‘timelike’’

variable is 0< yij 
 1. The color generators Ti are defined

such that they satisfy
P

n
k Tk ¼ 0, and can be either in the

fundamental or adjoint representation of the color group
for quarks or gluons. The index i labels the leg where the
generator is inserted; see also the appendix for more
details.
In parallel to the two-loop massless case [13], the two-

loop massive anomalous dimension matrix �ð2Þ
S is built up

from 2- and 3-eikonal (3E) contributions, i.e. configura-
tions where soft gluons are exchanged between two (resp.
three) external hard partons.

�ð2Þ
S ¼ 1

2

Xn
ði�jÞ¼1

Ti � Tj

K

2
ln

�
��2

�ij

�

þ 1

2

X
ði�jÞ2N m

Ti � TjP
ð2Þ
ij þ 3E terms; (31)

where, as for the massless case, K ¼ ð67=18�
�2=6ÞCA � ð5=9ÞNL. Even before treating the 3E terms,
we see that at two loops exchanges involving two eikonals
take on the same color structure as in the one-loop anoma-
lous dimension, Eq. (29).
Even without using explicit forms for the 3E contribu-

tions [38], we have adequate information to study the
behavior of the soft anomalous dimension in the range�>
�2m, subject to our assumption of factorization, as dis-
cussed above. In [6] it was observed, for example, that 3E
contributions to the reactions q �q ! Q �Q and gg ! Q �Q
vanish, either identically (when two eikonal lines are mass-
less) or at u ¼ t (for two massive eikonals). Given our
assumption of the decoupling of soft radiation from the
dynamics of the pair in the range �0 >�2m, we may
extend the anomalous dimension, appropriate for this range

of energies to absolute threshold, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

p ! 0.
To the order at which we work, power singularities in �
associated with independent evolution of the pair of heavy
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eikonal lines cancel in the soft function S of Eq. (7). It is
this simplification that enables us to present a full expres-
sion for the threshold-resummed inclusive cross section at
NNLL. To derive this result, we need only the 2E
diagrams.

The 2E, dipole-type contributions, can be readily de-
rived in complete generality. Here we note first that
Eq. (31) reproduces the known massless result for a mass-
less dipole. Second, it reflects the fact that, similarly to the
one loop case, the mixed corrections between massive and
massless legs do not produce any power corrections in
m2=sij. To verify that one-mass dipoles do not involve

additional power corrections, we have repeated for this
case the arguments given below for the derivation of the

function Pð2Þ
ij . In that check we have used the recent two-

loop calculation of the heavy-to-light form factor in QCD
[42,43]; see also [44–46]. For partial checks we have made
use of the packages HPL [47] and FIESTA [48]. Note also
that the absence of power corrections in the mass in the
one-mass dipoles is related to the choice of the variable
�ij ¼ 2pi � pj instead of sij ¼ ðpi þ pjÞ2 in the first term

of Eqs. (29) and (31).

Finally, we explain how the functions Pð2Þ
ij can be deter-

mined. The dependence on the indices ði; jÞ of the function
Pð2Þ
ij in Eq. (31) is only through the corresponding kine-

matical invariant sij, i.e. P
ð2Þ
ij ¼ Pð2ÞðsijÞ, and the depen-

dence on sij enters through the variable xij defined in

Eq. (30). That implies its functional form is universal and
therefore can be extracted from the simplest two-loop
amplitude with n ¼ 2: the two-loop massive vector form
factor F1ð	� ! Q �QÞ [41,49]. In this case Eq. (31) simpli-
fies to

� ð2Þ
S ðn ¼ 2Þ ¼ �CF

�
K

2
ln

�
��2

�

�
þ Pð2ÞðsÞ

�
; (32)

where � ¼ s� 2m2 and s ¼ ðp1 þ p2Þ2 < 0. Of course,
there are no 3E contributions for n ¼ 2.

As we remarked above, the soft anomalous dimension
matrix is defined only up to a term proportional to the unit
matrix. In this context, we can use that ambiguity in the
definition of the soft function to define it through the
condition H ¼ 1 in the factorization of the form factor
F1 ¼ J � S �H following from Eq. (10). From the known
results for the form factor F1 and the jet function J [18] and
taking into account Eq. (12) we derive:

Pð2Þ ¼ K

2
Pð1Þ þ Pð2Þ;m; (33)

where, similarly to the definition of Pð2Þ in Eq. (31), the

function Pð1Þ equals the term in the square brackets in

Eq. (29). The presence of the term Pð2Þ;m in the above
equation indicates that the property of the two-loop mass-

less amplitudes �ð2Þ ¼ K=2�ð1Þ [13] is broken in the mas-
sive case by power corrections of the mass. The function

Pð2Þ;m is given by

Pð2Þ;mðxÞ ¼ CA

ð1� x2Þ2
�
�ð1þ x2Þ2

2
Li3ðx2Þ

þ
�ð1þ x2Þ2

2
lnðxÞ � 1� x4

2

�
Li2ðx2Þ

þ x2ð1þ x2Þ
3

ln3ðxÞ þ x2ð1� x2Þln2ðxÞ
þ ð�ð1� x4Þ lnð1� x2Þ þ x2ð1þ x2Þ�2Þ lnðxÞ
þ x2ð1� x2Þ�2 þ 2x2�3

�
; (34)

where �n is the Riemann zeta function: �2 ¼ �2=6, �3 ¼
1:202 057 . . . .

The function Pð2Þ;m (and, in particular, its real part) does
not vanish at threshold; for example, for a timelike argu-

ment x ¼ �ð1� �Þ=ð1þ �Þ þ i" with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

p
and 0 
 � 
 1, this limit is

Pð2Þ;mðx��1þ i"Þ ¼ 1� �3
2

CA þ
�
�2

24
� 1

2

�
i�

�
CA

þOð�Þ: (35)

This result contains, as usual, a Coulomb enhancement in
its imaginary part, which reflects the pair’s internal
evolution.
Combining the results above, the two-loop soft anoma-

lous dimension matrix for the two-to-two quark- and
gluon-initiated reactions [see Eqs. (A1) and (A2)] takes
the following form close to absolute threshold � ! 0,

� ð2Þ
S ¼ K

2
�ð1Þ
S þ T3 � T4P

ð2Þ;m
34 ; ðfor � ! 0Þ; (36)

with Pð2Þ;m
34 given by Eq. (35). The explicit results for the

matrices �ð1Þ
S and T3 � T4 can be found in the appendix.

The mass-dependent soft anomalous dimension of
Eq. (32) for processes with the color structure of the
form factor was derived in Ref. [7], using a slightly differ-
ent scheme for the soft function. Equation (31) for soft
matrices of arbitrary n-point amplitudes involving massive
colored particles was presented in Ref. [8]. To determine

the analogue of the function Pð2Þ;m, the authors of that
reference have utilized the results of Refs. [7,50]. We

find agreement between our Pð2Þ;m and (� 1 times) the
function appearing in Eq. (15) of version 2 of the arXiv
preprint of Ref. [8]. The fact that the results of Ref. [8]
reproduce the IR poles of the massive form factor (which

we have used to extract the function Pð2Þ;m) implies a
nontrivial consistency between our results and the results
of Refs. [7,8].
Moreover we have performed for the first time a truly

nontrivial check of Eq. (31) as a whole, by predicting the
IR poles of the squared two-loop q �q ! Q �Q amplitude and
comparing them to the numerical calculation of Ref. [51].
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We have found a complete agreement between the predic-
tions of our formalism and the color-averaged squared
amplitude at two loops.

In order to be able to make this prediction, we have
noticed that in squaring the amplitude and summing/aver-
aging over colors, any 3E-type contributions in Eq. (31)
with color structure fabcTaTbTc would vanish simply by
color projection, and would not contribute to the squared
amplitude at this level. Thus the calculation in question
does not test for the presence of such terms at the amplitude
level.

The setup of our prediction is as follows: the amplitude
M, multiplied by the Born amplitude and summed over
spin/color, can be expanded in the coupling as ¼
�sð�2Þ=ð2�Þ as

M ¼ Mð0Þð
Þ þ asM
ð1Þð
Þ þ a2sM

ð2Þð
Þ þOða3s Þ: (37)

The factorization properties of on-shell amplitudes de-
tailed in Sec. II C give the following prediction for the
poles of the amplitude M through two loops

Mð1Þð
Þ ¼
�
1



�1 þ Jð1Þ

�
Mð0Þ þOð
0Þ;

Mð2Þð
Þ ¼
�
Jð2Þ � ðJð1ÞÞ2 þ 1



ð�Jð1Þ�1 þ �2Þ

þ 1


2

�
� 1

2
ð�1Þ2 � �0

4
�1

��
Mð0Þ

þ
�
1



�1 þ Jð1Þ

�
Mð1Þ þOð
0Þ: (38)

The function Jð
Þ represents the product of the four

-dependent jet functions corresponding to the two incom-
ing massless and two outgoing massive fermions (see
Refs. [52] for more details) and has an expansion in as
analogous to Eq. (37). Similarly, �1 and �2 are the expan-
sion in terms of the coupling as of the anomalous dimen-
sion matrix �S given through Eqs. (29) and (31).

Predicting all two-loop poles in the squared amplitude
requires also the one-loop amplitude for the same process
evaluated to sufficiently high order in 
. We have calcu-
lated them separately. Our results will provide a nontrivial
check on future extension of the results of Refs. [53] to the
analytic calculation of the nonplanar contributions in this
process.

V. NNLL RESUMMATION FOR TOTAL t �t HADRO-
PRODUCTION CROSS SECTION

We can summarize the results of Secs. II and III for the
resummed partonic total-inclusive cross section for t�t pair
production at hadron colliders in moment space by

�PðN;m2; �2Þ ¼ �P
BornðNÞ½JPinðN;m2; �2Þ�2

� ½JinclðN;m2; �2Þ�2 Tr½ĤPðm2; �2Þ
� SPðN;m2; �2Þ� þOð1=NÞ: (39)

The index P ¼ ðq; gÞ labels the jet functions as well as the
two reactions q �q ! t�t and gg ! t�t. The factorization/re-
normalization scales are denoted by �. The jet factors JPin
are given in Eq. (14) with Q2 ¼ 4m2, where m is the pole
mass of the top quark. The only factors remaining to
compute in (39) are functions Jincl for the final-state jets
and the one-loop correction to the soft function atN ¼ 1 in
Eq. (7), which serves as a boundary condition for the
evolved soft function. We turn first to the outgoing jets.
The outgoing jet functions are specified by our choice of

the form factor scheme, as described in Sec. II C. Their
virtual contributions precisely cancel the terms subtracted
from the soft anomalous dimension matrix �S in Eq. (29),
and hence in the soft function S appearing in Eq. (39).
Specifically, we have subtracted those soft singularities
corresponding to the low-mass limit of the outgoing legs.
For a completely inclusive observable, like the total inclu-
sive cross section, such factorization is not strictly neces-
sary. The resulting expression, however, Eq. (39), provides
a unified threshold resummation for the total inclusive
cross section and for the cross section at measured pair
invariant mass s 	 4m2, including the limit s � m2,
where logarithms of the heavy quark mass can be
important.
As described above, the outgoing jet function can be

constructed directly from the exponentiation of its infrared
singularities in the low-mass limit, and therefore is of the
form,

JinclðN;m2; �2Þ ¼ exp

�
1

2

Z 1

0
dx

xN�1 � 1

1� x

� �inclð�s½4m2ð1� xÞ2�Þ
�
: (40)

The jet anomalous dimension �incl is proportional to the
unit matrix in color space. Specifically, it is given by the
single poles of the logarithm of the massive quark form
factor in the small mass limit, which defines the jet factor
of a massive line in an amplitude [18], and which we have
adapted here for the form factor scheme. The explicit
expression for �incl through two loops is

�incl ¼ �sð�2Þ
�

CF

�
�1� ln

�
m2

�2

��
þ
�
�sð�2Þ

�

�
2

�
�
K

2
CF

�
�1� ln

�
m2

�2

��
� �3 � 1

2
CFCA

�
: (41)

The nonlogarithmic part of �incl can be naturally expressed
in terms of the anomalous dimensions G, K needed for the
exponentiation of the massive form factor to NNLL [18],

�inclðnon-log termÞ ¼ �sð�2Þ
�

1

4
½Gð0Þ

1 þ K1� þ
�
�sð�2Þ

�

�
2

� 1

42
½Gð0Þ

2 þ K2 � �0G
ð1Þ
1 �: (42)

The functionsG and K are defined in [18] as expansions of
�s=ð4�Þ, hence the additional powers of 1=4 in the equa-
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tion above, and with NL active flavors. The function G is


-dependent: Gn ¼ P
i¼0G

ðiÞ
n 
i, and it equals (minus) the

function G in the massless form factor [19–21]. The origin

of the term �0G
ð1Þ
1 can be understood along the lines of

Ref. [54].
The last step remaining is the derivation of the boundary

condition Sð1Þð1; �i � �jÞ for the soft function S, see

section II B. We recall that the boundary condition is
uniquely defined once the form factor scheme has been
adopted. To extract it, we need to calculate the total in-
clusive cross section in the eikonal approximation. After
the appropriate eikonal jet functions have been factored out
(see Ref. [5]) we are left with the desired boundary
condition.

The required one-loop calculation is in fact quite
straightforward. To that end one can use the factorization
in the soft limit of the squared one-gluon real emission
amplitude into the square Sij of the eikonal current and the

Born amplitude with appropriate insertions of the color
operators Ti � Tj summed over all pairs of legs ði; jÞ; see,
for example, Ref. [55] for details. Combining matrix ele-
ment factorization with the factorization of phase space in

the soft limit, we arrive at �ð1Þ;real
eikonal ¼

P
4
i;j¼1 Born

ij � Iij.

We label the legs according to the momenta of the hard
partons; see Eq. (A2). The functions Iij are simply the

integrals of the eikonal current squared over the phase
space of the emitted gluon. While the integrand is scaleless
by construction, the integrals do not vanish because we
integrate up to the maximal energy Emax available to the
emitted gluon in the partonic c.m. system. Their expres-
sions read:

Iij ¼ �sð�2Þ
�

�
�2

4E2
max

�


Jij;

where: Jij ¼ � e
	E

22�2
�1�e

Z 1

0
E1�2

g dEg

�
Z

d�d�1

ðpi � pjÞ
ðpi � gÞðpj � gÞ : (43)

Working out the color algebra we get the following
result for the one-loop real-emission contribution for the
reaction gg ! Q �Q (which covers the general case),

�ð1Þ;real
eikonal ¼ �Born

�sð�2Þ
�

�
�2

4E2
max

�



2
664�2ðCFðJ34 � J33Þ

þ CAJ12Þ
1 0 0

0 1 0

0 0 1

0
BB@

1
CCAþ CAðJ12 þ J34

� 2J13Þ
0 0 0

0 1 0

0 0 1

0
BB@

1
CCA
3
775; (44)

where �Born above is a diagonal matrix; we work in the
singlet-octet basis given in the appendix.
Equation (44) is derived in the back-to-back scattering

configuration where u ¼ t and holds for any � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

p
. Nicely, the result is diagonal and the two

octets are degenerate. To complete this result one has to
add the corresponding virtual corrections. Since they are
all scaleless and thus vanish in dimensional regularization,
the only contributions comes from their counterterms.
The result simplifies significantly if one takes the limit

� ! 0 which is relevant for the resummation of the total
cross section. In that limit (i.e. working up to powers of �)
we can set � ¼ 0 everywhere in the integrals Jij. In this

limit we have J13 ¼ J12=2 and J33 ¼ J34 as well as
4E2

max ¼ s�4. The two independent integrals read:

J12 ¼ e
	E

�ð1� 
Þ
1

2


�ð�
Þ�ð1� 
Þ
�ð1� 2
Þ

¼ � 1

2
2
þ �2

8
þOð
Þ; (45)

J34 ¼ e
	E

�ð1� 
Þ
1

4


22

ffiffiffiffi
�

p
�ð1� 
Þ

�ð3=2� 
Þ ¼ 1

2

þ 1þOð
Þ:

(46)

After subtracting the eikonal jets in such a way that the
singlet eigenvalue vanishes (i.e., to reproduce the well
known result from Drell-Yan-type processes) we finally
get,

�ð1Þ
eikonal ¼ �Born

�sð�2Þ
�

CA

�
1þ 1

2
ln

�
�2

4E2
max

��

�
0 0 0
0 1 0
0 0 1

0
@

1
A: (47)

The constant coefficient above follows from the constant
term in Eq. (46). We have verified that Eq. (47) correctly
reproduces the ln� terms in the color-singlet color-octet
difference of the total inclusive cross section (see Eqs. (8–
10) in Ref. [56]).
Following the discussion in Sec. III we set the ratio

�2=4E2
max to unity, so that the logarithmic term in

Eq. (47) vanishes. This way we get the following result
for the boundary condition of the soft function in Eq. (7)
relevant for the resummation of the total heavy-pair cross
section,
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Sð1; �sðQ2=N2ÞÞ

¼ Sð0Þ

2
6641þ �sðQ2=N2Þ

�
CA

0 0 0

0 1 0

0 0 1

0
BB@

1
CCAþ . . .

3
775

¼ Sð0Þ

2
6641þ CA

�sð�2Þ
�

�
1þ �sð�2Þ

�

�0

4
ln

�
N2�2

Q2

��

�
0 0 0

0 1 0

0 0 1

0
BB@

1
CCAþ . . .

3
775; (48)

which as shown results in a term �0ðCA=2Þ lnN in the
NNLL result. The Oð�sÞ correction appears only when
the pair is produced in an octet configuration at short
distances. The result for q �q ! Q �Q follows from
Eq. (A16).

We are now ready to combine our previous findings and
present our result for the resummed heavy quark cross
section in moment space up to NNLL. Working in the
singlet/octet basis for the soft anomalous dimension �S,
where it is diagonal [6], the result for the resummed cross
section for heavy-pair hadroproduction reads

�PðN;m2; �2Þ
�P

BornðNÞ ¼ Tr

�
ĤPðm2; �2ÞSð0Þ

P

�
1

þ �sðQ2=N2Þ
�

CA�8

�

� exp

�Z 1

0
dx

xN�1 � 1

1� x

�
�Z 4m2ð1�xÞ2

�2
F

dq2

q2
2APð�s½q2�Þ1

þ D̂P
Q �Q

ð�s½4m2ð1� xÞ2�Þ
���

þOð1=N;N3LLÞ; (49)

where �8 projects onto the color octet states [see

Eq. (A16)], and where D̂P
Q �Q

contains single-logarithmic

anomalous dimensions from both the jet and soft functions,
in a color-diagonal form (see below). This expression is
our central result. It may be cast in a more familiar form, by
combining the constant piece of the soft function into the
hard function, and generating the lnN dependence in the
soft function from a slightly modified version of the func-

tion D̂P
Q �Q

, which we denote as simply DP
Q �Q

, and which

includes a new term proportional to �2
s�0,

�PðN;m2; �2Þ
�P

BornðNÞ ¼ Tr

�
HPðm2; �2Þ exp

�Z 1

0
dx

xN�1 � 1

1� x

�
�Z 4m2ð1�xÞ2

�2
F

dq2

q2
2APð�s½q2�Þ1

þDP
Q �Q

ð�s½4m2ð1� xÞ2�Þ
���

þOð1=N;N3LLÞ; (50)

where

DP
Q �Q

¼ DP1þ 2Re�P þ 2�incl1

� 1

2

�s

�

� �
2
CA�0

0 0
0 1

� �
: (51)

The explicit form forDP
Q �Q

uses the results for�P in Sec. IV

and the appendix. In the reactions q �q ! Q �Q and gg !
Q �Q, which we label, respectively, byP 2 ðq �q; ggÞ, it reads
through two loops:

DP
Q �Q

¼ �sð�2Þ
�

ð�CAÞ
0 0

0 1

 !
þ
�
�sð�2Þ

�

�
2
�
Dð2Þ

P

1 0

0 1

 !

þ
�
�CA

K

2
� �3 � 1

2
C2
A � CA

�0

2

�
0 0

0 1

 !�
; (52)

where Dq �q ¼ DDY and Dgg ¼ DHiggs [24]. Corrections to

Eq. (50) begin, as indicated, at next-to-next-to-next-to
leading logarithm, and are determined by the three-loop
soft anomalous dimension matrix and the inclusive soft
function at two loops.
The hard function Hðm2; �2Þ in Eq. (50) is known

exactly through one loop [56] (see also Ref. [57]).
Interestingly, the total cross section is the only t�t observ-
able for which at present the hard function is known
beyond the leading order with full color dependence. We
have used the degeneracy of the eigenvalues of the matrix
�S in the gluon fusion reaction (see also the appendix) to
explicitly perform the trace over the degenerate octet ei-
genvalue in Eq. (50). Therefore the hard functionH in this
reaction is also a two-by-two matrix as computed in
Ref. [56].
The interplay of the jet anomalous dimension �incl with

the soft matrix is quite interesting. As can be seen from the
results in the appendix, through two loops �incl equals
minus the singlet component of the anomalous dimension
matrix�S. Indeed, it is natural to expect that the anomalous
dimension for producing a color singlet is the same as the
one in Drell-Yan or Higgs production, a fact that has been
anticipated already in Ref. [4]. Reproducing this property,
without imposing it by hand, represents a very strong check
on the consistency of our setup and results.
The vanishing of the sum of the color singlet anomalous

dimension and �incl is even more striking given the fact that
they refer to very different kinematics: the former is related
to the ‘‘very heavy mass’’ limit close to partonic threshold
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where the mass is comparable in value to the hard scale,
while the former is extracted from the small mass limit
where the mass is negligible compared to the hard scale.
This result is quite intriguing, and it is clear that it is not
accidental, as implied by the argument that the singlet
anomalous dimension should not receive corrections be-
yond Drell-Yan/Higgs. Clearly, one can explore this prop-
erty to relate the anomalous dimension in heavy flavor
hadroproduction to the small-mass limit of the form factor
beyond two loops assuming, of course, the findings of
Ref. [6] extend to three loops. Combining the results in
[18,49] one can cast the three-loop result in terms of only
one unknown constant K3 (note that the function G3 is
known from the massless form factor [21,58]).

The explicit form given in Eq. (52) is among the main
results of this work. These anomalous dimensions provide
explicit corrections to the form proposed in Ref. [59],
which was based on generalizing the proportionality be-
tween the one- and two-loop massive anomalous dimen-
sion matrices of the massless case [13]. The results of the
present work as well as of Refs. [6–8] provide the neces-
sary corrections, which arise even for the special kinemat-
ics close to absolute threshold.

VI. DISCUSSION AND OUTLOOK

In the present paper we have extended the formalism for
the resummation of soft gluon logarithms in cross sections
with massive partons to the NNLL level. A central role in
our construction is played by the massive two-loop soft
anomalous dimension matrix for processes with n 	 4
colored hard partons. In this paper we have presented the
most general form of the so-called 2E (dipole) contribu-
tions. Combined with the results of Ref. [6] this allows
resummation in observables with special kinematics, like
the total inclusive cross section for hadroproduction of a
pair of heavy flavors.

In our discussion we have detailed the relation between
the soft function in an observable and the soft function in
the corresponding factorized (virtual) amplitude.
Following [5], we have shown how the two are closely
related for generic processes, and that the infrared poles of
the amplitudes can be used to specify properties of the
cross sections near partonic threshold, particularly in the
form factor scheme defined and applied here.

We have also explained how to construct the various jet
factors needed for the completion of our threshold resum-
mation, and have used their process independence to derive
initial-state partonic jets from the Drell-Yan vector produc-
tion process. We have also used heuristic arguments to
identify and construct natural jet factors needed for inclu-
sive observables, like the total cross section for heavy pair
production. Factorized jet functions, although not strictly
necessary, provide a form that can be extended to cross
sections at measured pair mass, even far above absolute
threshold.

The most phenomenologically relevant application of
our work is the total cross section for heavy pair production
at hadron colliders. In this paper we have shown how to
derive this quantity from resummed cross sections at fixed
scattering kinematics. We have also given the exact result
for the two-loop anomalous dimensions controlling the
exponentiation of the NNLL terms in the cross section,
and we have verified that even above threshold the part of
the two-loop soft anomalous dimension constructed here is
adequate to determine exactly the pole structure of the two-
loop color-averaged amplitudes for top production through
light quark annihilation.
Our result provides not only the result for the resummed

logs to NNLL but also a framework for studying the higher
order effects in this observable and the associated theoreti-
cal uncertainties. We will provide a detailed numerical
analysis in a dedicated publication.
The formalism we have presented here can also be

applied to more differential observables in heavy flavor
production at hadron colliders, including cross sections at
fixed rapidity and pair mass. To complete such studies one
will, however, require explicit results, whether analytic or
numerical, for the 3E-type contributions to the anomalous
dimension matrix involving two massive partons.
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APPENDIX: COLOR BASES

In this appendix we present calculations of the one-loop
anomalous dimension in singlet-octet basis, and the evalu-
ation of the two-loop expression of Eq. (36).

1. One-loop results in singlet-octet basis

We work out the general result for the one-loop soft
anomalous dimension matrices in the form factor scheme
for the two reactions:
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qðp1Þ �qðp2Þ ! Qðp3Þ �Qðp4Þ (A1)

gðp1Þgðp2Þ ! Qðp3Þ �Qðp4Þ (A2)

where p2
1 ¼ p2

2 ¼ 0; p2
3 ¼ p2

4 ¼ m2. We define the invar-

iants s ¼ ðp1 þ p2Þ2, t1 ¼ ðp1 � p3Þ2 �m2 ¼
ðp2 � p4Þ2 �m2, u1 ¼ ðp1 � p4Þ2 �m2 ¼ ðp2 � p3Þ2 �
m2. In the massive case �34 ¼ 2p3 � p4 ¼ s� 2m2 � s.

We first consider the reaction (A1). To evaluate the color
matrices Ti � Tj a color basis needs to be specified. The

simplest one is:

c1 ¼ �12�34; c2 ¼ �13�24; (A3)

There are six combinations of the indices ði; jÞ that need to
be considered. Only three of them are different. Denoting

these three color matrices by �̂S, �̂T and �̂U defined

through �̂S ¼ T1 � T2, etc., we get:

� ð1Þ
S ¼ 2T�̂T þ 2U�̂U þ ðS0 þ Sm þ PÞ�̂S

¼ �ð1Þ
11 �ð1Þ

12

�ð1Þ
21 �ð1Þ

22

 !
;

where:

�ð1Þ
11 ¼ ð2U� 2T � S0 � Sm � PÞCF þ ðT �UÞCA;

�ð1Þ
12 ¼ 1

2
ð2U� S0 � Sm � PÞ; �ð1Þ

21 ¼ U� T;

�ð1Þ
22 ¼ ð2U� 2T � S0 � Sm � PÞCF

� ð2U� S0 � Sm � PÞCA

2
: (A4)

The individual matrices �̂S, �̂T and �̂U can be easily read
off from the above equations. We have also included an

overall minus sign in �̂S, �̂T as follows from the sign
conventions for the color generators of Ref. [13,60]: a
generator Ti is multiplied by �1 if it is inserted in a line
that represents incoming quark or gluon or outgoing
antiquark.

The expressions for the velocity factorsU, T, S0, Sm, and
P follow directly from Eq. (29):

U ¼ ln

�
��2

u1

�
; T ¼ ln

�
��2

t1

�
;

S0 ¼ ln

�
�2

s

�
þ i�; Sm ¼ ln

�
�2

s� 2m2

�
þ i�;

P ¼ Pð1Þ
ij

�
xij ¼ � 1� �

1þ �
þ i"; s 	 4m2

�
:

(A5)

We have labeled these functions according to their respec-
tive channel ðs; t; uÞ, and as to whether they refer to a
massless or massive dipole. The function P collects all
power corrections in the mass, i.e. in the massless case
Sm ¼ S0, P ¼ 0.

For physical applications to heavy flavor hadroproduc-
tion one chooses the s-channel singlet-octet color basis:

v 1 ¼ c1; v8 ¼ � 1

2N
c1 þ 1

2
c2: (A6)

The change of basis for the anomalous dimension matrix in

Eq. (A4) (or for any one of �̂S, �̂T, �̂U) is:

� ð1Þ;S:O:
S ¼ R�1 � �ð1Þ

S �R; (A7)

where the transformation matrix R reads:

R ¼ 1 � 1
2N

0 1
2

 !
; R�1 ¼ 1 1

N

0 2

� �
: (A8)

The matrix elements of the matrix �ð1Þ;S:O:
S read:

�ð1Þ;S:O:
11 ¼ �ðS0 þ Sm þ PÞCF;

�ð1Þ;S:O:
12 ¼ ðU� TÞCF

CA

; �ð1Þ;S:O:
21 ¼ 2ðU� TÞ;

�ð1Þ;S:O:
22 ¼ ð4U� 4T � S0 � Sm � PÞCF

� ð4U� 2T � S0 � Sm � PÞCA

2
: (A9)

Rearranging the above expressions we arrive at the
following expression for the anomalous dimension matrix

�ð1Þ;S:O:
S in the singlet-octet color basis:

�ð1Þ;S:O:
11 ¼

�
2 ln

�
m2

�2

�
� ln

�
m2

s

�
� L� � i�

�
CF;

�ð1Þ;S:O:
12 ¼ ln

�
t1
u1

�
CF

CA

; �ð1Þ;S:O:
21 ¼ 2 ln

�
t1
u1

�
;

�ð1Þ;S:O:
22 ¼

�
4 ln

�
t1
u1

�
þ 2 ln

�
m2

�2

�
� ln

�
m2

s

�
� L� � i�

�
CF

�
�
2 ln

�
t1
u1

�
� 2 ln

�
�u1

s

�
þ ln

�
m2

s

�

� L� � i�

�
CA

2
: (A10)

We have kept the traditional notations and defined:

L� ¼ 1þ �2

2�

�
ln

�
1� �

1þ �

�
þ i�

�
: (A11)

The result for the anomalous dimension matrix in

�ð1Þ;S:O:
S in Eq. (A10) agrees with the one derived first in

Ref. [5] provided we add to the above result (A10) the term
ð� lnðm2=�2Þ � 1ÞCF1 and set �2 ¼ s. The addition of
this (color diagonal) term corresponds to working in a
scheme where the two jet factors for the heavy quark and
antiquark are absorbed into the soft function (see the dis-
cussion in Sec. V).
Finally, we give the expression for the real part of the

anomalous dimension matrix �ð1Þ;S:O:
S at absolute threshold.
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To that end we set u1 ¼ t1 ¼ �s=2 as well as lnð�2=sÞ ¼
0. Up to corrections �Oð�Þ the result reads:

Re�ð1Þ;S:O:
S ¼ CF

�
ln

�
m2

�2

�
þ 1

�
1 0

0 1

 !
� CA

2

0 0

0 1

 !

¼ ��ð1Þ
incl

1 0

0 1

 !
� CA

2

0 0

0 1

 !
: (A12)

2. Evaluation of Eq. (36)

The threshold limit of the two-loop matrix �ð2Þ
S in the

basis (A6) can be easily derived from Eq. (36) by using that

T3 � T4 ¼ �̂S:O:
S ¼ �CF 0

0 �CF þ CA

2

� �
: (A13)

Up to corrections �Oð�Þ, the result for �ð2Þ
S reads:

Re�ð2Þ;S:O:
S ¼ ��ð2Þ

incl

1 0

0 1

 !
�
�
CAK

4
þ �3 � 1

4
C2
A

�

� 0 0

0 1

 !
; (A14)

where �ð1Þ
incl and �ð2Þ

incl are given in Eq. (41).

The calculation of the gluon fusion reaction Eq. (A2)
can be done in the same way as in the quark-antiquark
annihilation one described above. The appropriate
s-channel singlet-octet color basis is:

v 1 ¼ �12�34; vs8 ¼ d12cTc
34; va8 ¼ if12cTc

34:

(A15)

A direct calculation shows that in the limit � ! 0 the

matrices T3 � T4, Re�
ð1Þ;S:O:
S and Re�ð2Þ;S:O:

S for the gluon

fusion reaction can be obtained from the corresponding
matrices in the quark-antiquark initiated one Eqs. (A13),
(A12), and (A14) with the help of the simple replacements:

1 2�2 ! 13�3 and
0 0
0 1

� �
!

0 0 0
0 1 0
0 0 1

0
@

1
A: (A16)

The results of Ref. [61] can be used to simplify the
calculations.
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