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We study the resummation of large logarithmic perturbative corrections to the partonic cross sections

relevant for dihadron production in hadronic collisions, H1H2 ! h1h2X, at high invariant mass of the

produced hadron pair. These corrections arise near the threshold for the partonic reaction and are

associated with soft-gluon emission. We perform the resummation to next-to-leading logarithmic

accuracy, and show how to incorporate consistently cuts in rapidity and transverse momentum of the

observed particles. We present numerical results for fixed-target and ISR regimes and find enhancements

over the next-to-leading order cross section, which significantly improve the agreement between

theoretical predictions and data.
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I. INTRODUCTION

Cross sections for hadron production in hadronic colli-
sions play an important role in QCD. They offer a variety
of insights into strong interaction dynamics. At sufficiently
large momentum transfer in the reaction, QCD perturba-
tion theory can be used to derive predictions. The cross
section may be factorized at leading power in the hard
scale into convolutions of long-distance factors represent-
ing the structure of the initial hadrons and the fragmenta-
tion of the final-state partons into the observed hadrons,
and parts that are short-distance and describe the hard
interactions of the partons. If the parton distribution func-
tions and fragmentation functions are known from other
processes, especially deeply inelastic scattering and eþe�
annihilation, hadron production in hadronic collisions
directly tests the factorized perturbative-QCD approach
and the relevance of higher orders in the perturbative
expansion.

Much emphasis in both theory and experiment has been
on single-inclusive hadron production, H1H2 ! hX [1–8].
Here the large momentum transfer is provided by the high
transverse momentum of the observed hadron. Of equal
importance, albeit explored to a somewhat lesser extent, is
dihadron production, H1H2 ! h1h2X, when the pair is
produced with large invariant mass M. In many ways,
one may think of this process as a generalization of the
Drell-Yan process to a completely hadronic situation, with
the Drell-Yan lepton pair replaced by the hadron pair. The
process is therefore particularly interesting for studying
QCD dynamics, as we shall also see throughout this paper.
Experimental data for dihadron production as a function of
pair mass are available from various fixed-target experi-
ments [9–11], as well as from the ISR [12]. On the theory
side, next-to-leading order (NLO) calculations for this
process are available [13–15]. They have been confronted

with the available data sets, and it was found that overall
agreement could only be achieved when rather small re-
normalization and factorization scales were chosen. The
NLO calculations in fact show very large scale depen-
dence. If more natural scales are chosen, NLO theory
significantly underpredicts the cross section data, as we
shall also confirm below.
In this paper, we investigate the all-order resummation

of large logarithmic corrections to the partonic cross sec-
tions. This is of considerable interest for the comparison
between data and the NLO calculation just described. A
related resummation for the single-inclusive hadron cross
section [5] was found to lead to significant enhancements
of the predicted cross section over NLO, in much better
overall agreement with the available data in that case.
At partonic threshold, when the initial partons have just

enough energy to produce two partons with high invariant
pair mass (which subsequently fragment into the observed
hadron pair), the phase space available for gluon brems-
strahlung vanishes, resulting in large logarithmic correc-
tions. To be more specific, if we consider the cross section
as a function of the partonic pair mass m̂, the partonic
threshold is reached when ŝ ¼ m̂2, that is, �̂ � m̂2=ŝ ¼ 1,

where
ffiffiffî
s

p
is the partonic center-of-mass system (c.m.s.)

energy. The leading large contributions near threshold arise
as �k

s½ln2k�1ð1� �̂Þ=ð1� �̂Þ�þ at the kth order in pertur-
bation theory, where �s is the strong coupling and the
‘‘plus’’ distribution will be defined below. Sufficiently
close to threshold, the perturbative series will be useful
only if such terms are taken into account to all orders in �s,
which is what is achieved by threshold resummation [16–
19]. Here we extend threshold resummation further, to
cross sections involving cuts on individual hadron pT and
the rapidity of the pair.
We note that this behavior near threshold is very familiar

from that in the Drell-Yan process, if one thinks of m̂ as the
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invariant mass of the lepton pair. Hadron pair production is
more complex in that gluon emission will occur not only
from initial-state partons, but also from those in the final
state. Furthermore, interference between soft emissions
from the various external legs is sensitive to the color
exchange in the hard scattering, which gives rise to a
special additional contribution to the resummation for-
mula, derived in [17,20,21].

The larger �̂, the more dominant the threshold loga-
rithms will be. Because of this and the rapid falloff of the
parton distributions and fragmentation functions with mo-
mentum fraction, threshold effects tend to become more
and more relevant as the hadronic scaling variable � �
M2=S goes to one. This means that the fixed-target regime
is the place where threshold resummation is expected to be
particularly relevant and useful. We will indeed confirm
this in our study. Nonetheless, because of the convolution
form of the partonic cross sections and the parton distri-
butions and fragmentation functions (see below), the
threshold regime �̂ ! 1 plays an important role also at
higher (collider) energies. Here one may, however, also
have to incorporate higher-order terms that are subleading
at partonic threshold.

In Sec. II we provide the basic formulas for the dihadron
cross section as a function of pair mass at fixed order in
perturbation theory, and display the role of the threshold
region. Section III presents details of the threshold resum-
mation for the cross section. In Sec. IV we give phenome-
nological results, comparing the threshold resummed

calculation to the available experimental data. Finally, we
summarize our results in Sec. V. Appendices A and B
provide details of the NLO corrections to the perturbative
cross section near threshold.

II. PERTURBATIVE CROSS SECTION AND
PARTONIC THRESHOLD

We are interested in the hadronic cross section for the
production of two hadrons h1;2,

H1ðP1Þ þH2ðP2Þ ! h1ðK1Þ þ h2ðK2Þ þ X; (1)

with pair invariant mass

M2 � ðK1 þ K2Þ2: (2)

We will consider the cross section differential in the rap-
idities �1; �2 of the two produced hadrons, treated as
massless, in the c.m.s. of the initial hadrons, or in their
difference and average,

�� ¼ 1

2
ð�1 � �2Þ; (3)

�� ¼ 1

2
ð�1 þ �2Þ: (4)

We will later integrate over regions of rapidity correspond-
ing to the relevant experimental coverage. For sufficiently
largeM2, the cross section for the process can be written in
the factorized form

M4 d�
H1H2!h1h2X

dM2d��d ��
¼ X

abcd

Z 1

0
dxadxbdzcdzdf

H1
a ðxa;�FiÞfH2

b ðxb; �FiÞzcDh1
c ðzc; �FfÞzdDh2

d ðzd; �FfÞ

� m̂4d�̂ab!cd

dm̂2d��d ��

�
�̂;��; �̂; �sð�RÞ; �R

m̂
;
�Fi

m̂
;
�Ff

m̂

�
; (5)

where �̂ is the average rapidity in the partonic c.m.s.,
which is related to �� by

�̂ ¼ ��� 1

2
ln

�
xa
xb

�
: (6)

The quantity �� is a difference of rapidities and hence
boost invariant. It is important to note that the rapidities of
the hadrons with lightlike momentaK1 andK2 are the same
as those of their lightlike parent partons. The average and
relative rapidities for the hadrons and their parent partons
are also therefore the same, a feature that we will use
below. Furthermore, in Eq. (5) the f

H1;2

a;b are the parton
distribution functions for partons a; b in hadrons H1;2 and
D

h1;2
c;d the fragmentation functions for partons c; d fragment-

ing into the observed hadrons h1;2. The distribution func-
tions are evaluated at the initial-state and final-state
factorization scales �Fi and �Ff, respectively. �R denotes
the renormalization scale. The d�̂ab!cd=d�̂d ��d�� are the

partonic differential cross sections for the contributing
partonic processes ab ! cdX0, where X0 denotes some
additional unobserved partonic final state. The partonic
momenta are given in terms of the hadronic ones by pa ¼
xaP1, pb ¼ xbP2, pc ¼ K1=zc, pd ¼ K2=zd. We introduce
a set of variables, some of which have been used in Eq. (5):

S ¼ ðP1 þ P2Þ2; (7)

� � M2

S
; (8)

ŝ � ðxaP1 þ xbP2Þ2 ¼ xaxbS; (9)

m̂ 2 �
�
K1

zc
þ K2

zd

�
2 ¼ M2

zczd
; (10)
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�̂ � m̂2

ŝ
¼ M2

xaxbzczdS
¼ �

xaxbzczd
: (11)

At the level of partonic scattering in the factorized cross
section, Eq. (5), the other relevant variables are the par-
tonic c.m.s. energy

ffiffiffî
s

p
, and the invariant mass m̂ of the pair

of partons that fragment into the observed dihadron pair.
We have written Eq. (5) in such a way that the final factor is
a dimensionless function. Hence, it can be chosen to be a
function of the dimensionless ratio m̂2=ŝ ¼ �̂ and the ratio
of m̂ to the factorization and renormalization scales, as
well as the rapidities and the strong coupling. In the
following, we will take all factorization scales to be equal
to the renormalization scale for simplicity, that is, �R ¼
�Fi ¼ �Ff � �. We then write

m̂4d�̂ab!cd

dm̂2d��d ��

�
�̂;��; �̂; �sð�Þ; �

m̂

�

� !ab!cd

�
�̂;��; �̂; �sð�Þ; �

m̂

�
: (12)

The variable �̂ is of special interest for threshold resum-
mation, because it is a measure of the phase space available
for radiation at short distances. The limit �̂ ! 1 corre-
sponds to the partonic threshold, where the partonic hard
scattering uses all available energy to produce the pair.
This is kinematically similar to the Drell-Yan process, if
one thinks of the hadron pair replaced by a lepton pair. The
presence of fragmentation of course complicates the analy-
sis somewhat, because only a fraction zczd of m̂

2 is used for
the invariant mass of the observed hadron pair. In the
following it will in fact be convenient to also use the
variable

�0 � m̂2

S
¼ M2

zczdS
; (13)

which is the ratio of the partonic m̂2 to the overall c.m.s.
invariant S and hence may be viewed as the ‘‘� variable’’ at
the level of produced partons when fragmentation has not
yet been taken into account. This variable is close in spirit
to the variable � ¼ Q2=S in Drell-Yan.

The partonic cross sections can be computed in QCD
perturbation theory, where they are expanded as

!ab!cd ¼
�
�s

�

�
2
�
!LO

ab!cd þ
�s

�
!NLO

ab!cd þ � � �
�
: (14)

Here we have separated the overall power ofOð�2
sÞ, which

arises because the leading-order (LO) partonic hard-
scattering processes are the ordinary 2 ! 2 QCD scatter-
ings. At LO, one has �̂ ¼ 1, and also the two partons are
produced back-to-back in the partonic c.m.s., so that �̂ ¼
0. One can therefore write the LO term as

!LO
ab!cdð�̂;��; �̂Þ ¼ �ð1� �̂Þ�ð�̂Þ!ð0Þ

ab!cdð��Þ; (15)

where !ð0Þ
ab!cd is a function of �� only. The second delta

function implies that �� ¼ 1
2 lnðxa=xbÞ. At next-to-leading

order, or overall Oð�3
sÞ, one can have �̂ � 1 and �̂ � 0.

Near partonic threshold, �̂ ! 1, however, the kinematics
becomes ‘‘LO like.’’ The average rapidity of the final-state
partons, c and d (and therefore of the observed dihadrons)
is determined by the ratio xa=xb, up to corrections that
vanish when the energy available for soft radiation is
squeezed to zero. As noted in Ref. [22], in this limit the
delta function that fixes the partonic pair rapidity �̂ be-
comes independent of soft radiation, and may be factored
out of the phase space integral over the latter. This is true at
all orders in perturbation theory. One has:

!ab!cdð�̂;��; �̂; �sð�Þ; �=m̂Þ
¼ �ð�̂Þ!sing

ab!cdð�̂;��;�sð�Þ; �=m̂Þ
þ!reg

ab!cdð�̂;��; �̂; �sð�Þ; �=m̂Þ; (16)

where all singular behavior near threshold is contained in

the functions !sing
ab!cd. Threshold resummation addresses

this singular part to all orders in the strong coupling. All
remaining contributions, which are subleading near thresh-
old, are collected in the ‘‘regular’’ functions !reg

ab!cd.

Specifically, for the NLO corrections, one finds the follow-
ing structure:

!NLO
ab!cdð�̂;��; �̂;�=m̂Þ

¼ �ð�̂Þ
�
!ð1;0Þ

ab!cdð��;�=m̂Þ�ð1� �̂Þþ!ð1;1Þ
ab!cdð��;�=m̂Þ

�
�

1

1� �̂

�
þ
þ!ð1;2Þ

ab!cdð��Þ
�
logð1� �̂Þ
1� �̂

�
þ

�

þ!
reg;NLO
ab!cd ð�̂;��; �̂;�=m̂Þ; (17)

where the singular part near threshold is represented by the

functions !ð1;0Þ
ab!cd, !

ð1;1Þ
ab!cd, !

ð1;2Þ
ab!cd, which are again func-

tions of only ��, up to scale dependence. The plus-
distributions are defined by

Z 1

x0

fðxÞðgðxÞÞþdx �
Z 1

x0

ðfðxÞ � fð1ÞÞgðxÞdx

� fð1Þ
Z x0

0
gðxÞdx: (18)

Appendix A describes the derivation of the coefficients

!ð1;0Þ
ab!cd, !

ð1;1Þ
ab!cd, !

ð1;2Þ
ab!cd explicitly from a calculation of

the NLO corrections near threshold. This will serve as a
useful check on the correctness of the resummed formula,
and also to determine certain matching coefficients.
As suggested above, the structure given in Eq. (17) is

similar to that found for the Drell-Yan cross section at
NLO. A difference is that in the inclusive Drell-Yan case
one can integrate over all�� to obtain a total cross section.
This integration is finite because the LO process in Drell-
Yan is the s-channel reaction q �q ! ‘þ‘�. In the case of
dihadrons, the LO QCD processes also have t as well as
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u-channel contributions, which cause the integral over ��
to diverge when the two hadrons are produced back-to-
back with large mass, but each parallel or antiparallel to the
initial beams. As a result, one will always need to consider
only a finite range in ��. This is, of course, not a problem
as this is anyway also done in experiment. It does, however,
require a slightly more elaborate analysis for threshold
resummation, which we review below.

III. THRESHOLD RESUMMATION FOR
DIHADRON PAIRS

A. Hard scales and transforms

The resummation of the logarithmic corrections is or-
ganized in Mellin-N moment space [16]. In moment space,
the partonic cross sections absorb logarithmic corrections
associated with the emission of soft and collinear gluons to
all orders. Employing appropriate moments, which we will
identify shortly, we will see that the convolutions among
the different nonperturbative and perturbative regions in
the hadronic cross section decouple.

In terms of the dimensionless hard-scattering function
introduced in Eq. (12) the hadronic cross section in Eq. (5)
becomes

M4 d�
H1H2!h1h2X

dM2d��d ��
¼ X

abcd

Z 1

0
dxadxbdzcdzdf

H1
a ðxaÞfH2

b ðxbÞ

� zcD
h1
c ðzcÞzdDh2

d ðzdÞ
�!ab!cd

�
�̂;��; �̂; �sð�Þ; �

m̂

�
; (19)

where for simplicity we have dropped the scale depen-
dence of the parton distributions and fragmentation func-
tions. At lowest order, when the hard-scattering function
!ab!cd is given by Eq. (15), the cross section is found to
factorize under ‘‘double’’ moments [23,24], a Mellin mo-
ment with respect to � ¼ M2=S and a Fourier moment in
�� ¼ �̂þ 1

2 lnðxa=xbÞ:
Z 1

�1
d ��ei� ��

Z 1

0
d��N�1M4 d�

H1H2!h1h2X

dM2d��d ��

��������LO

¼ X
abcd

~fH1
a ðN þ 1þ i�=2Þ~fH2

b ðN þ 1� i�=2Þ

� ~Dh1
c ðN þ 2Þ ~Dh2

d ðN þ 2Þ
Z 1

�1
d�̂ei��̂

�
Z 1

0
d�̂�̂N�1�ð1� �̂Þ�ð�̂Þ

�
�sð�Þ
�

�
2
!ð0Þ

ab!cdð��Þ;
(20)

where the Mellin moments of the parton distributions or
fragmentation functions are defined in the usual way, for
example

~f H
a ðNÞ �

Z 1

0
xN�1fHa ðxÞdx: (21)

We note that instead of a combined Mellin and Fourier
transform one may equivalently use a suitable double-
Mellin transform [25]. The last two integrals in Eq. (20)
give the combined Mellin and Fourier moment of the LO
partonic cross section. Because of the two delta functions,
they are trivial and just yield the N and � independent

result ð�s=�Þ2!ð0Þ
ab!cdð��Þ. One might expect that this

generalizes to higher orders, so that the double moments

Z 1

�1
d�̂ei��̂

Z 1

0
d�̂�̂N�1!ab!cd

�
�̂;��; �̂; �sð�Þ; �

m̂

�

(22)

would appear times moments of fragmentation functions.
However, this is impeded by the presence of the renormal-
ization/factorization scale � which must necessarily enter
in a ratio with m̂ ¼ M=

ffiffiffiffiffiffiffiffiffi
zczd

p
. As a result of this depen-

dence on zc and zd, the moments ~Dh1
c ðN þ 2Þ, ~Dh2

d ðN þ 2Þ
of the fragmentation functions will no longer be generated,
and the factorized cross section does not separate into a
product under moments. Physically, this is a reflection of
the mismatch between the observed scale, the dihadron
mass M, and the unobserved threshold scale at the hard
scattering, m̂. Threshold logarithms appear when ŝ ap-
proaches the latter scale, not the former. This implies that
at fixed M there is actually a range of hard-scattering
partonic thresholds, extending all the way from M at the

lower end to
ffiffiffi
S

p
at the upper. This situation is to be

contrasted to the Drell-Yan process or to dijet production
at fixed masses, where the underlying hard scale is defined
directly by the observable.
We will deal with the presence of this range of hard

scales m̂ by carrying out threshold resummation at fixed m̂
as well as at fixed factorization/renormalization scale. For
this purpose, we rewrite the cross section (19) in a form
that isolates the fragmentation functions:

M4 d�
H1H2!h1h2X

dM2d��d ��
¼ X

cd

Z 1

0
dzcdzdzcD

h1
c ðzc;�Þ

� zdD
h2
d ðzd; �Þ

��H1H2!cd

�
�0;��; ��;�sð�Þ; �

m̂

�
;

(23)

where again �0 ¼ m̂2=S ¼ �̂xaxb and�H1H2!cd is given by

the convolution of the parton distribution functions and
!ab!cd:

�H1H2!cd

�
�0;��; ��;�sð�Þ; �

m̂

�

¼ X
ab

Z 1

0
dxadxbf

H1
a ðxa; �ÞfH2

b ðxb; �Þ

�!ab!cd

�
�̂;��; �̂; �sð�Þ; �

m̂

�
; (24)
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with �̂ ¼ ��� 1
2 lnðxa=xbÞ as before. At fixed final-state

partonic mass m̂, the function �H1H2!cd now has the

desired factorization property under Fourier and Mellin
transforms:

Z 1

�1
d ��ei� ��

Z 1

0
d�0ð�0ÞN�1�H1H2!cd

�
�0;��; ��;�sð�Þ; �

m̂

�

¼ X
ab

~fH1
a ðN þ 1þ i�=2; �Þ~fH2

b ðN þ 1� i�=2; �Þ

� ~!ab!cd

�
N; �;��;�sð�Þ; �

m̂

�
; (25)

where

~!ab!cd

�
N; �;��;�sð�Þ; �

m̂

�

�
Z 1

�1
d�̂ei��̂

Z 1

0
d�̂�̂N�1!ab!cd

�
�̂;��; �̂; �sð�Þ; �

m̂

�
:

(26)

Through Eqs. (23)–(26) we have formulated the hadronic
cross section in a way that involves moment-space expres-
sions for the partonic hard-scattering functions, which may
be resummed. Because the final-state fractions zi equal
unity at partonic threshold, the scale m̂ in the short-
distance function may be identified here with the final-state
partonic invariant mass, up to corrections that are sup-
pressed by powers of N. For the singular, resummed
short-distance function we therefore do not encounter the
problem with the moments discussed above in connection
with Eq. (22).

B. Resummation at next-to-leading logarithm (NLL)

As we saw in Eq. (16), the singular parts of the partonic
cross sections near threshold enter with �ð�̂Þ. This gives
for the corresponding moment-space expression

~!resum
ab!cd

�
N;��;�sð�Þ; �

m̂

�

¼
Z 1

0
d�̂�̂N�1!

sing
ab!cd

�
�̂;��;�sð�Þ; �

m̂

�
; (27)

which is a function of N only, but not of the Fourier
variable �. Dependence on the Fourier variable � then
resides entirely in the parton distributions. It is this func-
tion, ~!resum

ab!cd, that threshold resummation addresses, which

is the reason for the use of the label ‘‘resum’’ from now on.
The nature of singularities at partonic threshold is de-

termined by the available phase space for radiation as �̂ !
1. Denoting by k� the combined momentum of all radia-
tion, whether from the incoming partons a and b or the
outgoing partons c and d, one has

1� �̂ ¼ 1� ðpc þ pdÞ2
ðpa þ pbÞ2

¼ 1� ðpa þ pb � kÞ2
ðpa þ pbÞ2

� 2k�0ffiffiffî
s

p ;

(28)

where k�0 is the energy of the soft radiation in the c.m.s of

the initial partons.
At partonic threshold, the cross section factorizes into

‘‘jet’’ functions associated with the two incoming and
outgoing partons, in addition to an overall soft matrix,
traced against the color matrix describing the hard scatter-
ing [17,20]. Corrections to this factorized structure are
suppressed by powers of 1� �̂. The total cross section is
a convolution in energy between these functions, which is
factorized into a product by moments in �̂N �
exp½�Nð1� �̂Þ�, again with corrections suppressed by
powers of (1� �̂), or equivalently, powers ofN. This result
was demonstrated for jet cross sections in [20], and the
extension to observed hadrons in the final state was dis-
cussed in [26,27]. The resummed expression for the par-
tonic hard-scattering function for the process ab ! cd
then reads [17,18,20,21]:

~!resum
ab!cd

�
N;��;�sð�Þ; �

m̂

�

¼ �Nþ1
a

�
�sð�Þ; �

m̂

�
�Nþ1

b

�
�sð�Þ; �

m̂

�

� TrfHSy
NSSNgab!cd

�
��;�sð�Þ; �

m̂

�

� �Nþ2
c

�
�sð�Þ; �

m̂

�
�Nþ2

d

�
�sð�Þ; �

m̂

�
:

(29)

We will now discuss each of the functions and give their
expansions to next-to-leading logarithmic (NLL) accuracy.
The �N

i (i ¼ a; b; c; d) represent the effects of soft-
gluon radiation collinear to an initial or final parton.

Working in the MS scheme, one has [16–18,20,21]:

ln�N
i

�
�sð�Þ; �

m̂

�
¼

Z 1

0

zN�1 � 1

1� z

Z ð1�zÞ2m̂2

m̂2

dq2

q2
Aið�sðq2ÞÞ

þ
Z m̂2

�2

dq2

q2

�
�Aið�sðq2ÞÞ ln �N

� 1

2
Bið�sðq2ÞÞ

�
: (30)

Here the functions Ai and Bi are perturbative series in �s,

Aið�sÞ ¼ �s

�
Að1Þ
i þ

�
�s

�

�
2
Að2Þ
i þ � � � ; (31)

and likewise for Bi. To NLL, one needs the coefficients
[28]:

Að1Þ
i ¼ Ci; Að2Þ

a ¼ 1

2
Ci

�
CA

�
67

18
� �2

6

�
� 5

9
Nf

�
;

Bð1Þ
q ¼ � 3

2
CF; Bð1Þ

g ¼ �2�b0; (32)

where Nf is the number of flavors, and
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Cq ¼ CF ¼ N2
c � 1

2Nc

¼ 4

3
; Cg ¼ CA ¼ Nc ¼ 3;

b0 ¼
11CA � 2Nf

12�
: (33)

The factors �N
i generate leading threshold enhancements,

due to soft-collinear radiation. We note that our expression
for the �N

i differs by the N-independent term proportional

to Bð1Þ
i from that often used in studies of threshold resum-

mation (see, for example, Refs. [18,29]). As was shown in
[17,20,21], this term is part of the resummed expression
and exponentiates. In fact, the second term on the right-
hand side of Eq. (30) contains the large-N part of the
moments of the diagonal quark and gluon splitting func-
tions, matching the full leading power �F-dependence of
the parton distributions and fragmentation functions in
Eqs. (23) and (25). We shall return to this point below.

Each of the functions Hab!cd, SN;ab!cd, Sab!cd in

Eq. (29) is a matrix in a space of color exchange operators
[17,20], and the trace is taken in this space. Note that this
part is the only one in the resummed expression Eq. (29)
that carries dependence on ��. The Hab!cd are the hard-
scattering functions. They are perturbative and have the
expansion

Hab!cd

�
��;�sð�Þ; �

m̂

�

¼ Hð0Þ
ab!cdð��Þ þ

�sð�Þ
�

Hð1Þ
ab!cd

�
��;

�

m̂

�
þOð�2

sÞ: (34)

The LO (i.e. Oð�2
sÞ) parts Hð0Þ

ab!cd are known [17,20,21],

but the first-order corrections have not been derived yet.
We shall return to this point shortly. The Sab!cd are soft

functions. They depend on N only through the argument of
the running coupling, which is set to �=N [17], and have
the expansion

Sab!cd

�
��;�s;

�

m̂

�
¼ Sð0Þab!cd þ

�s

�
Sð1Þab!cd

�
��;

�

Nm̂

�

þOð�2
sÞ: (35)

The N-dependence of the soft function enters the re-
summed cross section at the level of next-to-next-to-

leading logarithms. The LO terms Sð0Þab!cd may also be

found in [17,20,21]. They are independent of ��.
The resummation of wide-angle soft gluons is contained

in the Sab!cd, which are exponentials and given in terms of
soft anomalous dimensions, �ab!cd:

SN;ab!cd

�
��;�sð�Þ; �

m̂

�

¼ P exp

�
1

2

Z m̂2= �N2

m̂2

dq2

q2
�ab!cdð��;�sðq2ÞÞ

�
; (36)

where P denotes path ordering and where �N � Ne	E with
	E is the Euler constant. The soft anomalous dimension
matrices start at Oð�sÞ,

�ab!cdð��;�sÞ ¼ �s

�
�ð1Þ
ab!cdð��Þ þOð�2

sÞ: (37)

Their first-order terms are presented in [17,20,21,30].
Note that the Born cross sections are recovered by

computing TrfHð0ÞSð0Þgab!cd, which is proportional to the

function !ð0Þ
ab!cdð��Þ introduced in Eq. (15). It is instruc-

tive to consider the expansion of the trace part in Eq. (29)
to first order in �s. One finds [31]:

TrfHSy
NSSNgab!cd ¼ TrfHð0ÞSð0Þgab!cd þ �s

�
Trf�½Hð0Þð�ð1ÞÞySð0Þ þHð0ÞSð0Þ�ð1Þ� ln �N þHð1ÞSð0Þ þHð0ÞSð1Þgab!cd

þOð�2
sÞ: (38)

When combined with the first-order expansion of the factors �N
i in Eq. (29), one obtains

~!resum
ab!cd

�
N;��;�sð�Þ; �

m̂

�
¼ TrfHð0ÞSð0Þgab!cd

�
1þ �s

�

X
i¼a;b;c;d

Að1Þ
i ½ln2 �N þ ln �N lnð�2=m̂2Þ�

�

þ �s

�
Trf�½Hð0Þð�ð1ÞÞySð0Þ þHð0ÞSð0Þ�ð1Þ� ln �N þHð1ÞSð0Þ þHð0ÞSð1Þgab!cd þOð�2

sÞ: (39)

This expression can be compared to the results of the
explicit NLO calculation near threshold given in
Appendix A. This provides a cross-check on the terms
that are logarithmic in N, that is, singular at threshold.
From comparison to the part proportional to �ð1� �̂Þ in
the NLO expression, one will be able to read off the
combination (Hð1ÞSð0Þ þHð0ÞSð1Þ) in Eq. (39). This is, of
course, not sufficient to determine the full first-order ma-
trices Hð1Þ and Sð1Þ, which would be needed to fully evalu-
ate the trace part in Eq. (29) to NLL. To derive Hð1Þ and

Sð1Þ, one would need to perform the NLO calculation near
threshold in terms of a color decomposition [32], which is
beyond the scope of this work. Instead, we use here an
approximation that has been made in previous studies (see,
for example, Ref. [5]),

TrfHSy
NSSNgab!cd �

�
1þ �s

�
Cð1Þ
ab!cd

�

� TrfHð0ÞSy
NS

ð0ÞSNgab!cd; (40)
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where

Cð1Þ
ab!cdð��;�=m̂Þ � TrfHð1ÞSð0Þ þHð0ÞSð1Þgab!cd

TrfHð0ÞSð0Þgab!cd

(41)

are referred to as ‘‘C coefficients.’’ The coefficients we
obtain for the various partonic channels are given in
Appendix B. The approximation we have made becomes
exact if only one color configuration contributes or if all
eigenvalues of the soft anomalous dimension matrix are
equal. By construction, it is also correct to first order in �s.

We now turn to the explicit NLL expansions of the
ingredients in the resummed partonic cross section. For
the function �N

i in Eq. (30) one finds:

ln�N
i

�
�sð�Þ; �

m̂

�
¼ hð1Þi ð
Þ ln �N þ hð2Þi

�

; �sð�Þ; �

m̂

�

þ lnEi

�

;�sð�Þ; �

m̂

�
; (42)

where 
 ¼ b0�sð�Þ ln �N and the functions hð1Þi , hð2Þi , lnðEiÞ
are given by

hð1Þi ð
Þ ¼ Að1Þ
i

2�b0

ð2
þ lnð1� 2
ÞÞ;

hð2Þi

�

;�sð�Þ; �

m̂

�
¼ 2
þ lnð1� 2
Þ

2�b0

�
Að1Þ
i b1
b20

� Að2Þ
i

�b0
� Að1Þ

i ln
�2

m̂2

�
þ Að1Þ

i b1
4�b30

ln2ð1� 2
Þ þ Bð1Þ
i

2�b0
lnð1� 2
Þ;

lnEi

�

;�sð�Þ; �

m̂

�
¼ 1

�b0

�
�Að1Þ

i ln �N � 1

2
Bð1Þ
i

��
lnð1� 2
Þ � b0�sð�Þ ln�

2

m̂2

�
:

(43)

We note that we have written Eq. (42) in a ‘‘nonstandard’’
form that is actually somewhat more complex than neces-
sary. For example, one can immediately see that the terms
proportional to Bð1Þ

i lnð1� 2
Þ cancel between the func-
tions hð2Þi and lnðEiÞ, as they must because they were not
present in the �N

i in Eq. (30) in the first place. The term
proportional to lnð�2=m̂2Þ in lnðEiÞ is the expansion of the
second term in Eq. (30). Its contribution involving Bð1Þ

i

does not carry logarithmic dependence on N and would
normally be part of the C coefficients discussed above. The
term proportional to lnð1� 2
Þ in lnðEiÞ has been sepa-
rated from the first term in Eq. (30). Our motivation to use
this form of Eq. (42) is that the piece termed lnðEiÞ may be
viewed as resulting from a large-N leading-order evolution
of the corresponding parton distribution or fragmentation
function between scales m̂= �N and the factorization scale
�F (we remind the reader that we have set the factorization
and renormalization scales equal and denoted them by �).
As mentioned earlier, the factors (� 2Að1Þ

i ln �N � Bð1Þ
i ) cor-

respond to the moments of the flavor-diagonal splitting
functions, PN

ii , while the term in square brackets is a LO
approximation to

b0
Z m̂2= �N2

�F

dq2

q2
�sðq2Þ: (44)

Therefore, it is natural to identify [33]

E i

�

;�sð�Þ; �

m̂

�
~fHi ðN;�Þ $ ~fHi ðN; m̂= �NÞ; (45)

that is, the exponential related to Ei evolves the parton
distributions from the factorization scale to the scale m̂= �N,
and likewise for the fragmentation functions. At the level
of diagonal evolution, it makes of course no difference if
lnðEiÞ is used to evolve the parton distributions or if it is

just added to the function hð2Þi . However, as was discussed
in [33,34], one can actually promote the diagonal evolution
expressed by Ei to the full singlet case by replacing the
term (� 2Að1Þ

i ln �N � Bð1Þ
i ) by the full matrix of the mo-

ments of the LO singlet splitting functions, Pð1Þ;N
ij , so that E

itself becomes a matrix. Using this matrix in Eq. (42)
instead of the diagonal Ei, one takes into account terms
that are suppressed as 1=N or higher. In particular, one
resums terms of the form �k

s ln
2k�1 �N=N to all orders in �s

[34]. We will mostly stick to the ordinary resummation
based on a diagonal evolution operator Ei in this paper.
However, as we shall show later in one example, the
subleading terms taken into account by implementing the
nondiagonal evolution in the parton distributions and frag-
mentation functions can actually be quite relevant in kine-
matic regimes where one is further away from threshold.
Here we will only take the LO part of evolution into
account, extension to NLO is possible and has been dis-
cussed in [33].
For a complete NLL resummation one also needs the

expansion of the integral in Eq. (36), which leads to

lnSN;ab!cd

�
��;�sð�Þ; �

m̂

�
¼ lnð1� 2
Þ

2�b0
�ð1Þ
ab!cdð��Þ:

(46)

As in [29], we perform the exponentiation of the matrix on
the right-hand side numerically, by iterating the exponen-
tial series to an adequately large order.

C. Inverse of the Mellin and Fourier transform and
matching procedure

As we have discussed in detail, the resummation is
achieved in Mellin moment space. In order to obtain a
resummed cross section in � space, one needs an inverse
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Mellin transform, accompanied by an inverse Fourier
transform that reconstructs the dependence on ��. The
Mellin inverse requires a prescription for dealing with
the singularity in the perturbative strong coupling constant
in Eqs. (30) and (36) or in the NLL expansions, Eqs. (42)
and (43). We will use the minimal prescription developed
in Ref. [35], which relies on use of the NLL expanded
forms Eqs. (42) and (43), and on choosing a Mellin contour
in complex-N space that lies to the left of the poles at 
 ¼
1=2 and 
 ¼ 1 in the Mellin integrand. From Eqs. (25) and
(26), we find

�resum
H1H2!cd

�
�0;��; ��;�sð�Þ; �

m̂

�

¼ 1

2�

Z 1

�1
d�e�i� ��

Z CMPþi1

CMP�i1
dN

2�i
ð�0Þ�N

�X
ab

~fH1
a ðN þ 1þ i�=2; �Þ~fH2

b ðN þ 1� i�=2; �Þ

� ~!resum
ab!cd

�
N; �;��;�sð�Þ; �

m̂

�
; (47)

where the Mellin contour is chosen so that b0�sð�2
RÞ�

lnCMP < 1=2, but all other poles in the integrand are as
usual to the left of the contour. The result defined by the
minimal prescription has the property that its perturbative
expansion is an asymptotic series that has no factorial
divergence and therefore no ‘‘built-in’’ powerlike ambigu-
ities [35]. Power corrections may then be added as phe-
nomenologically required. For most of our discussion
below, the resummed short-distance function ~!resum

ab!cd is

specified directly by Eqs. (42) and (43). When we refer
to ‘‘full singlet evolution,’’ however, we make the identi-
fication in Eq. (45), and evolve the parton distributions and
fragmentation functions to scale m̂= �N. In this case the

exponential in ~!resum
ab!cd is found from the hð1Þi and hð2Þi terms

only in Eq. (42).
We note that the parton distribution functions in moment

space fall off with an inverse power of the Mellin moment,
typically as 1=N4 or faster. This helps very significantly to
make the inverse Mellin integral in Eq. (47) numerically
stable. In particular, the resulting functions �resum

H1H2!cd are

very well behaved at high �0. This would be very different
if one were to invert just the resummed partonic cross
sections ~!resum

ab!cd and attempt to convolute the result with

the parton distributions. The good behavior of the
�resum

H1H2!cd makes it straightforward numerically to insert

them into Eq. (23), where they are convoluted with the
fragmentation functions in terms of momentum fractions z
at fixed rapidities. At this stage, it is straightforward to
impose cuts in the transverse momenta and rapidities of the
observed particles. This gives the final hadronic cross
section M4d�H1H2!h1h2X=dM2d��d ��. We note that be-
cause of the presence of the Landau pole and the definition
of the Mellin contour in the minimal prescription, the
inverted �resum

H1H2!cd has support at �0 > 1, where it is how-

ever decreasing exponentially with �0. The numerical con-
tribution from this region is very small (less than 1%) for
all of the kinematics relevant for phenomenology.
When performing the resummation, one of course wants

to make full use of the available fixed-order cross section,
which in our case is NLO [Oð�3

sÞ]. Therefore, a matching
to this cross section is appropriate, which may be achieved
by expanding the resummed cross section to Oð�3

sÞ, sub-
tracting the expanded result from the resummed one, and
adding the full NLO cross section. Schematically:

d�match ¼ ðd�resum � d�resumjOð�3
s ÞÞ þ d�NLO: (48)

In this way, NLO is taken into account in full, and the soft-
gluon contributions beyond NLO are resummed to NLL.
Any double counting of perturbative orders is avoided.

IV. PHENOMENOLOGICAL RESULTS

We now compare our resummed calculations to experi-
mental dihadron production data given as functions of the
pair mass, M. These are available from the fixed-target
experiments NA24 [9] (pp scattering at beam energy Ep ¼
300 GeV), E711 [10] (protons with Ep ¼ 800 GeV on

beryllium), and E706 [11] (pp and pBe with Ep ¼ 500

and 800 GeV), as well as from the ISR pp collider experi-

ment CCOR [12] which produced data at
ffiffiffi
S

p ¼ 44:8 and
62.4 GeV. The data sets refer to a �0�0X final state, with
the exception of E711, which measured the final states
hþhþX, h�h�X, hþh�X with h summed over all possible
hadron species. When presenting our results for this data
set, we will follow [14] to consider for simplicity only the
summed charged-hadron combination ðhþ þ h�Þ�
ðhþ þ h�ÞX. For this combination also the information
on the fragmentation functions is more reliable than for
individual charge states.
In each of the experimental data sets, kinematic cuts

have been applied. These are variously on the individual
hadron transverse momenta pT;i or rapidities �i, or on

variables that are defined from both hadrons, cos��, Y,
p
pair
T . Here cos�� is the mean of the cosines of the angles

between the observed hadron directions and the closest
beam directions, in a frame where the produced hadrons
have equal and opposite longitudinal momenta,
pT;1 sinh�1 ¼ �pT;2 sinh�2 [9–12,14]. This system ap-

proximately coincides with the partonic c.m.s. In terms
of the observed transverse momenta and rapidity difference
one has:

cos�� ¼ 1

2

�
pT;1

pT;2 þ pT;1 coshð2��Þ
þ pT;2

pT;1 þ pT;2 coshð2��Þ
�
sinhð2��Þ: (49)

Furthermore, Y is the rapidity of the pion pair,
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Y ¼ 1

2
ln

�
�0 þ �3

�0 � �3

�
¼ ��� 1

2
ln

�
pT;1e

��� þ pT;2e
��

pT;1e
�� þ pT;2e

���

�
;

(50)

where � ¼ K1 þ K2 is the pair’s four-momentum and
where the second equality in terms of ��, �� and the
hadron transverse momenta pT;i holds for LO kinematics

as appropriate in the threshold regime. Finally, p
pair
T is the

transverse momentum of the pion pair,

p
pair
T ¼ jpT;1 þ pT;2j ¼ jpT;1 � pT;2j; (51)

where again the second equality holds to LO. Thanks to
our way of organizing the threshold resummed cross sec-
tion, inclusion of cuts on any of these variables is
straightforward.

In all our calculations, we use the CTEQ6M5 set of
parton distribution functions [36], along with its associated
value of the strong coupling constant. We furthermore for
the most part use the ‘‘de Florian-Sassot-Stratmann’’
(DSS) fragmentation functions [37], but will also include
comparisons to the results obtained for the most recent
‘‘Albino-Kniehl-Kramer’’ (AKK) set [38]. We note that
one might argue that the use of NLO parton distribution
functions and fragmentation functions is not completely
justified for obtaining resummed predictions, given that
large-N resummation effects are typically not included in
their extraction mostly from deeply inelastic scattering
(DIS) and eþe� annihilation data, respectively. As was
shown in Ref. [39] for the case of the Drell-Yan process,
resummation effects in the parton distribution functions
extracted from DIS appear to have a very modest impact,
except when high momentum fractions and/or relatively
low scales are probed, which is not the case for the data sets
we are considering here. We expect the same to hold for the
fragmentation functions. In fact, some large-N resumma-
tion effects have been included in the AKK analysis [38],
and comparisons to the results obtained for this set will
therefore be interesting.

We choose for our calculations the renormalization and
factorization scales to be equal, and we give them the
values M and 2M, in order to investigate the scale depen-
dence of the results. One expects that a natural scale choice
would be offered by the hard scale in the partonic scatter-
ing, which isOðm̂Þ. Because of the relationM ¼ m̂

ffiffiffiffiffiffiffiffiffi
zczd

p
,

the scaleM is actually significantly lower than m̂, typically
by a factor 2. Our scale choices of M and 2M therefore
roughly correspond to scales m̂=2 and m̂, and we refrain
from using a scale lower than � ¼ M since this would
correspond to a rather low scale at the partonic hard
scattering.

Figure 1 shows the comparison to the NA24 [9] data for

pp ! �0�0X at
ffiffiffi
S

p ¼ 23:7 GeV. The cuts employed by
NA24 are j cos��j< 0:4, average over jYj< 0:35, and

ppair
T < 1 GeV. We start by comparing the full NLO cross

section to the first-order expansion of the resummed ex-

pression, that is, the last two terms in Eq. (48). This will
help to gauge to what extent the soft-gluon terms constitute
the dominant part of the cross section, so that their resum-
mation is reliable. It turns out that the two terms agree to a
remarkable degree. The dashed lines in Fig. 1 show the
NLO cross section for scales 2M (lower) and M (upper),
while the crosses give the NLO expansion of the resummed
cross section. Their difference actually never exceeds 1%
for the kinematics relevant for NA24. The solid lines and
dash-dotted lines in the figure present the full, and
matched, resummed results for the DSS and AKK frag-
mentation sets, respectively, including C coefficients im-
plemented as described in Sec. III B [see Eq. (41)]. One can
see that resummation leads to a very significant enhance-
ment of the theoretical prediction. A very good description
of the NA24 data [9] is obtained for both sets, much better
than for the NLO calculation which falls short of the data
unless rather low renormalization and factorization scales
are used. Also the scale dependence of the calculated cross
section is much reduced by resummation. We note that the
resummed result for the AKK set shows a somewhat
steeper M-dependence than that for the DSS set and lies
lower at high M. This may in part be due to the fact that
large-N resummation effects were included in the AKK
analysis of the eþe� annihilation data, resulting probably
in fragmentation functions that have an overall steeper
z-dependence. That said, given the still relatively large
uncertainties of fragmentation functions overall, we also
note that the different behavior of the AKK and DSS
results might be just due to differing assumptions made
in the respective analyses.
We next turn to the cross section for charged-hadron

production, pBe ! h	h	X, measured by E711 [10] at

FIG. 1 (color online). Comparison of the NLO (dashed lines)
and resummed [solid lines (DSS) and dash-dotted lines (AKK)]
calculations to the NA24 data [9], for two different choices of the
renormalization and factorization scales, � ¼ M (upper lines)
and � ¼ 2M (lower lines). The crosses display the NLO Oð�sÞ
expansion of the resummed cross section.
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ffiffiffi
S

p ¼ 38:8 GeV. We recall that we sum over the charges of
the produced hadrons. The cuts applied by E711 were
pT;i > 2 GeV, and average over �0:4< jYj< 0:2. The
cut on the individual hadron transverse momenta is, in
fact, irrelevant for the values of M considered here.
Furthermore, as stated in Fig. 6 of [10] for the pair mass

distribution we apply p
pair
T < 2 GeV, and 0:1< j cos��j<

0:25. Figure 2 shows the data and our results. As before, the
agreement between NLO and the NLO expansion of the
resummed calculation is excellent. Again, resummation
leads to an increase of the predicted cross section and a
reduction of scale dependence. Even though the resummed
results agree with the data much better than the NLO ones
for the scales we have chosen, they tend to lie somewhat
above the data, in particular at the highest values of M.
Keeping in mind the results for NA24, one may wonder if
this might be in part related to the fragmentation functions
for summed charged hadrons, which are probably slightly
less well understood than those for pions, due to the con-
tributions from the heavier kaons and, in particular, bary-
ons. The trend for the resummed result to lie a bit high is,
however, somewhat less pronounced for the AKK set
which again produces results that are a bit steeper than
the DSS ones.

Figures 3 and 4 show the comparison of our results (for
the DSS set) to the E706 data sets for neutral pion pair

production in pp and pBe scattering at
ffiffiffi
S

p ¼ 38:8 GeV
(800 GeV beam energy), respectively. We do not take into
account any nuclear effects for the beryllium nucleus,
except for the trivial isospin one. This has a very minor
effect on the cross section, compared to pp. E706 used cuts
fairly different from those applied in the data we have
discussed so far. There were no explicit cuts on cos��,
ppair
T or Y, but instead cuts pT;i > pcut

T ¼ 2:5 GeV and

either �1:05<�i < 0:55 (for the
ffiffiffi
S

p ¼ 38:8 GeV data)

or �0:8<�i < 0:8 (for the
ffiffiffi
S

p ¼ 31:6 GeV data) on the
transverse momenta and rapidities of the individual pions.
The cut on transverse momentum, in particular, has a
strong influence at the lowerM: in a rough approximation,
it leads to a kinematic limit M� 2pT;i > 5 GeV, so that

the cross section has to decrease very rapidly once one
decreasesM toward 5 GeV. This behavior is indeed seen in
the figures.
As in the previous cases, the NLO expansion of the

resummed and the full NLO cross section agree extremely
well, typically to better than 2%. For the two scales we
have chosen, the NLO cross sections fall well short of the

FIG. 2 (color online). Same as Fig. 1, but for charged-hadron
production for pp scattering at

ffiffiffi
S

p ¼ 38:8 GeV and with cuts
appropriate for comparison to E711. The data are from [10].

FIG. 3 (color online). Comparison of the NLO (dashed lines)
and resummed (solid lines) calculations (for the DSS fragmen-
tation set) to the E706 pp data at

ffiffiffi
S

p ¼ 38:8 GeV [11], for two
different choices of the renormalization and factorization scales,
� ¼ M (upper lines) and � ¼ 2M (lower lines). The crosses
display the NLO Oð�sÞ expansion of the resummed cross
section.

FIG. 4 (color online). Same as Fig. 3, but for proton-beryllium
scattering.
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data. It was noted in [14,15] that in order for NLO to match
the data, very low scales of � ¼ 0:35M have to be chosen.
The resummed cross section, on the other hand, has much
reduced scale dependence and describes the data very well
for the more natural scales M and 2M, except at the lower
M where the cut pcut

T on the pT;i becomes relevant. One

observes that the data extend to lower M than the theoreti-
cal cross section, which basically cuts off atM ¼ 5 GeV as
discussed above. A new scale becomes relevant here, the
difference jM� 2pcut

T j. Higher-order effects associated
with this scale (which are different from the ones addressed
by threshold resummation) and/or nonperturbative effects
such as intrinsic transverse momenta [11] probably control
the cross section here. It is also instructive to see that the
cross section is very sensitive to the actual value of the cut

on the pT;i. In Fig. 5 we show the resummed results for

scale � ¼ 2M for pT;i > 2:5 GeV (as before) and pT;i >
2:2 GeV. One can see that with the lower cut the data are
much better described. Experimental resolution effects
might therefore have a significant influence on the com-
parison between data and theory here.
In order to check consistency, E706 also presented their

pBe data set at
ffiffiffi
S

p ¼ 38:8 GeV when the E711 cuts were
applied instead of the E706 default ones. These data are
found in [11]. Figure 6 shows the comparison for this case.
One can see the same trends as before. Clearly, the de-
scription of the data by the resummed calculation is ex-
cellent. For this set of cuts, the cross section is not forced to
turn down by kinematics at the lower M, and theory and
data agree well everywhere. Figures 7 and 8 show results
corresponding to Figs. 3 and 4, but for the lower beam

energy, 530 GeV, employed by E706 (
ffiffiffi
S

p ¼ 31:6 GeV).

FIG. 5 (color online). Resummed cross section for scale � ¼
2M and pT;i > 2:2 GeV (dashed line), compared to the one with

pT;i > 2:5 GeV shown previously in Fig. 4 (solid line).

FIG. 6 (color online). Comparison to E706 data with a differ-
ent set of cuts, corresponding to the ones applied by E711. The
data with these cuts are from [11].

FIG. 7 (color online). Same as Fig. 3, but at
ffiffiffi
S

p ¼ 31:6 GeV.

FIG. 8 (color online). Same as Fig. 4, but at
ffiffiffi
S

p ¼ 31:6 GeV.
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We finally turn to the data sets available at the highest
energy, which are from the CCOR experiment at the ISR

[12]. Two data sets are available, at
ffiffiffi
S

p ¼ 44:8 and
62.4 GeV. The cuts employed by CCOR were identical to
those of NA24, j cos��j< 0:4, average over jYj< 0:35,

and ppair
T < 1 GeV. Figure 9 shows our results at

ffiffiffi
S

p ¼
44:8 GeV. The resummed calculation again shows de-
creased scale dependence and describes the data much
better than the NLO one. At the lower values of M, it
does show a tendency to lie above the data. Barring any
issue with the data (which appear to have a certain unex-
pected ‘‘shoulder’’ around M ¼ 10 GeV or so), this might
indicate that one gets too far from threshold for resumma-
tion to be very precise. On the other hand, the agreement
between full NLO and the NLO expansion of the re-
summed cross section still remains very good, as can be
seen from the figure. The trend for resummation to give
results higher than the data becomes more pronounced at

the higher energy,
ffiffiffi
S

p ¼ 62:4 GeV, as Fig. 10 shows,
where we have used both the DSS and AKK sets of
fragmentation functions. Although not easily seen from
the figure, the NLO expansion of the resummed cross
section starts to deviate more from the full NLO cross
section than at the lower energies. At the lower M shown,
it can be higher by up to 7%, which is still a relatively
minor deviation, but could be indicative of the reason why
the resummed result is high as well.

Clearly, any deviation between the full NLO cross sec-
tion and the NLO expansion of the resummed one is due to
terms that are formally suppressed by an inverse power of
the Mellin moment N near threshold. It is therefore inter-
esting to explore the likely effects of such terms. This can

be done by promoting the LO anomalous dimension in the
evolution part in Eq. (42) from its diagonal form to the full
one, as described in Sec. III B:

� 2Að1Þ
i ln �N � Bð1Þ

i ! Pð1Þ;N
ij ; (52)

which includes the subleading terms in 1=N and full singlet
mixing. For simplicity, we perform this modification only
for the lowest order part of evolution, as indicated in
Eqs. (43) and (52). The results obtained in this way are
shown in Fig. 11. One can see that the resummed result
obtained in this way indeed decreases significantly with
respect to the one in Fig. 10 which was based on the
diagonal evolution only, and is much closer to the data.
At the same time, the agreement between the NLO cross

FIG. 10 (color online). Same as Fig. 9, but for
ffiffiffi
S

p ¼
62:4 GeV. We also show the resummed result obtained for the
AKK set of fragmentation functions.

FIG. 9 (color online). Comparison of the NLO (dashed lines)
and resummed (solid lines) calculations to the CCOR data [9] atffiffiffi
S

p ¼ 44:8 GeV, for two different choices of the renormaliza-
tion and factorization scales, � ¼ M (upper lines) and � ¼ 2M
(lower lines). The crosses display the NLO Oð�sÞ expansion of
the resummed cross section.

FIG. 11 (color online). As Fig. 10, but extending the diagonal
evolution in the resummed formula to included subleading terms
and singlet mixing, as shown in Eq. (52). We use the DSS set of
fragmentation functions.
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section and theOð�sÞ expanded resummed result becomes
as good as what we encountered in the fixed-target case.
Figure 12 presents the corresponding result for the case of
NA24. Comparison with Fig. 1 shows that the effect of the
subleading terms is much smaller here, as expected from
the fact that one is closer to threshold in the case of NA24.
Nonetheless, the effects lead to a slight further improve-
ment between the resummed calculation and the data. In
particular, they give the theoretical result a somewhat
flatter behavior, which follows the trend of the data more
closely overall. While the implementation of subleading
terms in this way will require further study, this appears to
be a promising approach for extending the applicability of
threshold resummation into regimes where one is relatively
far away from threshold.

That said, we remind the reader that already in the part
that is leading near threshold we have made the approxi-
mation in Eq. (41) for our C coefficients. This, too, will
need to be improved in the future, by taking into account
the full color structure of the hard-scattering function
beyond LO, as we discussed in Sec. III B. To give a some-
what extreme example of the effects generated by the C
coefficients, we have recomputed the resummed cross

section for the case of CCOR at
ffiffiffi
S

p ¼ 62:4 GeV, but
leaving out all effects of the coefficients beyond NLO. In
other words, we leave out the C coefficients in the first two
terms on the right-hand side of Eq. (48), keeping them of
course in d�NLO. This is likely not a good approximation

of the beyond-NLO hard coefficients, because the Cð1Þ
ab!cd

have �2 terms and logarithms in the renormalization scale
� that are independent of the color channel and truly enter
in the form given in Eq. (41). Some of these are in fact even
known to exponentiate [17,20,21,31,40]. In any case, the
result of this exercise is shown in Fig. 13, where it is also
compared to our earlier calculation that included the C
coefficients in the way discussed in Sec. III B. One can see

that there is a sizable numerical difference, and that the
scale dependence of the resummed result without the
beyond-NLO C coefficients becomes significantly worse.
We finally turn to the distribution in cos��, defined in

Eq. (49), for which most of the experiments mentioned
above have presented data as well. In fact, the CCOR data
[12] for this observable were instrumental in establishing
the QCD hard-scattering nature of pp interactions [41].
From the point of view of threshold resummation, the
distribution in cos�� may appear somewhat less interesting
than the pair mass one, since the threshold logarithms arise
in 1� �̂ ¼ 1� m̂2=ŝ, regardless of cos��. In addition, the
cos�� distributions are presented as normalized distribu-
tions of the form

d�=d cos��

d�=d cos��jcos��¼0

; (53)

so that the main enhancement generated by threshold
resummation is expected to cancel. Nonetheless, as we
have seen in Sec. III B, the resummed expressions do
contain additional dependence on �� beyond that present
in the Born cross sections, which will affect the cos��
distribution at higher orders. This is visible from the soft
part in Eq. (46) and also from theC coefficients in Eq. (41).
Rather than going through an exhaustive comparison to all
the available data, we just consider one example that is
representative of the effects of threshold resummation on
the cos�� distribution. Figure 14 shows the normalized
distribution for the E711 case, where we have again
summed over all charge states of the produced hadrons.
The dashed lines show the NLO result calculated again
with the code of [14], for scales� ¼ 2M and� ¼ M. One
can see that for these scales the NLO calculation is lower

FIG. 12 (color online). Same as Fig. 11, but for the case of
NA24.

FIG. 13 (color online). Resummed results for the case of
CCOR at

ffiffiffi
S

p ¼ 62:4 GeV. The solid lines show the results for
scales M and 2M shown previously in Fig. 10, while the dashed
ones were obtained by neglecting the contributions by the

Cð1Þ
ab!cd coefficients beyond NLO.
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than the data for higher values of cos��. The dot-dashed
lines in Fig. 14 show the resummed results for scales � ¼
2M and � ¼ M. These show a steeper rise with cos�� and
describe the data better than NLO for the scales shown.
However, they still tend to lie below the data at higher
values of cos��. As was suggested in [12,14,15], for the
cos�� distribution the hard scale in the partonic process
will itself be a function of cos��, so that it is more natural
to choose a factorization/renormalization scale that reflects
this feature. We therefore present our resummed results
also for scales � ¼ 2M� and � ¼ M�, where M�2 ¼
M2ð1� cos��Þ which is proportional to the Mandelstam
variable t̂ in the partonic process. One observes that with
these scale choices a very good description of the data is
achieved. We note that in the NLO calculations presented
in Refs. [14,15] the scale was chosen proportional to the
(average) transverse momenta of the produced hadrons,
which for given M also depend on cos��. This resulted in
a satisfactory description of the data, when scales effec-
tively a factor two smaller than ourM� were used. Overall,
the trend for the resummed cos�� distribution to lie higher
than NLO and be in better agreement with the data is found
to be a generic feature that occurs as well for the cases of
the other experiments.

V. CONCLUSIONS

We have investigated the effects of next-to-leading loga-
rithmic threshold resummation on the cross section for
dihadron production in hadronic collisions, H1H2 !
h1h2X, for a range of invariant masses of the produced
hadron pair. We have developed techniques to implement
the resummation formalism at fixed rapidities for the pro-
duced hadrons and for all relevant experimental cuts.

Extensions of these techniques to the level of next-to-
next-to-leading logarithms should be relatively straightfor-
ward in light of the close relation between the one- and
two-loop soft anomalous dimension matrices [42].
For the fixed-target and collider data studied here, the

one-loop expansions of our resummed expressions ap-
proximate the corresponding exact one-loop cross sections
excellently, to the level of a few percent and often less. In
addition, with scales chosen to match the underlying hard
scattering, the matched resummed cross sections typically
explain the available data better than do NLO expres-
sions at similar scales, with significantly reduced scale
dependence.
An important extension of these methods will be in the

production and fragmentation of heavy quarks and in jet
cross sections, where similar resummation methods are
applicable. Given the reduction in scale dependence, this
could provide an improved control over standard model
tests and backgrounds in new physics searches.
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APPENDIX A

In this appendix we present some details for the calcu-
lation of the NLO partonic cross sections near threshold.
The virtual corrections have the 2 ! 2 kinematics of the
Born terms and therefore fully contribute. They are pro-
portional to �ð1� �̂Þ. The real-emission 2 ! 3 contribu-
tions require more effort. We consider the reaction
aðp1Þ þ bðp2Þ ! cðk1Þ þ dðk2Þ þ eðk3Þ, where partons d
and e fragment into the observed pair of hadrons and have
pair mass m̂2. It is convenient to work in the c.m.s. of the
observed outgoing hadrons. We can then write the three-
body phase space in 4� 2" dimensions as

�3 ¼ s

ð4�Þ4�ð1� 2"Þ
�
4�

s

�
2" Z 1

0
d�̂�̂�"ð1� �̂Þ1�2"

�
Z 1

0
d�"ð1þ Þ�2þ2"

Z �

0
dc sin1�2"c

�
Z �

0
d�sin�2"�: (A1)

Here we define

FIG. 14 (color online). Normalized distribution in cos�� [see
(53)] for the case of charged-hadron production at E711. Dashed
line is NLO, while the dot-dashed lines and solid lines show
resummed results. For the latter we have also used the scales
� ¼ M� and � ¼ 2M�, where M�2 ¼ M2ð1� cos��Þ.
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 ¼ ðp1 � k2Þ2=ðp2 � k2Þ2 ¼ e�2��: (A2)

Near threshold, the integration variables are given in terms of the Mandelstam variables of the process as follows:

ðp1 þ p2Þ2 ¼ ŝ; ðk2 þ k3Þ2 ¼ m̂2 ¼ �̂ ŝ;

ðp1 � k1Þ2 ¼ � ŝð1� �̂Þ
2

ð1� cosc Þ;

ðp2 � k1Þ2 ¼ � ŝð1� �̂Þ
2

ð1þ cosc Þ;

ðp1 � k2Þ2 ¼ � ŝ

1þ 
¼ ðp2 � k3Þ2;

ðp2 � k2Þ2 ¼ � ŝ

1þ 
¼ ðp1 � k3Þ2;

ðk1 þ k2Þ2 ¼ ŝð1� �̂Þ
2

�
1þ sinc cos�

2
ffiffiffiffi


p
1þ 

� cosc
1� 

1þ 

�
;

ðk1 þ k3Þ2 ¼ ŝð1� �̂Þ
2

�
1� sinc cos�

2
ffiffiffiffi


p
1þ 

þ cosc
1� 

1þ 

�
:

(A3)

The phase space in Eq. (A1) is used to integrate the squared 2 ! 3 matrix elements jMab!cdej2. For the latter one also
assumes near-threshold kinematics. Since we want the partonic cross section at fixed �̂ and ��, we only need to perform
the last two integrations in Eq. (A1). The basic integral for these is [43]

Z �

0
dc

Z �

0
d�

sin1�2"c sin�2"�

ð1� cosc Þjð1� cosc cos�� sinc cos� sin�Þk

¼ 2�
�ð1� 2"Þ
�ð1� "Þ2 2

�j�kBð1� "� j; 1� "� kÞ2F1

�
j; k; 1� "; cos2

�

2

�
; (A4)

where 2F1 is the hypergeometric function. After integra-
tion over phase space and addition of the virtual correc-
tions, infrared singularities cancel and only collinear
singularities remain. These are removed by mass factori-
zation, which we do in the MS scheme. Notice that since
we are close to threshold only the diagonal splitting func-
tions Pð1Þ

ii contribute in this procedure. Combining all con-
tributions, one arrives at the near-threshold structure of the
partonic cross sections given in Eq. (17), for each subpro-
cess that is already present at LO. The final step is to take
Mellin moments in �̂ of the result, as described in Eq. (26).
This gives for the partonic cross sections to NLO:

~! thr;LOþNLO
ab!cd ðN;��;�sð�Þ; �=m̂Þ

¼ !ð0Þ
ab!cdð��Þ þ

�sð�Þ
�

�
!ð1;0Þ

ab!cdð��;�=m̂Þ

� ln �N!ð1;1Þ
ab!cdð��;�=m̂Þ þ 1

2
ðln2 �N

þ �ð2ÞÞ!ð1;2Þ
ab!cdð��Þ

�
; (A5)

where terms subleading in N have been neglected. The C

coefficients defined in Eq. (41) are obtained from this as

Cð1Þ
ab!cdð��;�=m̂Þ

¼ !ð1;0Þ
ab!cdð��;�=m̂Þ þ 1

2 �ð2Þ!ð1;2Þ
ab!cdð��Þ

!ð0Þ
ab!cdð��Þ

: (A6)

APPENDIX B

In this section we give the coefficients Cð1Þ
ab!cd for each

subprocess contributing to the production of our dihadron
final state, resulting from the calculation outlined in
Appendix A. In all expressions below, � is the renormal-
ization scale. The dependence on the factorization scale is
already included in the function Ei in Eq. (43). As before,
we define  � e�2��.
qq0 ! qq0:
We define:

Qqq0 � 1þ ð1þ Þ2: (B1)

We then have:

THRESHOLD RESUMMATION FOR DIHADRON PRODUCTION . . . PHYSICAL REVIEW D 80, 074016 (2009)

074016-15



Cð1Þ
qq0!qq0 ð��;�=m̂Þ ¼ 2�b0 ln

�2

m̂2
þ

�
5

6Qqq0
þ 13

12

�
ln2þ

�
5

6
� 1

3Qqq0

�
ln2ð1þ Þ þ

�
� 8

3
þ 14þ 9

6Qqq0

�
ln

þ
�
� 4

3
þ 2

3Qqq0

�
lnð1þ Þ ln� 

3Qqq0
lnð1þ Þ þ 7�2

6Qqq0
þ Nf

3
ln



1þ 
� 5Nf

9
þ 8

3
Li2

�


1þ 

�

þ 3

2
lnð1þ Þ þ 47�2

36
þ 7

2
: (B2)

q �q0 ! q �q0:
We have:

Cð1Þ
q �q0!q �q0 ð��;�=m̂Þ ¼ Cð1Þ

qq0!qq0 ð��;�=m̂Þ þ 5

6

��
1� 2

Qqq0

��
ð1þ lnÞ lnþ �2

2

�
� 

Qqq0
lnð1þ Þ

þ
�
3

2
� 1

Qqq0

�
lnð1þ Þ ln1þ 

2
� 2Li2

�


1þ 

��
: (B3)

qq ! qq:
We define:

Qqq � ð1� þ 2Þð3þ 5þ 32Þ
ð1þ ð1þ ÞÞ : (B4)

We then have:

Cð1Þ
qq!qqð��;�=m̂Þ ¼ 2�b0 ln

�2

m̂2
þ 8

Qqq

ð1� 2ÞLi2
�



1þ 

�
þ

�
7

6
� 59

48Qqq

þ 5

4Qqq

� þ 4

16ð3þ 5þ 32Þ
�
ln2

� ð122 þ 3� 4Þ
2Qqq

ln2ð1þ Þ þ ln

12Qqq

�
37� 71þ ð17� 8ÞQqq

3þ 5þ 32

�

þ
�
7

3
� 7

4Qqq

ð6� 5Þ � 53� 6

12ð3þ 5þ 32Þ
�
lnð1þ Þ lnþ

�
3

2
� 

4Qqq

� 

4ð3þ 5þ 32Þ
�

� lnð1þ Þ þ Nf

�
2� 

2Qqq

þ 

3ð3þ 5þ 32Þ
�
ln� 1

3
Nf lnð1þ Þ � 5Nf

9
þ 7

2

�
1þ 2

3
�2

�

� �2

3Qqq

�
4þ 41

16


�
� 71�2

144ð3þ 5þ 32Þ : (B5)

q �q ! q0 �q0:
We define:

Qq0 �q0 � 1þ 2: (B6)

We then have:

Cð1Þ
q �q!q0 �q0 ð��;�=m̂Þ ¼ 2�b0 ln

�2

m̂2
þ 7

4

�
1� 2

3Qq0 �q0

�
ln2� 5

12

�
1þ 2

Qq0 �q0

�
ln2ð1þ Þ þ 7ð1þ Þ

6Qq0 �q0
ln

� 7

6

�
1� 2

Qq0 �q0

�
lnð1þ Þ ln� 1

3

�
1þ 5þ 9

2Qq0 �q0

�
lnð1þ Þ � 5Nf

9
� 5

3
Li2

�


1þ 

�

þ 1

6
ð21þ 4�2Þ: (B7)
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q �q ! q �q:
We define:

Qð1Þ
q �q � 3þ ð1þ Þ; Qð2Þ

q �q � 1þ 3ð1þ Þ: (B8)

We then have:

Cð1Þ
q �q!q �qð��;�=m̂Þ ¼ 2�b0 ln

�2

m̂2
þ Nf

�
1

6
þ ð1þ 2Þ

�
1

8Qð1Þ
q �q

þ 1

8Qð2Þ
q �q

��
ln

�


1þ 

�
þ Li2

�


1þ 

��
5þ 4

2Qð1Þ
q �q

þ 1þ 4

2Qð2Þ
q �q

� 1

3

�

þ �2

�
5ð9þ 14Þ
96Qð1Þ

q �q

þ 155þ 282

288Qð2Þ
q �q

þ 43

36

�
þ

�
4� 79

64Qð1Þ
q �q

þ 61þ 180

576Qð2Þ
q �q

þ 65

36

�
ln2

þ
�
13þ 124

64Qð1Þ
q �q

þ 361þ 972

576Qð2Þ
q �q

þ 29

36

�
ln2ð1þ Þ þ

�
7� 

16Qð1Þ
q �q

� 35þ 71

48Qð2Þ
q �q

� 11

12

�
ln

þ
�
61� 64

32Qð1Þ
q �q

� 247þ 576

288Qð2Þ
q �q

� 22

9

�
lnð1þ Þ lnþ

�
8þ 

16Qð1Þ
q �q

þ 36þ 71

48Qð2Þ
q �q

þ 7

12

�
lnð1þ Þ

� 5Nf

9
þ 7

2
: (B9)

q �q ! gg:
We define:

Gq �q � ð1þ 2Þð4� þ 42Þ: (B10)

We then have:

Cð1Þ
q �q!ggð��;�=m̂Þ ¼ 2�b0 ln

�2

m̂2
� 27

2Gq �q

ð1� 4ÞLi2
�



1þ 

�
þ 1

48

�
1þ 2

Gq �q

ð133þ 13Þ þ 124� 311

4� þ 42

�
ln2

þ 1

48

�
69þ 522

Gq �q

� þ 648

4� þ 42

�
ln2ð1þ Þ þ 1

6

�
� 

Gq �q

ð3þ 89Þ þ 48þ 5

4� þ 42

�
ln

þ
�
892

3Gq �q

� 19

6ð4� þ 42Þ � 2

�
lnð1þ Þ þ 1

24

�
�19� 2

Gq �q

ð133þ 13Þ þ 200þ 149

4� þ 42

�

� ln lnð1þ Þ � 15

4Gq �q

ð1� Þ2 þ 9�2ð4� Þ
16ð4� þ 42Þ þ

191�2

144
� 14

3
: (B11)

qg ! qg:
We define:

Qð1Þ
qg � 2ð1þ Þ þ 2; Qð2Þ

qg � 9ð1þ Þ þ 42: (B12)

We then have:

Cð1Þ
qg!qgð��;�=m̂Þ ¼ 2�b0 ln

�2

m̂2
� 14

3
þ 15ð1þ Þð2þ Þ2

4Qð1Þ
qgQ

ð2Þ
qg

þ �2

�
146þ 13

24Qð1Þ
qg

� 3ð109þ 13Þ
16Qð2Þ

qg

þ 241

144

�

þ
�
ð1þ Þ

�
13

12Qð1Þ
qg

� 15

16Qð2Þ
qg

�
þ 17

16

�
ln2þ ð1þ Þ

�
89

3Qð1Þ
qg

� 231

2Qð2Þ
qg

�
ln

þ
�
13� 120

24Qð1Þ
qg

þ 3ð173þ 41Þ
16Qð2Þ

qg

� 27

16

�
ln2ð1þ Þ þ

�
� 86þ 89

6Qð1Þ
qg

þ 3ð43þ 39Þ
2Qð2Þ

qg

� 2

�
lnð1þ Þ

þ
�
31

24
þ 27ð� 3Þ

8Qð2Þ
qg

�
Li2

�


1þ 

�
þ

�
120� 13

12Qð1Þ
qg

� 3ð155þ 23Þ
8Qð2Þ

qg

þ 31

24

�
ln lnð1þ Þ: (B13)

THRESHOLD RESUMMATION FOR DIHADRON PRODUCTION . . . PHYSICAL REVIEW D 80, 074016 (2009)

074016-17



gg ! q �q:
We have:

Cð1Þ
gg!q �qð��;�=m̂Þ ¼ Cð1Þ

q �q!ggð��;�=m̂Þ: (B14)

gg ! gg:
We define:

Ggg � 1þ ð1þ Þ: (B15)

We then have:
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