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Hadrons are composite objects made of quarks and gluons, and during a collision one can have several

elementary interactions between the constituents. These elementary interactions, using an appropriate

theoretical framework, can be related to the total and elastic cross sections. At high c.m. energy it also

becomes possible to identify experimentally a high p? subset of the parton interactions and to study their

multiplicity distribution. Predictions of the multiple interaction rates are difficult because in principle one

needs to have a knowledge of the correlated parton distribution functions that describe the probability to

find simultaneously different partons in different elements of phase space. In this work we address this

question and suggest a method to describe effectively the fluctuations in the instantaneous configuration of

a colliding hadron. This problem is intimately related to the origin of the inelastic diffractive processes.

We present a new method to include the diffractive cross section in an eikonal formalism that is equivalent

to a multichannel eikonal. We compare with data and present an extrapolation to higher energy.
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I. INTRODUCTION

The evolution with center of mass energy of the total and
elastic cross sections in hadron-hadron collisions, and the
properties of multiparticle production in these interactions
remain an important open problem in particle physics. This
problem is clearly of significant intrinsic interest, but it has
also important phenomenological implications: on one
hand the estimate of the properties of hadronic interactions
is obviously important at the LHC to model the back-
ground in the search for Higgs particles and possible forms
of ‘‘new physics’’; on the other hand the detailed properties
of hadronic interaction properties are important in cosmic
ray studies. The highest energy cosmic ray particles can
only be detected indirectly observing the extensive air
showers that they produce in the Earth’s atmosphere. The
development of air showers is determined by the hadronic
cross sections and the properties of particle production in
hadronic interactions, and therefore the interpretation of
the available (and future) data depends also on theoretical
assumptions about hadronic interactions.

Hadrons are composite objects containing quarks and
gluons, and it is natural to relate the cross sections for
hadron collisions to the more elementary interactions be-
tween their parton constituents. The precise method to do
this remains however an unsolved problem.

A possible approach is provided by the so-called ‘‘mini-
jet’’ models [1], where the total and elastic cross sections
are obtained using an eikonal formalism, in terms of the
quantity hnðb; sÞi that has the physical meaning of the
average number of elementary interactions at impact pa-
rameter b and c.m. energy

ffiffiffi
s

p
(for earlier work on the

importance of minjets see [2,3]). An attractive feature of
this approach is that it allows one to compute the distribu-
tion of the number of elementary interactions that happen
in a single hadron collision. This distribution can then be
used, with the inclusion of a few additional assumptions, in
Monte Carlo codes to predict properties of particle pro-
duction that can be tested experimentally. For example it is
simple to see that events with a large number of parton
scatterings must have a larger multiplicity and a more
complex structure.
The original version of the minijet approach and several

subsequent ones did not include in a consistent way in their
formalism the inelastic diffractive processes. Following an
approach introduced long ago by Good and Walker [4],
several authors [5–9] indicated possible methods to include
diffraction using a multichannel eikonal formalism. In this
work we rediscuss this problem, and suggest an alternative
method to include the diffractive cross section in the
eikonal formalism. This method is mathematically equiva-
lent to the multichannel eikonal method but offers addi-
tional physical insight.
The fundamental physical idea to explain the existence

of inelastic diffraction introduced by Good and Walker [4]
is to assume that inelastic diffraction emerges because an
interacting hadron can be seen as a superposition of differ-
ent states that undergo unequal absorptions. It is natural, as
originally proposed by Miettinen and Pumplin [10], to
identify these ‘‘transmission eigenstates’’ as different
‘‘configurations’’ of the parton constituents inside a had-
ron. In this theoretical framework the estimate of inelastic
diffraction requires some understanding of the ensemble of
such parton configurations. This appears as a daunting task.
A possible approach is to make the dramatic approxi-

mation of reducing the space of parton configurations to a
finite dimensional space (in fact spanned by as few as two
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or three base vectors) and to construct explicitly a matrix
transition operator. An explicit example (originally con-
structed in [11]) of this approach is also discussed in this
work.

The alternative method we propose here is to construct a
mapping from the space of the hadron configurations to the
real positive numbers, so that the number of elementary
interactions for the configuration C is nðCÞ ¼ hni�ðCÞ
(with hni the average over all configurations). The proba-
bility distribution of � (together with a model for hni) is
then sufficient to compute the total cross section and its
different components (elastic, absorption, and diffraction).

The consistent inclusion of diffraction in the theory is
very important, because it changes dramatically the rela-
tion between the inclusive parton cross sections and the
directly observable hadron cross sections.

This work is organized as follows. In the next section we
start discussing the problem of multiple interactions in a
narrower but better defined sense that is limiting our con-
siderations to hard high p? interactions that on one hand
can be easily identified experimentally, and on the other
hand have an inclusive cross section that is calculable in
perturbative QCD using the standard parton distribution
functions (PDF’s). We will show that the calculation of the
multiplicity distribution of these hard interactions requires
additional theoretical constructs.

In Sec. III after reviewing some general formalism about
total and elastic cross sections we discuss a standard, single
channel, version of the eikonal formalism that has been
used in the original minijet model of Durand and Pi and in
many other works.

In Sec. IV, after a brief introduction to inelastic diffrac-
tion we recall the basic ideas of the Good and Walker [4]
method, and then we discuss our implementation of this
multicomponent ansatz in terms of the function pð�Þ
(where � is a real positive variable). We call the function
pð�Þ the ‘‘effective configuration probability distribution.’’

In Sec. V we present a simple form for the function pð�Þ
that depends on a single parameter, and use this form,
together with a (2 parameters) parametrization of the func-
tion hnðb; sÞi to describe the available data on pp and �pp
scattering at collider energies.

In Sec. VI we discuss the energy dependence of the
parameters of our model and discuss extrapolations to
higher energy (LHC and ultrahigh energy cosmic rays).
Section VII offers some final considerations.

II. MULTIPLE INTERACTIONS

The problem of multiple interactions in a hadron-hadron
collision is usually discussed in the context of a calculation
of the total (or inelastic) cross section and referring to the
total number of elementary interactions in a collision. Such
a general discussion has serious difficulties. Theoretically
the concept of the ‘‘total’’ number of elementary interac-
tions in a collision is not really well defined. For example,

one usually divides the elementary interactions into two
classes: ‘‘soft’’ and ‘‘hard’’ choosing a rather arbitrary
cutoff in p?, however soft interactions cannot be consid-
ered as truly elementary, since they are effective processes,
as for instance a ‘‘pomeron exchange’’ that, after decades
of efforts, remains a somewhat elusive concept, and the
theoretical ‘‘counting’’ of the number of interactions in a
collision has significant ambiguities. On the other hand,
experimentally it is essentially impossible to measure the
number of soft interactions in one collision, and one can at
best obtain only some partial and indirect information from
the study of particle multiplicities.
To avoid these difficulties, in this section we will discuss

a more limited but much better defined problem, namely,
the production of parton-parton scatterings with a trans-
verse momentum larger than a chosen threshold. If the
threshold pmin

? is sufficiently large (above a few Gev), these

scatterings are, at least in principle, experimentally identi-
fiable. Multiple parton interactions can be identified and
distinguished from multijet production due to higher order
corrections (processes of type 2 ! 3 or 2 ! 4 at the parton
level) observing pairs of back to back jets. Such (difficult)
studies have already been performed at the Tevatron col-
lider [12].
Moreover, given the colliding hadron PDF’s, the inclu-

sive differential cross section for the production of pairs of
jets can be estimated in perturbation theory from the well-
known expression:

d3�

dp?dx1dx2

��������jet pair
ðp?; x1; x2;

ffiffiffi
s

p Þ

¼ X
j;k;j0;k0

fh1j ðx1; �2Þfh2k ðx2; �2Þ d�̂jk!j0k0

dp?
ðp?; ŝÞ: (1)

In this expression fh1j ðx;�2Þ [fh2k ðx;�2Þ] is the PDF for

parton of type j (k) in the hadron h1 (h2) and the scale
�2 � p2

?, and d�̂jk!j0k0=dp?ðp?; ŝÞ is the differential

cross section for the parton-parton scattering of type jþ
k ! j0 þ k0 at the squared c.m. energy for the parton-
parton interaction ŝ ¼ sx1x2. The fractional momenta
x1;2 are connected to the rapidities y1;2 of the observed

jets by the relation:

x1;2 ¼ p?ffiffiffi
s

p exp

�
�ðy1 þ y2Þ

2

�
: (2)

Integrating Eq. (1) over the phase space region p? >
pmin
? and all allowed jet rapidities one obtains the inclusive

jet cross section:
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�jetðpmin
? ;

ffiffiffi
s

p Þ ¼
Z ffiffi

s
p

=2

pmin
?

dp?
Z 1

4p2
?=s

dx1
Z 1

4p2
?=ðsx1Þ

dx2

�
� X
j;k;j0;k0

fh1j ðx1; �2Þfh2k ðx2; �2Þd�̂jk!j0k0

dp?

� ðp?; ŝÞ
�
: (3)

More in general, one could consider the production of jet
pairs in a more limited region of phase space selecting, for
example, only jets in a certain range of rapidities, with
appropriate choice of the limits in the integration over
phase space. The discussion below remains valid also in
this case, and in the following we will denote with �jet the

inclusive production of jets in a fixed kinematical region
determined by pmin

? and appropriate cuts in the jet rapid-

ities, leaving the dependence on these kinematical cuts
implicit.

The quantity �jetðsÞ is a cross section for parton-parton

interactions, and therefore must be interpreted in the ap-
propriate way. Its physical meaning is to give the inclusive
cross section for the production of jet pairs in the chosen
kinematical region. This means that when a detector col-
lects the integrated luminosity Lint, the expected number of
jet pairs is Lint�jet. Since the total number of inelastic

scattering events is Lint�inel, the ratio �jet=�inel is the

average number of jet pairs produced in one inelastic
interaction. In principle it is possible, and in fact it will
happen for pmin

? sufficiently small and/or
ffiffiffi
s

p
sufficiently

large, that �jet exceeds �inel. This simply implies that some

events must contain more than one parton-parton
interaction.

In general, an inelastic event can have 0, 1, 2 or more
hard interactions. A natural problem is the estimate of the
relative frequencies of events that have jet multiplicity k.
The probability pk that an inelastic event contains exactly k
pairs of jets can be expressed as the ratio:

pk ¼ �jet
k

�inel

: (4)

The partial cross sections �
jet
k must satisfy the sum rules:X

k

�
jet
k ¼ �inel; (5)

X
k

k�
jet
k ¼ �jet; (6)

and therefore

hki � X
k

kpjet
k ¼ �jet

�inel

: (7)

It is important to stress that the set of partial cross

sections �jet
k or equivalently the probabilities pk are ob-

servable quantities. For large pmin
? the identification of the

hard interactions is experimentally straightforward; how-
ever the inclusive jet cross section�jet is much smaller than

�inel and the jet multiplicity distribution becomes ‘‘trivial’’
and only p0 and p1 are different from zero. For pmin

?
sufficiently small the jet multiplicity distribution becomes
broader, and the probability to find more than one hard
scattering in a single event becomes significant; however at
the same time the experimental identification of the hard
scatterings becomes more difficult. At the LHC it should
however be possible to identify a value pmin

? sufficiently

small to result in an interesting multiplicity distribution of
hard interactions and sufficiently large to allow the mea-
surement of such a distribution.
Such an experimental study should be compared with a

theoretical prediction. The calculation of the multiplicity
distribution of the hard interactions is in fact a very diffi-
cult, unsolved problem, that, as we will discuss in the
following, requires the introduction of new ideas, beyond
the use of the standard PDF’s, that are only sufficient for
the calculation of the inclusive jet cross section. One may
note that the obvious sum rule (5) actually implies that the
calculation of the partial cross sections requires unavoid-
ably a complete theory for the inelastic hadron-hadron
cross section.
As a first step toward the calculation of the set of partial

cross sections �
jet
k one can note that it is natural to expect

that collisions at different impact parameters will result in a
different number of hard interactions, with small (large) b
corresponding to a larger (smaller) number of interactions.
The average number of interactions at a fixed impact
parameter b can be calculated as

hnjetðb; s; pmin
? Þi ¼

Z
d2b1

Z
d2b2Pintð ~b� ~b1 þ ~b2Þ

�
Z

dp?
Z

dx1
Z

dx2

� X
j;k;j0;k0

Fh1
j ðx1; b1; �2ÞFh2

k ðx2; b2; �2Þ

� d�̂jk!j0k0

dp?
ðp?; ŝÞ (8)

(where we have left implicit the integration limits over p?,
x1, and x2). The expression (8) differs from Eq. (3) for
three reasons: (i) it replaces the PDF’s fhj ðx;�2Þ with the

impact parameter dependent PDF’s Fh
j ðx; b;�2Þ; (ii) it in-

cludes two additional integrations over ~b1 and ~b2 that
describe the positions in transverse space of the partons

inside the two hadrons; and (iii) the function Pintð ~b� ~b1 þ
~b2Þ is also included.
The impact parameter dependent PDF’s Fh

j ðx; b;�2Þ
describe the probability to find a parton of type j in hadron
h with fractional longitudinal momentum x at transverse
position b (with respect to the hadron c.m.). These func-
tions are related to the standard PDF’s by the relation:
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fhj ðx;�2Þ ¼
Z

d2bFh
j ðx; b;�2Þ: (9)

The function Pintð ~bÞ describe the probability density that
two partons (each in a different hadron) separated by the
distance b in transverse space interact. The function has the
normalization:

Z
d2bPintð ~bÞ ¼ 1: (10)

The simplest choice for Pintð ~bÞ is a delta function

[Pintð ~bÞ ¼ �2ð ~bÞ], or more in general (but at the cost of
introducing a new parameter) a Gaussian of width �.

Using Eqs. (9) and (10) it is simple to verify that
integrating hnjetðb; sÞi over all impact parameters one ob-

tains the correct result:

Z
d2bhnjetðb; sÞi ¼ �jetðsÞ: (11)

The physical interpretation of Eq. (9) is very straightfor-
ward. To obtain the expected number of hard scattering in a
hadron collision at impact parameter b one must integrate
over the distribution of the partons in transverse space
around the center of mass of the colliding hadrons. The
standard PDF’s integrate over these transverse space vari-
ables and are therefore insufficient for the calculation, and
are only capable of giving the inclusive result.

To proceed in the calculation one must obtain informa-
tion about the impact parameter dependent PDF’s. The
simplest hypothesis is to assume that the dependence on
the impact parameter of the Fh

j functions can be factorized:

Fh
j ðx; b;�2Þ ¼ fhj ðx;�2Þ�̂hðbÞ; (12)

where the function �̂hðbÞ satisfies the normalization con-
dition:

Z
d2b�̂hðbÞ ¼ 1: (13)

With this factorization assumption the quantity hnðb; sÞi
can be written as

hnjetðb; sÞi ¼ �jetðsÞAðbÞ; (14)

where the ‘‘hadron overlap function’’ AðbÞ is

AðbÞ ¼
Z

d2b1
Z

d2b2�̂h1
ðb1Þ�̂h2

ðb2ÞPintð ~b� ~b1 þ ~b2Þ;
(15)

and it [using (10) and (13)] satisfies the normalization
condition:

Z
d2bAðbÞ ¼ 1: (16)

A reasonable first approximation for the overlap func-
tion AðbÞ proposed by Durand and Pi [1] is to estimate it
from the electromagnetic form factor of the colliding

hadrons (see Appendix A). Another (more phenomeno-
logical) approach has been to assume a Gaussian form of
a superposition of Gaussians.
It should however be stressed that the factorization

hypothesis (12) has no serious motivation beyond its sim-
plicity, and it is likely to be incorrect. In fact, the impact
parameter PDF’s can be in principle calculated from the
generalized parton distribution functions (GPDF’s) [13–
15]. Work on this subject is in progress.
The need to consider the dependence on the transverse

degrees of freedom introduces a serious complication and
uncertainty in the calculation of the partial cross sections

�jet
k , but unfortunately, even having a good theoretical

control of the overlap function AðbÞ (or better a detailed
knowledge of the impact parameter dependent PDF’s) is
not sufficient to estimate the partial cross sections.
To complete the calculation one must make some hy-

pothesis about the fluctuations in the number of hard
interactions for collisions at a fixed impact parameter
(and c.m. energy). The simplest hypothesis is to assume
that the fluctuations are simply Poissonian. The partial jet
cross sections are then calculable integrating over all im-
pact parameters the Poisson probability:

�jet
k ðsÞ ¼

Z
d2b

hnjetðb; sÞik
k!

e�hnjetðb;sÞi: (17)

The hypothesis that the multiplicity distribution of the
hard interactions at a given impact parameter is Poissonian
is however not necessarily correct, and some simple con-
siderations suggest that in fact this distribution is consid-
erably broader than a Poissonian. An argument in this
direction can be developed as follows. At the instant t a
hadron can be described as an ensemble of partons each
having a certain longitudinal momentum x and a transverse

position ~b. The set of values fqj; xj; ~bjgðj¼1;NÞ (qj is the

complete set of quantum numbers of each parton) is the
‘‘instantaneous configuration’’ of the hadron and will be
denoted with the symbol C. The probability to find hadron
h in a certain instantaneous configurationC can be denoted
as PhðCÞ with the normalization condition:

Z
dCPhðCÞ ¼ 1; (18)

where the integration over dC indicates formally the sum
over all possible configurations.
The interaction between (for example) two protons, in

the c.m. frame, lasts a crossing time tcross, that can be
estimated as

tcross �
2Rp

�c:m:

’ 4Rpmpffiffiffi
s

p ; (19)

where Rp is the linear size of the proton of order 0.5 fm.

Because of the Lorentz length contraction the crossing

time shrinks / s�1=2.
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The time required for the radiation and absorption of
partons, that is for changing the parton configurations, is of
order Rp and is therefore much longer than the interaction

time. It is therefore a reasonable approximation to assume
that during one interaction the hadrons appear as ‘‘frozen’’
each into its own configuration.

The expected number of hard interactions in a collision
of impact parameter b is determined by the parton con-
figurations of the two colliding hadrons. If the configura-
tion is composed by a few hard partons, as, for example, is
the case when most of the hadron energy is carried by the
valence quarks, the number of hard scattering is sup-
pressed, while if the configurations contain many gluons
with fractional energy of order x� ðpmin

? Þ2=s the number

of hard interactions is enhanced.
We will denote as njetðb;C1;C2Þ the expected number of

hard interactions in a collision at impact parameter b
between two hadrons with configurations C1 and C2.
Integrating over all possible hadron configurations one
must recover the expected value of the jet multiplicity,
therefore we can write formally:

Z
dC1

Z
dC2Ph1ðC1ÞPh2ðC2Þnjetðb;C1;C2Þ ¼ hnjetðb; sÞi:

(20)

If we make the further assumption that the actual num-
ber of interactions in a single collision at impact parameter
b with the hadrons in the configurations C1 and C2 has a
Poisson distribution around the expected value, we can
now write the partial jet cross sections as

�
jet
k ¼

Z
d2b

Z
dC1

Z
dC2Ph1ðC1ÞPh2ðC2Þ

�
�½njetðb;C1;C2Þ�k

k!
exp½�njetðb;C1;C2Þ�

�
: (21)

Of course Eq. (21) is only a formal solution of our
problem since we have not yet developed the instruments
to estimate the probability of the different configurations
and to perform the integration over the configurations
space.

In order to make progress we will make the assumption
that the expected value of the jet multiplicity for a certain
configuration of the hadrons is related to the averaged one
by the factorized relation:

njetðb;C1;C2Þ ¼ hnjetðb; sÞi�ðC1;C2Þ; (22)

where �ðC1;C2Þ is a real positive number. With this sim-
plifying assumption we can construct a function pð�Þ that
is independent from b:

pð�Þ ¼
Z

dC1

Z
dC2Ph1ðC1ÞPh2ðC2Þ�½�ðC1;C2Þ � ��:

(23)

It is straightforward to see that because of the normaliza-

tion condition (18) one has

Z 1

0
d�pð�Þ ¼ 1; (24)

consistently with the interpretation of pð�Þ as a probability
density; moreover because of Eq. (20) one has also that

Z 1

0
d��pð�Þ ¼ 1: (25)

Using the definition of (23) one can rewrite (21) in the
simpler form:

�
jet
k ¼

Z
d2b

Z 1

0
d�pð�Þ

�
�khnjetðb; sÞik

k!

� exp½��hnjetðb; sÞi�
�
: (26)

In this equation we have finally arrived to write the jet
multiplicity distribution in terms of hnjetðb; sÞi and the

function pð�Þ, that is unknown, but has fixed normalization
and first moment. The expression for the partial jet cross
sections given in Eq. (17) that was calculated ignoring the
effects of fluctuations in the parton configurations is re-
covered in the limit where the function pð�Þ has vanishing
width and reduces to the form pð�Þ ¼ �½�� 1�.
It is straightforward to see [using Eq. (25)] that one has

hki ¼ �jet=�inel in agreement with Eq. (7). The second

moment of the jet multiplicity distribution can be ex-
pressed as

hk2i ¼ 1

�inel

X
k

k2�
jet
k

¼ �jet

�inel

þ ð1þ wÞ
�inel

Z
d2bhnjetðb; sÞi2; (27)

where

w ¼
Z 1

0
d�ð�2 � 1Þpð�Þ (28)

is the variance of the pð�Þ distribution. Using the factori-
zation hypothesis (14) one can rewrite Eq. (27) as

hk2i ¼ �jet

�inel

þ ð1þ wÞ �
2
jet

�inel

Z
d2b½AðbÞ�2: (29)

The width of the jet multiplicity distribution is therefore
determined by the geometry of the hadronic matter [that is
from the shape of the overlap function AðbÞ] and from the
variance w of the function pð�Þ. Note that the simple
eikonal model corresponds to a vanishing w and therefore
to the minimum possible hk2i [for a fixed overlap function
AðbÞ].
The partial cross sections �jet

k and the quantity hk2i are
(at least in principle) measurable with observations of the
jet multiplicity distribution. From these measurements one
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can obtain information about the properties of the function
pð�Þ.

In fact we have already some (indirect) information
about the jet multiplicity distribution, and there are indi-
cations that predictions based on the simple eikonal ap-
proach are not adequate. Some of the most sophisticated
Monte Carlo instruments for the study of high energy
hadron collisions, such as PYTHIA [16,17] and HERWIG

[18,19] include a treatment of multiparton interactions
following the simple eikonal model. The algorithms for
multiparton interactions in these Monte Carlo codes com-
pute an inclusive jet cross section �jet, assume an overlap

function AðbÞ, and then generate a number of elementary
interactions according to the probability distribution of
Eq. (17) or equivalently of Eq. (26) with pð�Þ ¼ �½��
1�. In most cases the presence of multiple interactions
cannot be experimentally resolved but is detectable statis-
tically, for example, from fluctuations in the charged par-
ticles multiplicity distribution. In order to reproduce the
broad fluctuations of the data, it appears necessary to
construct some ad hoc functional form for the overlap
function. For example, PYTHIA [16,17] uses a double
Gaussian with a denser core and more extended halo.
The overlap function AðbÞ however (as will be discussed
in more detail in the following) in principle also determines
the t distribution of elastic scattering, and therefore one
does not have the freedom to modify it in an arbitrary way.

The introduction of a nonvanishing variance for the
function pð�Þ allows one to modify the width of the jet
multiplicity distribution without modifications of the over-
lap function AðbÞ.

One open problem in high energy hadron collisions that
is likely to be relevant in the interpretation of future data on
possible manifestations of new physics in high energy
collisions is the problem of the so-called ‘‘underlying
event.’’ The observations [20,21] show that in events
with the presence of a high p? scattering, the ‘‘environ-
ment’’ that accompanies the observed jets has an average
transverse momentum higher than what is found in mini-
mum bias events. Monte Carlo codes like HERWIG, ISAJET,
or PYTHIA at present only partially describe these effects
[20,21]. The origin of a higher ‘‘ambient level’’ of p? for
the underlying event can be related to the presence of
additional (softer and unresolved) parton scatterings that
accompany the observed jets. The correct description of
the underlying event is therefore related to a good theo-
retical control of the multiplicity distribution of parton
interactions. A Monte Carlo inplementation of multiparton
interactions based on an impact parameter picture for
hadronic collisions naturally contains some of the qualita-
tive features observed in underlying events, because events
selected with high p? jets are more likely to be central
collisions, and therefore are more likely to contain addi-
tional parton scatterings. A nonvanishing variance of pð�Þ
should however enhance the differences between under-

lying and minimum bias events, and could therefore play a
non-negligible role in the description of the data. A quan-
titative study of this problem with Monte Carlo methods is
a goal for future work.
The problem of the fluctuations in the configurations of

partons in a hadron is also intimately related to diffractive
scattering, as we will illustrate in the following section.

III. TOTAL AND ELASTIC CROSS SECTIONS

A. General formalism

In the following we will need to consider also the elastic
and total cross sections in hadronic scattering. The elastic
scattering amplitude in the collision of two hadrons of type
h1 and h2 at c.m. energy

ffiffiffi
s

p
can be written [22] as a (2-

dimensional) integral over impact parameter:

Felðq; sÞ ¼ i
Z d2b

2�
ei ~q:

~b�elðb; sÞ; (30)

where �elðb; sÞ is the profile function that without loss of
generality can be written as

�elðb; sÞ ¼ 1� e��ðb;sÞ; (31)

with �ðb; sÞ the eikonal function. In the notation we are
leaving implicit the dependence on the type of hadrons
participating in the collision. The elastic scattering ampli-
tude is related to the differential cross section by

d�el

dt
ðt; sÞ ¼ �

d�el

d2q
ð ~q; sÞ ¼ �jFelð

ffiffiffiffiffiffi�t
p

; sÞj2: (32)

In this equation t ¼ ðph1 � p0
h1
Þ2 is the squared momen-

tum transfer, and we have used the approximation t ¼
�j ~qj2 that is valid for small �t and high energy.
Integrating over all t one obtains

�elðsÞ ¼
Z

d2bj�elðb; sÞj2: (33)

The total cross section is related to the imaginary part of
the forward elastic scattering amplitude by the optical
theorem and is given by

�totðsÞ ¼ 4�Im½Felð0; sÞ� ¼ 2
Z

d2bRe½�elðb; sÞ�: (34)

Combining Eqs. (33) and (34) one obtains an expression
for the inelastic cross section as an integral over the impact
parameter:

�inelðsÞ ¼
Z

d2bf1� j1� �elðb; sÞj2g: (35)

Equation (32) gives the exact shape of the differential
elastic cross section. For small jtj this shape is to a good
approximation a simple exponential (d�el=dt / eBt) and it
is convenient to define the slope Bel of elastic scattering:
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BelðsÞ ¼
��

d�el

dt

��1 d

dt

�
d�el

dt

��
t¼0

: (36)

It is straightforward to see that if the profile function is real,
the slope Bel can be calculated as

BelðsÞ ¼
�Z

d2b
b2

2
�elðb; sÞ

�
�

�Z
d2b�elðb; sÞ

��1

¼ hb2i
2

(37)

and measures the value hb2i of the profile function.
Using the approximate exponential shape of the differ-

ential cross section one finds the relation

�elðsÞ ’ �
jFelð0; sÞj2
BelðsÞ ¼ �

ðIm½Felð0; sÞ�Þ2jiþ �j2
BelðsÞ (38)

(where � is the ratio of the real to imaginary parts of the
forward elastic amplitude). From the optical theorem (34)
one obtains the relation:

�el ¼ �2
totð1þ �2Þ
16�Bel

: (39)

B. The simple eikonal model

The expressions (30)–(35) allow one to compute the
total and elastic cross sections for hadron collisions in
terms of the profile function �elðb; sÞ or equivalently of
the eikonal function �ðb; sÞ. We remain with the task of
constructing these functions. Physical insight on �elðb; sÞ
and �ðb; sÞ can be obtained using a well-known analogy
with the classical treatment of the absorption and scattering
of a plane wave of light from an opaque screen. If the ratio
between the amplitude ‘‘just behind’’ the screen and the

amplitude of the incident plane wave is �ð ~bÞ (where ~b is a
2-dimensional vector spanning the screen), then it is simple
to obtain expressions for the total, elastic, and absorption
cross sections that are formally identical to Eqs. (30)–(35).
In particular the expression (35) for the inelastic cross

section suggests to interpret the quantity 1� j1� �ð ~bÞj2
as the probability to absorb the wave at the position ~b on
the screen.

At high energy the elastic scattering amplitude, in rea-
sonably good approximation, is purely imaginary, and
accordingly the profile and eikonal functions are purely
real. Neglecting the real part of the scattering amplitude the
optical analogy is then sufficient to express the profile
function as

�elðb; sÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pabsðb; sÞ

q
; (40)

with Pabsðb; sÞ the absorption probability.
In the following we will use the approximation to con-

sider the elastic scattering amplitude as purely imaginary,
and the profile and eikonal functions as purely real. The

analyticity of the elastic scattering amplitude that is neces-
sary to respect causality can be imposed, estimating the
real part with a dispersion relation.
Equation (40) can be reexpressed in the form:

�elðb; sÞ � 1� e��ðb;sÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0ðb; sÞ

q

¼ 1� exp

�
�hnðb; sÞi

2

�
: (41)

In this equation P0 ¼ 1� Pabs ¼ e�hnðb;sÞi is the probabil-
ity of no absorption in a collision at a certain b and s. The

notation P0ðb; sÞ ¼ e�hnðb;sÞi is motivated by the physical
ansatz that ‘‘absorption’’ in a hadron collision corresponds
to at least one interaction between the parton constituents
of the two hadrons. If hnðb; sÞi is the expected number of
all elementary interactions between partons, and if the
fluctuations of this average number of interactions are
Poissonian, one obtains Eq. (41) for the profile and eikonal
function.
The ansatz outlined above connects the profile function

�elðb; sÞ to hnðb; sÞi that is the average number of elemen-
tary interactions at impact parameter b and c.m. energy

ffiffiffi
s

p
.

In the following we will call this model the ‘‘simple
eikonal model.’’ This ansatz was introduced by Durand
and Pi in [1], who proposed to compute the quantity
hnðb; sÞi as

hnðb; sÞi ¼ �jetðs; pmin
? ÞAðbÞ; (42)

where �jetðs; pmin
? Þ is the quantity discussed in the previous

section that is the inclusive cross section for the production
of jet pairs above a certain (fixed) p?, and the energy
independent geometry factor AðbÞ gives the overlap of
hadronic matter. For pp interactions Durand and Pi (see
discussion in Appendix A) chose

AppðbÞ ¼ b3

96�R5
p

K3

�
b

Rp

�
; (43)

with R�2
p ¼ 0:71 GeV2.

The model in this simplest form (that has in fact a single
parameter, the value of pmin

? ) soon proved to be inconsis-

tent with the data. Perhaps the main difficulty with the
original formulation of the model is that it predicts an
incorrect relation between �totðsÞ and BelðsÞ. This problem
in fact is of a general nature and indicates that in the simple
eikonal model, the factorization of hnðb; sÞi as the product
of two functions, one of s and the other of b, cannot fit the
data.
To falsify the factorization hypothesis (14) it is in fact

sufficient to measure both �tot and the slope of elastic
scattering Bel [or more in general, because of Eq. (39)
and the smallness of �, two out of the three quantities
�tot, �el, and Bel] at two different values of

ffiffiffi
s

p
. It is always

possible to find a profile function AðbÞ and a value of the
eikonal function�eikðs1Þ that reproduce the observations of
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�tot and Bel at c.m. energy
ffiffiffiffiffi
s1

p
, but then one remains with a

single parameter �eikðs2Þ that can be chosen to reproduce
�totðs2Þ or Belðs2Þ, however the two values will coincide
only if the factorization hypothesis is valid.

Models based on an eikonal model and the factorization
hypothesis (14) naturally predict a correlation in the
growth of �totðsÞ and BelðsÞ with energy; however the
growth of BelðsÞ in the data is faster than the predictions,
as was realyzed very early by Durand and Pi themselves
[23].

This problem is illustrated in Fig. 1 where we show, in
the plane ð�tot; BÞ, experimental data obtained for pp
scattering at the ISR [24] and for p �p scattering at CERN
[25] and Fermilab [26–28], and compare with the predic-
tions of the simple eikonal model. The thick curve is the
prediction of the simple eikonal model using a factorized
form of hnðb; sÞi and using for AðbÞ the expression of
Eq. (43). This line passes through the ISR data points,
but fails at higher energy. The other lines in the figure
are calculated using the same functional form for AðbÞ but
replacing the parameter Rp with r0 ¼ 1:1Rp and r0 ¼
1:2Rp. It is clear that, in the simple eikonal model the

width in impact parameter of the function hnðb; sÞi cannot
be energy independent and must grow with s in order to
reproduce the data.

An additional problem for the Durand and Pi model,
besides the one we have just discussed connected to the
relation between �tot and BelðsÞ, is also that the energy
dependence of�totðsÞ of the model, driven by the growth of

�jetðs; pmin
? Þ with s for pmin

? fixed, is significantly faster

than the data.
The ansatz of the simple eikonal model has been con-

sidered by several other authors [29–34] that have con-
structed different models for the function hnðb; sÞi,
abandoning the factorization hypothesis. For example, it
has been suggested to decompose the function hnðb; sÞi in
the general form:

hnðb; sÞi ¼ �eikðsÞAðb; sÞ
¼ �softðsÞAsoftðb; sÞ þ �hardðsÞAhardðb; sÞ; (44)

where the two terms describe a hard contribution that can
be calculated with perturbative methods, and a soft non-
perturbative part. As discussed above, the width in impact
parameter of the combined overlap function Aðb; sÞ must
increase with s to reproduce the relation betweenBelðsÞ and
�totðsÞ. Several justifications of this growth have been
offered; however in our opinion none is really convincing.
The energy dependence of �eikðsÞ and its decomposition

in a soft and a hard part have also been the object of
considerable discussion. In this work we will not enter in
this discussion, because our main purpose here is to discuss
the limitations of the simple eikonal model. In the simple
eikonal model the quantity hnðb; sÞi determines completely
the profile function, and therefore the total and elastic cross
sections. We will also consider the quantity hnðb; sÞi attrib-
uting to it the same physical meaning that it has in the
simple eikonal mode, namely, the average number of ele-
mentary interactions at impact parameter b and c.m. en-
ergy

ffiffiffi
s

p
; however in order to describe in a consistent way

inelastic diffraction, we will propose a different method to
connect hnðb; sÞi with the profile function and to the ob-
servable cross sections.
In the following we will parametrize the function

hnðb; sÞi as

hnðb; sÞi ¼ �eikðsÞ
�

b3

96�½r0ðsÞ�5
K3

�
b

r0ðsÞ
��
; (45)

with an overlap function that has the same form as in
Eq. (43), but with an s dependence obtained substituting
for Rp an energy dependent parameter r0ðsÞ:
The simple eikonal model ansatz outlined above does

not include a treatment of the inelastic diffraction pro-
cesses. This is a serious limitation, because the consistent
description of these processes is in fact essential. This
problem is addressed in the next section.

IV. INELASTIC DIFFRACTION

Inelastic diffraction [35] produces three classes of
events: beam, target, and double diffraction. In beam (tar-
get) diffraction the beam (target) particle is excited to a
higher mass state of the same quantum numbers (with the
possible exception of spin) while the other initial state
hadron remains unchanged. In double diffraction both

FIG. 1. The points are measurements of the total cross section
�tot and of the forward slope Bel of the elastic scattering for pp
and �pp collisions at collider energies. The lines correspond to
predictions based on the simple eikonal model using the pa-
rametrization of Eq. (45) for hnðb; sÞi. The three lines are
computed for three values of the r0 parameter (r0 ¼ Rp,

1:1Rp, and 1:2Rp). The ISR data at
ffiffiffi
s

p ¼ 52:8 and 62.3 Gev

are from [24]; the UA1 data at
ffiffiffi
s

p ¼ 540 GeV from [25]; the
CDF data at

ffiffiffi
s

p ¼ 546 and 1800 GeV from [27,28]; the E811
data at 1800 GeV from [26].
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colliding hadrons are excited into higher mass states. The
three processes can therefore be described as

h1h2 ! h�1h2 ðbeam diffractionÞ;
h1h2 ! h1h

�
2 ðtarget diffractionÞ;

h1h2 ! h�1h�2 ðdouble diffractionÞ:
(46)

The experimental selection of events that belongs to these
three classes is not trivial, especially for the double dif-
fraction ones. These events are characterized by a large
‘‘rapidity gap’’ that separates particles produced in the
decay of the two excited states h�1 and h�2. A complete
description of beam (target) diffraction is given by
the double differential cross sections d2�=ðdM2

1dtÞ
[d2�=ðdM2

2dtÞ] that gives the probability to produce an
event where the beam (target) particle is excited to a state
of mass M1 >m1 (M2 >m2) with transfer momentum t.
The double diffraction cross section is described by the 3-
times differential cross section: d3�=ðdM2

1dM
2
2dtÞ. For

single diffraction one has a reasonably accurate picture
of the M and t dependence of the cross section. The t
dependence has the characteristic exponential behavior of
all diffractivelike processes, for the mass dependence the
cross section grows very quickly above the threshold (M ¼
mp þm� for proton excitation), oscillates following the

structure of the resonances with the quantum numbers of
the hadron in question, and then falls at higher masses
roughly proportional to M�2. In the following we will
indicate as ‘‘diffraction’’ the sum of these three classes of
inelastic diffractive events.

Rapidity gaps in the distribution of final state particles
can also be present in events with a hard scattering; more-
over some events exhibit two or more rapidity gaps. A
dynamical description of these classes of events, that ac-
count for a much smaller fraction of the total cross sec-
tions, is not considered in this work.

We take the point of view that any parton-parton scat-
tering implies an exchange of color (interactions with no
color exchange are considered as higher order corrections
and neglected) and therefore, in the treatment of the cross
section given above, all events with one or more parton-
parton interaction are considered as nondiffractive. The
total cross section is therefore decomposed into an inelastic
nondiffractive part (with at least one parton-parton scatter-
ing) and the elastic part, with no room left for diffraction.
This lack of inclusion of inelastic diffraction is an impor-
tant conceptual problem for the simple eikonal model.

A. Good and Walker model

The fundamental idea for the description of inelastic
diffraction in hadronic collisions was introduced long
ago by Good and Walker [4] as an analogy with the
scattering of polarized light on a birefringent absorbing
medium. It is well known that if a plane wave of light
impinges on an absorbing screen with grayness profile �ðbÞ

one has absorption [ / 1� j1� �ðbÞj2] and elastic scat-
tering [ / j�ðbÞj2] with a very forward diffraction pattern
that depends on the geometry of the screen.
If the absorption in the screen depends on the polariza-

tion of the incident light, a new interesting phenomenon
emerges. In general, when the incident beam is in a well-
defined polarization state, the absorption is accompanied
by the transmission of scattered light with both polariza-
tion states. The scattering of light with the same polariza-
tion of the incident beam and of light in the orthogonal
polarization state can be considered as analogous to elastic
scattering and inelastic diffraction in hadronic interactions.
For a more explicit example, let us consider an incident
beam of light in the linear polarization state jxi, and an
absorbing screen that has the grayness profile �x0 ðbÞ for
light with polarization jx0i and the grayness profile �y0 ðbÞ
for light with polarization jy0i with

jx0i ¼ cos’jxi þ sin’jyi;
jy0i ¼ � sin’jxi þ cos’jyi:

It is clear that one will have an absorption cross section
according to 1� j�x0 ðbÞj2 � j�y0 ðbÞj2 and after the screen

one will find scattered waves with both the jxi and jyi
polarizations. The cross sections for elastic scattering and
inelastic diffraction turn out to be

�x ¼
Z

d2bj1� ½1� �x0 ðbÞ�cos2’� ½1� �y0 ðbÞ�sin2’j2;
(47)

�y ¼
Z

d2bcos2’sin2’j�y0 ðbÞ � �x0 ðbÞj2: (48)

Note that inelastic diffraction is nonvanishing only when
�x0 � �y0 , and if ’ is not a multiple of �=2, that is if the

states fjxi; jyig do not coincide with the states fjx0i; jy0ig
that are the eigenstates of the transmission across the
screen.
It is straightforward [4] to generalize this elementary

example. We can consider two complete sets of orthonor-
mal states fj’mig and fjc jig. The states j’mi are directly

observable, with the label m describing the invariant
masses of the two final hadronic states (in the forward
and backward hemisphere) and their particle content.
Without loss of generality we can assume that the state
j’1i with m ¼ 1 corresponds to the initial state of the
scattering (for example in case of a �p collision to the
state j�pi).
The states jc ji are eigenstates of the scattering matrix.

That is, defining as usual the S matrix as S ¼ I þ iT one
has

Tjc ji ¼ tjjc ji: (49)

The relation between the two orthonormal bases is given
by
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j’mi ¼
X
j

Cmjjc ji; (50)

jc ji ¼
X
m

C�
mjj’mi: (51)

It is now possible to write the different components of the
cross sections as integrals over the impact parameter de-
pendence of the tjðbÞ. The absorption cross section is

�abs ¼
Z

d2b

�
1�X

j

jC1jf1� tjðbÞgj2
�
: (52)

The cross section for diffraction into the state m is

�m ¼
Z

d2b

��������
X
j

C�
mjC1jtjðbÞ

��������
2

: (53)

The elastic cross section corresponds to �1 and therefore is

�el ¼
Z

d2b

��������
X
j

jC1jj2tjðbÞ
��������

2

: (54)

Summing over all statesm and using the orthonormality of
the states one obtains

�diffþel ¼
X
m

�m ¼
Z

d2b
X
j

jC1jj2jtjðbÞj2: (55)

The inelastic diffraction cross section can be obtained
subtracting Eq. (54) from (55). The total cross section
can be obtained summing the elastic, diffractive, and ab-
sorption cross sections obtaining the result:

�tot ¼
Z

d2b
X
j

jC1jj22Re½tjðbÞ�; (56)

in agreement also with the optical theorem.
The problem with the approach that we have just out-

lined is that it is only formal and requires the introduction
of many, in fact, infinite parameters; moreover the nature
of the eigenstates jc ji is not physically obvious.

B. Partonic interpretation of the scattering eigenstates

Miettinen and Pumplin [10] have made the proposal to
interpret the states jc ji (the eigenstates of the T matrix) as

parton configuration states. In their paper they also include
a simple explicit method to construct these partonic models
(see [36,37] for a recent discussion).

In this work we will develop the idea that one needs to
integrate over the parton configurations of the interacting
hadron. The discussion that we have outlined in Sec. II can
also be applied to the current problem. Using the notations
that we have introduced in Sec. II, the label j of the T
matrix eigenstates jc ji corresponds to the direct product of
the configurations C1 and C2 of the colliding hadrons, and
the squared coefficient jC1jj2 corresponds to the probabil-

ity Ph1ðC1Þ � Ph2ðC2Þ to find the two hadrons in a certain

configuration. One then has also the correspondence:

X
j

jC1jj2 $
Z

dC1

Z
dC2Ph1ðC1ÞPh2ðC2Þ:

The transmission eigenvalues tjðbÞ have the partonic inter-
pretation as

tjðbÞ ¼ 1� exp

�
�njðbÞ

2

�
¼ 1� exp

�
� nðb;C1;C2Þ

2

�
;

(57)

where as in Sec. II nðb;C1;C2Þ is the expected number of
interactions among partons in a collision with impact
parameter b when the colliding hadrons are in configura-
tions C1 and C2 (the dependence on the c.m. energy has
been left implicit). The difference with respect to the
discussion made above is that in the previous case one
was discussing only a subclass of (hard) interactions, while
here one refers to the total number of parton interactions.
At this point we can again make the factorization hy-

pothesis, that the fluctuations in the number of interactions
at different impact parameters, being related to the distri-
bution of parton configurations is independent from b, and
therefore one has

Z
dC1

Z
dC2Ph1ðC1ÞPh2ðC2Þ exp

�
�nðb;C1;C2Þ

2

�

¼
Z 1

0
d�pð�Þ exp

�
�hnðbÞi�

2

�
: (58)

As before the function pð�Þ satisfies the two integral
relations:

Z 1

0
d�pð�Þ ¼ 1;

Z 1

0
d��pð�Þ ¼ 1:

Using the identities (57) and (58) we can now rewrite in
manageable form Eqs. (52) and (54)–(56) as

d2�abs

d2b
¼ 1�

Z 1

0
d�pð�Þe�hnðb;sÞi�; (59)

d2�el

d2b
¼

�Z 1

0
d�pð�Þð1� e�ðhnðb;sÞi�Þ=2Þ

�
2
; (60)

d2�diffþel

d2b
¼

Z 1

0
d�pð�Þ½1� e�ðhnðb;sÞi�Þ=2�2; (61)

d2�tot

d2b
¼ 2

Z 1

0
d�pð�Þð1� e�ðhnðb;sÞi�Þ=2Þ: (62)

The elastic scattering amplitude is given by

Felðq; sÞ ¼ i
Z d2b

2�
ei ~q:

~b
Z 1

0
d�pð�Þ½1� e�ðhnðb;sÞi�Þ=2�:

(63)

PAOLO LIPARI AND MAURIZIO LUSIGNOLI PHYSICAL REVIEW D 80, 074014 (2009)

074014-10



It is important to note that in the limit pð�Þ ! �½�� 1�,
that is in the limit where one neglects the effects of differ-
ent parton configurations, one has that Eqs. (60) and (61),
that describe the elastic, and elastic plus diffractive cross
sections become identical, that is inelastic diffraction van-
ishes. Moreover, in this case, the expressions for the ab-
sorption, elastic, and total cross sections coincide with the
expressions of the simple eikonal model that neglects
inelastic diffraction.

Equation (61) sums over all diffractive channels, and
therefore loses all information about the distributions of
the excited masses. It remains however possible to com-
pute the t distribution for elastic scattering and for inelastic
diffractive scattering (summing over all possible open
channels):

d�diffþel

dt
¼ X

m

d�m

dt
¼

Z
dM1

Z
dM2

d3�diff

dM1dM2dt
:

(64)

The differential cross section for elastic scattering
d�el=dt can be calculated from Eqs. (32) and (33):

d�el

dt
¼ �

�Z 1

0
dbbJ0ðb

ffiffiffiffiffi
jtj

p
Þ

�
Z 1

0
d�pð�Þð1� e�hnðb;sÞi�=2Þ

�
2
: (65)

Similarly, the differential cross section for diffraction plus
elastic scattering can be calculated as

d�diffþel

dt
¼ �

Z 1

0
d�pð�Þ

�
�Z 1

0
dbbJ0ðb

ffiffiffiffiffi
jtj

p
Þð1� e�hnðb;sÞi�=2Þ

�
2
:

(66)

It is straightforward to see that for pð�Þ ¼ �½�� 1�
expressions (65) and (66) become identical and equal to
the well-known expression for the simple eikonal model:

d�el

dt

��������simple
¼ �

�Z
dbbJ0ðb

ffiffiffiffiffi
jtj

p
Þð1� e�hnðb;sÞi=2Þ

�
2
:

(67)

The slopes at jtj ¼ 0 (Bel and Bdiff) can be calculated
from the definition (37) (and the analogous for inelastic
diffraction). For example, using

lim
t!0

d

dt
½J0ðb

ffiffiffiffiffi
jtj

p
Þ� ¼ �b2

4
; (68)

one obtains for Bel:

Bel ¼
�Z 1

0
db

b3

2

Z 1

0
d�pð�Þð1� e�hnðb;sÞi�=2Þ

�

�
�Z 1

0
dbb

Z 1

0
d�pð�Þð1� e�hnðb;sÞi�=2Þ

��1
:

(69)

A similar expression for Bdiff is easily derived.

C. Comparison with multichannel eikonal formalism

A method to apply to the Good-Walker ansatz is to
construct explicitly a transition operator as a matrix of
n� n dimensions. In this way the formal indices m and j
in Sec. IVA become simply integer indices running from 1
to n. To show the mathematical equivalence between this
multichannel method and the use of the effective configu-
ration probability distribution pð�Þ is straightforward. In
the multichannel approach the profile function �elðb; sÞ is
replaced by the (n� n) matrix �̂ðb; sÞ that can be ex-
pressed in terms of the eikonal matrix �̂ðb; sÞ:

�̂ðb; sÞ ¼ 1� exp½��̂ðb; sÞ�: (70)

The eigenvalues of �̂ (�j) and �̂ (�j) can be written in the

form:

�j ¼ 1� e��j ¼ 1� exp

�
�hnðb; sÞi

2
�j

�
: (71)

The interpretation of �j as the effect of absorption suggests

that hnðb; sÞi and all �j’s are real and positive. In the

optical analogy one interprets the quantity:

1� ½1� �j�2 ¼ 1� e�2�j ¼ 1� e�hnðb;sÞi�j ;

as the absorption probability for the eigenstate jc ji that
corresponds to eigenvalue �j. Assuming a Poisson proba-

bility distribution, the quantity ½hnðb; sÞi�j� can then be

interpreted as the average number of elementary interac-
tions for the eigenstate jc ji. Without loss of generality,

reabsorbing a constant in the definition of hnðb; sÞi, one can
impose the constraint

X
j

pj�j ¼ 1; (72)

where the quantities pj’s

pj ¼ jhc jj’initialij2 (73)

measure the probability overlaps between the initial state
j’initiali and the eigenstates jc ji of the transition matrix.

The normalization condition (72) allows one to interpret
the quantity hnðb; sÞi as the average number of elementary
interactions (at impact parameter b and c.m. energy

ffiffiffi
s

p
) for

the initial state j’initiali. It is then possible to define the
function pð�Þ as
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pð�Þ ¼ X
j

pj�½�� �j� (74)

and to use this function to express the results for the total,
elastic, absorption, and diffractive cross sections as inte-
grals over � according to Eqs. (59)–(62).

It can be instructive to consider an explicit model that
implements the multichannel model. The minimum model
that includes the 4 distinct processes of elastic scattering
together with target, projectile, and double diffraction,
must obviously consider a 4-dimensional Hilbert space
spanned by 4 physical eigenstates j’mi (that without loss
of generality can symbolically be labeled as j�pi, j��i,
j�pi, and j��i).

The structure of this most general Good-Walker model
with 4 channels has been presented in [11] and is discussed
in detail in Appendix B. The most general 4-channel
eikonal (for a fixed

ffiffiffi
s

p
) is described by the impact parame-

ter multiplicity distribution hnðb; sÞi and by the 4� 4

matrix M̂ that in the most general case (where the two
initial state hadrons are not identical as in �p scattering) is
defined by 4 real parameters (in the case where the two
interacting hadrons are identical, as in pp scattering, the
parameters reduce to 2).

The eigenvalues and eigenvectors of the most general

matrix M̂ are easily calculated (as show in Appendix B).
Having solved this diagonalization problem, it is simple to
obtain the cross sections for the total, elastic, absorption,
and diffractive scattering. The cross sections depend on
hnðb; sÞi and on the 4 (or 2 for identical initial particles)

parameters of the matrix M̂. The cross sections can be
recast in the form (59)–(62) as integrals over � defining
pð�Þ according to Eq. (74) (where the summations over j
now run from 1 to 4).

Note that in an n-channel eikonal, the inelastic diffrac-
tive cross sections are obtained as an explicit sum of n� 1
terms:

�diff ¼
X
m�1

�m (75)

(we are identifying the statem ¼ 1with the initial state). In
a realistic discussion the index m should run continuously
over all possible diffractively excited states. For the 4-
channel model the 3 states can be identified as representing
target, projectile, and double diffraction.

It is interesting to study, in the framework of this most
general 4-channel model, the relative importance of single
versus double diffraction. Considering for simplicity the
case of pp collision, the 4-channel Good-Walker model
has two free parameters (	p and 
p). The relative impor-

tance of the elastic and diffractive processes can vary
significantly with variation of the model parameters, and
similarly the ratio between the double and single diffrac-
tion cross sections can assume different values; however
numerical studies show that to a good approximation (for
the scattering of identical particles) one has

�TD

�el
� �BD

�el

’ �DD

�TD

� �DD

�BD

; (76)

that is the ratios of cross sections single (beam or target)
diffraction to the elastic one is approximately equal to the
ratio of the double diffraction cross section to the single
diffraction one. This result can also be understood from

inspection of the structure of the matrix M̂. For negliglible

p for example, the relative importance of the cross sec-

tions for elastic, single diffractions and double diffraction
scattering is in the ratio 1:	p:	

2
p. This result is compatible

with the available data on double diffraction (taking into
account the large errors).
The separate calculation of the different components of

the diffractive cross sections is a significant merit for the 4-
channel model. A limit of such an approach is that it
predicts the multiplicity distribution of the elementary
interactions as the superposition of 3 (for the scattering
of identical particles) or 4 (in the general case) Poissonian
distributions of different average values, and such distri-
bution might not be sufficiently smooth for a realistic
comparison with data. The approach of using the function
of a real positive variable pð�Þ allows one to consider
implicitly an infinity of inelastic channels.
In the next section we will propose a simple parametri-

zation of pð�Þ that depends on a single parameter.

V. EXPLICIT MODEL

Equations (59)–(61) allow one to compute the total,
elastic, diffractive, and absorption cross sections in terms
of the impact parameter multiplicity distribution hnðb; sÞi
(the average number of elementary interactions at impact
parameter b and c.m. energy

ffiffiffi
s

p
) and of the function pð�Þ.

Unfortunately the shape of the function pð�Þ is not deter-
mined. All we have been able to establish is that the first
two moments h�ki with k ¼ 0, 1 must be unity. It is
however reasonable to expect that the most important
property of the function pð�Þ is its second moment h�2i
or equivalently its width �2

� ¼ h�2i � 1.
Given this lack of knowledge about the shape of pð�Þwe

have chosen for it a simple analytic expression that allows
easy manipulations:

pð�Þ ¼ 1

w�ð1wÞ
�
�

w

�ð1=wÞ�1
exp

�
��

w

�
: (77)

The kth moment of the distribution is

h�ki ¼
Z 1

0
d��kpð�Þ ¼ wk�ðkþ 1

wÞ
�ð1wÞ

; (78)

therefore one finds

h�0i ¼ 1; h�i ¼ 1; h�2i ¼ 1þ w; �2
� ¼ w:

(79)

Therefore the parameter w describes the variance of the �
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distribution. The integer value moments for n � 3 can be
written also as

h�ni ¼ ð1þ wÞ 	 	 	 ð1þ ðn� 1ÞwÞ: (80)

Numerical examples of the function pð�Þ are shown in
Fig. 2.

An attractive property of the functional form (77) for
pð�Þ is that it allows one to perform analytically the
integrations over � in Eqs. (59)–(62) to obtain the quanti-
ties of interest. The profile function �elðb; sÞ becomes

�elðb; sÞ ¼
Z 1

0
d�pð�Þ½1� e�hnðb;sÞi�=2�

¼ 1�
�
1þ hnðb; sÞiw

2

��1=w
: (81)

The expressions for the total, elastic, and diffractive cross
sections become

d2�tot

d2b
¼ 2� 2

�
1þ hnðb; sÞiw

2

��1=w
; (82)

d2�el

d2b
¼

�
1�

�
1þ hnðb; sÞiw

2

��1=w
�
2
; (83)

d2�diff

d2b
¼ ð1þ hnðb; sÞiwÞ�1=w �

�
1þ hnðb; sÞiw

2

��2=w
:

(84)

Using for hnðb; sÞi the parametrization of Eq. (45) the
expressions (82)–(84) allow one to compute the different
components of hadron-hadron interactions for any given
value of

ffiffiffi
s

p
in terms of three parameters: ð�eik; r0; wÞ. It

should be noted that the simple eikonal model corresponds

to the case w ! 0 and is therefore included as a limiting
case of our model.
As a critical remark we note that the qualitative idea

behind our one-parameter modeling of pð�Þ is that the
most important feature of pð�Þ is its second moment
h�2i ¼ wþ 1. This however is only true in the first ap-
proximation. Functions pð�Þ that differ only for moments
h�ki with k > 2 can also produce different cross sections.
An example of this behavior is the 4-channel model of
Appendix B. For pp interactions this model has two free
parameters (	p and 
p). The variance of pð�Þ in the model

is ð1þ 	pÞ2 � 1, uniquely determined by 	p; however the

values of the different cross sections (elastic, diffractive,
and absorption) depend on both of the model parameters.
The single parameter description of pð�Þ of Eq. (77)

seems in any case a reasonable form to investigate phe-
nomenologically the consequences of Eqs. (59)–(62).

A. Parameter determination

Equations (82)–(84) allow one to determine (at a certainffiffiffi
s

p
) the set ð�eik; r0; wÞ of the three parameters in the model

from measurements of ð�tot; B; �diffÞ. As an example of
this parameter determination we discuss here in some de-
tail the measurements performed at one particular value of
the c.m. energy (

ffiffiffi
s

p ¼ 1:8 TeV) by one detector (CDF at
the Fermilab �pp collider). The CDF experiment [27,28]
has measured �totð1þ �2Þ ¼ 81:83� 2:29 mb (that esti-
mating � ’ 0:15 corresponds to �tot ¼ 80:03� 2:24 mb),
an elastic cross section �el ¼ 19:7� 0:85 mb, and a slope
of the forward elastic cross section Bel ¼ 16:98�
0:25 GeV�2. In addition the CDF Collaboration has mea-
sured [38] the single diffractive cross section �SD ¼
9:46� 0:44 mb. The three quantities �tot, �el, and Bel

are related by the unitarity relation (39), and therefore
only two of them are independent. In the following we
will fix our attention on �tot and Bel.
Our formalism allows only the calculation of the total

diffractive cross section, summing over single and double
diffraction processes. In order to compare the model to the
single diffraction measurement of CDF we have therefore
to include some estimate of double diffraction. We will use
the result (76) that allows one to estimate the complete
diffractive cross section�diff from the measurements of the
elastic and single diffractive one as

�diff ¼ �SD þ �DD ’ �SD

�
1þ �SD

2�el

�
: (85)

This hypothesis leads us to estimate �diff at
ffiffiffi
s

p ¼
1800 GeV from the CDF data as approximately 11.6 mb.
Neglecting the measurement of the diffractive cross

section and considering only the experimental results for
�tot and Bel, there is an infinity of sets of parameters
ð�eik; r0; wÞ that reproduce the data. This infinity of solu-
tions can be parametrized by the value of w, that can take
any non-negative value.

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0
p

FIG. 2 (color online). Plot of the function pð�Þ given in
Eq. (77) for four values of the parameter w (w ¼ 0:05, 0.5, 1,
and 3). For w ! 0 the function takes the form �½�� 1�.
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The limiting case w ¼ 0 corresponds to the simple
eikonal model. For w ¼ 0 the values of the parameters
that reproduce the central value of the CDF measurements
are �eik ’ 124:1 mb and r0 ’ 0:2527 fm ( ’ 1:08Rp). To

this (w ¼ 0) solution corresponds a vanishing diffractive
cross section.

The solutions ½w;�eikðwÞ; r0ðwÞ� that reproduce the cen-
tral value of the CDF measurements for �tot and Bel atffiffiffi
s

p ¼ 1800 GeV are shown in Fig. 3. Increasing w the
value of �eikðwÞ grows monotonically, while r0ðwÞ de-
creases. The triplets fw;�eikðwÞ; r0ðwÞg result in identical
�tot and Bel, but produce different diffractive cross sec-

tions, with �diffðwÞ growing monotonically with w as also
shown in Fig. 3. The value �diff ¼ 11:6 mb is obtained for
w ¼ 3:48.
Perhaps the most striking feature of Fig. 3 is the rapid

increase of �eik with w. As an illustration, for w ’ 3 (that
results in �diff ’ 10:7 mb) one needs a smaller r0 (r0 ¼
0:186 fm) and �eik ’ 580 mb, that is almost 5 times larger
than the value of�eik that reproduces the measurements for
w ¼ 0.
For a qualitative understanding of these results it can be

instructive to consider Fig. 4. Curve (a) shows the profile
function �elðbÞ that corresponds to the solution with w ¼ 0
that we have just discussed. Curve (a0) shows the profile
that is obtained for the same parameters ð�eik; r0Þ, that is
for the same hnðb; sÞi, of the w ¼ 0 solution, but using the
value w ¼ 3. The resulting profile function is smaller (that
is produces a smaller �tot) and broader (implying a larger
Bel). These features can be readily understood from in-
spection of Eq. (81). In order to obtain the desired values of
�tot and Bel using the model (81) and w ¼ 3 one needs to
modify the quantity hnðb; sÞi, choosing both a larger�eik to
increase the area under the profile, and a smaller r0 to
obtain the desired value of hb2i / B. The solution is shown
in Fig. 4 as curve (b). The profile functions of curves (a)
and (b) in Fig. 4 produce identical �tot, and identical

FIG. 3 (color online). The middle and bottom panels show the
triplet of parameters (w, �eikðwÞ, and r0ðwÞ) that reproduce
(using Eqs. (82) and (83) with expression (45) for hnðb; sÞi)
the measurements of �tot and Bel obtained by CDF [27,28] atffiffiffi
s

p ¼ 1:8 TeV (note the logarithmic scale in the bottom panel
for �eik). The top panel shows the corresponding value of the
diffractive cross section.

FIG. 4 (color online). Profile function �elðbÞ for pp scattering
as a function of the impact parameter b. Curve (a) is calculated
in the simple eikonal of Eq. (41), using for the hnðb; sÞi the
parametrization (45) with �eik ¼ 124 mb and r0 ¼ 0:253 fm.
The corresponding values of �tot and Bel are �tot ¼ 80:3 mb and
Bel ¼ 16:98 GeV�2. Curve (a0) is calculated assuming the same
interaction profile hnðb; sÞi (that is the same parameters �eik and
r0) as for curve (a) but using the model of Eq. (81) for the profile
with the form (77) for pð�Þ with w ¼ 3. The resulting profile
function is smaller (implying a smaller �tot) and broader (im-
plying a larger Bel). The profile (b) is calculated using the same
model used for curve (a0) with the same value w ¼ 3; however
the parameters that describe hnðb; sÞi are now �eik ¼ 582 mb
and r0 ¼ 0:186 fm. The profile function (b) results in the same
�tot and Bel as curve (a).
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d�el=dt for small jtj, but differ in the description of elastic
scattering at large jtj.

To summarize this discussion: in the simple eikonal
model the impact parameter multiplicity distributions
hnðb; sÞi uniquely define the profile function. In our model
the profile function is determined [see Eq. (81)] also by the
function pð�Þ, and different choices for the shape of pð�Þ
produce different profiles, and therefore different values of
the total and elastic cross sections. Vice versa, the estimate
of hnðb; sÞi [or in terms of the parametrization (45) the
values of �eik and r0] that reproduces the measured values
of �tot and �el (or �tot and Bel) strongly depends on the
assumptions made for pð�Þ.

The function pð�Þ, and, in particular, its width, controls
the size of the inelastic diffractive cross section; therefore
one can obtain information about its properties from the
experimental data on the rate of diffractive events. The
bottom line is that it is essential to include in a consistent
way inelastic diffraction in the theoretical framework that
describes hadronic cross sections.

These considerations are the main qualitative results of
this work. The consistent introduction of inelastic diffrac-
tion in the eikonal formalism results in the following:

(1) an eikonal cross section �eik that is several times
larger than estimates based on the simple eikonal
model that does not consider explicitly diffraction;

(2) a narrower distribution of hadronic matter. In the
case of protons, this distribution is estimated as
narrower than the charge distribution inferred by
the electromagnetic form factor.

These effects can have important consequences in the
prediction of the properties of particle production in high
energy hadron interactions, if one takes into account the
interpretation of the eikonal as a description of the multiple
interaction structure of the collision. In this case the ratio
�eik=�inel has the physical meaning of the average number
of elementary interactions per inelastic event; therefore our
results imply that this average number of elementary in-
teractions is several times larger than previous estimates.
The precise way to relate this quantity (the average number
of elementary interactions per collision) to observable
quantities, such as the multiplicity distribution, depends
on a number of additional assumptions that have to be
made in a Monte Carlo modeling of multiparticle
production.

The theoretical framework we are considering predicts
not only the average number of interactions in a collision,
but also the detailed multiplicity distribution for such
interactions in one collision.

In Sec. II we have given in Eq. (26) the multiplicity
distribution of the number of hard observable jets per
collision, in terms of the quantities hnjetðb; sÞi and pð�Þ.
The generalization to the multiplicity distribution of the
total number of elementary interaction in a collision can be
immediately obtained replacing the average number of

hard interactions at a fixed impact parameter and c.m.
energy hnjetðb; sÞi with the average for the total number

of elementary interactions hnðb; sÞi. In addition, the most
economical assumption is to assume that the functions
pð�Þ relevant in the two cases are (at least approximately)
equal.
For the simple functional form of pð�Þ given in Eq. (77)

the integrals over � in the analogous of Eq. (26) can be
performed, with the result:

�k ¼ wk

k!
�

�
kþ 1

w

��
�

�
1

w

���1 Z
d2bhnðb; sÞik

� f1þ whnðb; sÞig�kþð1=wÞ: (86)

This distribution of the number of elementary interactions
should be inserted in Monte Carlo implementations to have
predictions for the charged particles multiplicity and other
observable quantities.

VI. ENERGY DEPENDENCE

The model we have outlined in the previous sections
considers the relation between directly observable quanti-
ties such as the total and elastic cross sections and on the
other hand the eikonal cross section �eik and the distribu-
tion of hadronic matter in the colliding particles (simply
parametrized by the quantity r0), with an additional pa-
rameter w that is related to the width of the fluctuations in
the parton configurations of the colliding hadrons. Taking
into account these fluctuations allows a consistent treat-
ment of inelastic diffraction. The values of �eik and r0 that
correctly describe the data have a strong dependence on the
parameter w, and therefore on the measured values of the
cross section for inelastic diffraction.
A calculation of the evolution with energy of the had-

ronic cross section requires additional theoretical assump-
tions to predict the energy dependence of the model
parameters. To gain insight to this problem, we have taken
a phenomenological approach and we have considered a
representative subset of the available high energy data. A
few high energy experiments have measured both the total
and elastic cross sections, together with the forward slope
Bel. These results can be described in terms of our 3-
parameter f�eik; r0; wg model, using the same approach
discussed for the CDF data at

ffiffiffi
s

p ¼ 1800 GeV. The results
are shown in Figs. 5 and 6. In these figures the points give
the values of r0 and �eik that reproduce the measurements
of the pairs ð�tot; BÞ using two assumptions for the third
parameter: w ¼ 0 and w ¼ 3. The errors on the estimates
reflect only the experimental statistical errors. At

ffiffiffi
s

p ¼
1800 GeV, one has two independent measurements of the
total cross section by the CDF [27] and E710 [39] experi-
ments, both at the Fermilab p �p collider. The point at

ffiffiffi
s

p ¼
546 GeV is also from CDF, while the point at

ffiffiffi
s

p ¼ 62:3
was obtained for pp scattering at the CERN ISR collider
[24].
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The calculation with w ¼ 0 corresponds to the simple
eikonal model, and in the framework to our model leads to
a vanishing inelastic diffraction cross section. For each pair
of experimental results ð�tot; BÞ we have performed a scan

of w similar to the one that we have shown in detail for the
CDF point at

ffiffiffi
s

p ¼ 1800 GeV (see also Fig. 3), calculating
the pair [r0ðwÞ; �eikðwÞ] that reproduces the experimental
results. This also implies a value �diffðwÞ obtained from
Eq. (84).
At

ffiffiffi
s

p ¼ 1800 GeV both the CDF [38] and E710 [39]
have measured the single diffractive cross sections.
Averaging with equal weight (to take into account large
systematic uncertainties) and using the ansatz (76) to
estimate double diffraction we have estimated �diff ’
10:7 mb. This value of the diffractive cross section is
reproduced in our model (at the corresponding energyffiffiffi
s

p ¼ 1800 GeV) withw ’ 3. Including a 20% uncertainty
on the estimate of �diff , w can be estimated at this energy
as w ¼ 3þ1:2

�0:9.

The comparison of the calculated diffractive cross sec-
tion with the data is problematic because the discrepancies
between the different experimental results (see Fig. 7)
clearly indicate the presence of significant systematic er-
rors; moreover, as we have discussed before, one has the
theoretical uncertainty related to the ratio between the
single and double diffraction contributions.
Our numerical studies indicate that the choice of an

energy independent value w ’ 3, that reproduces the dif-
fractive cross section measured at the Fermilab collider atffiffiffi
s

p ¼ 1800 GeV, gives in fact a reasonably good descrip-
tion of the experimental results on diffraction at all ener-
gies. The assumption of an energy independent value of w
is clearly the simplest one, and in view of the fact that it
produces a reasonable agreement with the available data it
will be made in the following.

FIG. 5. Values of the r0 parameter that reproduce the experi-
mental data for �tot and Bel obtained at the ISR pp collider
(

ffiffiffi
s

p ¼ 62:3 GeV), and at the Tevatron p �p collider (
ffiffiffi
s

p ¼
546 GeV by CDF, and

ffiffiffi
s

p ¼ 1800 GeV by CDF and E710).
The solid (empty) points are calculated for w ¼ 0 (w ¼ 3). The
dotted line at r0 ¼ 0:234 fm corresponds to the proton charge
radius Rp. The dashed line corresponds to the constant value

r0 ¼ 0:19 fm and is a reasonable representation of the results for
w ¼ 3. The corresponding values of �eik are shown in Fig. 6.

FIG. 6 (color online). Values of the �eik parameter that repro-
duce the experimental data for �tot and Bel obtained at the ISR
pp collider (

ffiffiffi
s

p ¼ 62:3 GeV), and at the Tevatron p �p collider
(

ffiffiffi
s

p ¼ 546 GeV by CDF, and
ffiffiffi
s

p ¼ 1800 GeV by CDF and
E710). The solid (empty) points are calculated for w ¼ 0 (w ¼
3). The corresponding values of r0 are shown in Fig. 5. The
dashed line is a power law fit [�eikðsÞ ¼ Ks�] to the results for
w ¼ 0. The thin (black) line is a fit to the results for w ¼ 3 with
the same power law form. The thick (blue) line is a fit to the
same points with the form �eikðsÞ ¼ �0 þ Ks� with � ¼ 0:35.

FIG. 7 (color online). Inelastic diffraction cross section calcu-
lated according to Eq. (84) using constant values w ¼ 3 and
r0 ¼ 0:19 fm. For the thin (black) [thick (blue)] curve we have
used for �eikðsÞ the fit shown with the corresponding lines in
Fig. 6. The experimental results are for single diffraction only
(Schamberger et al. [46], Armitage et al. [47], UA4 [48], UA5
[49], CDF [38], and E710 [39]).
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It is interesting to note (see Fig. 5) that assuming for w
the constant value w ¼ 3 the resulting values of the pa-
rameter r0 are also consistent with an energy independent
value r0 ’ 0:19 fm. In the simple eikonal model, as dis-
cussed before, in order to reconcile the growth of �tot and
Bel, it is necessary to increase the width of the overlap
function Aðb; sÞ with s, and therefore (using our parame-
trization) to increase r0ðsÞ. The necessity of this growth is
evident in Fig. 5.

The model we are discussing requires an overlap func-
tion that is first of all significantly narrower than previous
estimates based on the simple eikonal model; moreover
(and in contrast to the simple eikonal model) the overlap
function is energy independent. It may appear surprising
that the overlap function is narrower than what is estimated
on the basis of the proton charge distribution. A possible
explanation is that the dominant contribution to the overlap
function is the scattering between soft gluons. The narrow
AðbÞ predicted in this model therefore implies that the
impact parameter distribution of soft gluons is
(i) narrower than the charge distribution (that is presum-
ably controlled by valence quarks), and (ii) independent
(for small x) from the x of the gluons. It should soon be
possible to test these hypotheses with studies of the impact
parameter PDF’s.

Figure 6 shows the energy dependence of the third
parameter of our model, �eikðsÞ. There are two remarkable
features in this behavior. The first is that (as we have
already discussed in Sec. VA) the values of �eik needed
to describe the experimental data in a model that includes
diffraction are significantly larger than estimates based on
the simple eikonal model, and the second is that the growth
of �eikðsÞ with c.m. energy is significantly more rapid.

The two straight lines in Fig. 6 are power law fits of the
estimated values of form Ks�. For the simple eikonal
model (w ¼ 0) the power law fit is �eikðsÞ ¼
23:8s0:10 mb (with s measured in GeV2). For the best fit
model (w ¼ 3) the power law fit is �eikðsÞ ¼ 29:7s0:18 mb.

The choice of a power law fit is however clearly not
necessary, and the extrapolation of the fit at higher (and
lower) energy is therefore very uncertain. Motivated by fits
of the �eikðsÞ ¼ �soft þ �hardðsÞ that include an (approxi-
mately) constant soft component and an energy varying
hard component, we have fitted the data with the form
�eikðsÞ ¼ �0 þ Ks0:35, obtaining the result�eikðsÞ ¼ 95þ
2:1s0:35 mb (and s measured in GeV2).

The motivation for the functional form of this fit (that
should however also be considered as purely phenomeno-
logical) is that integrating above an energy independent
pmin
? , the jet cross section �jetðpmin

? ;
ffiffiffi
s

p Þ [see Eq. (3)] has

qualitatively the behavior:

�jetðpmin
? ;

ffiffiffi
s

p Þ / �2
s

ðpmin
? Þ2

��
ð� log�Þ



/ �2
s

ðpmin
? Þ2 s


 logs;

(87)

where � ¼ 4ðpmin
? Þ2=s, and the quantity 
 is related to the

behavior of the PDF’s for x ! 0:

lim
x!0

fðxÞ � 1

x1þ

: (88)

The behavior (87) can easily be obtained from the con-
volution of PDF’s with the asymptotic form (88). Recent
measurements of the PDF’s at HERA [40–43] have shown
that their behavior for x ! 0 can be reasonably well rep-
resented with the functional form (88) and 
 ’ 0:3.
It is interesting to note that it has been argued that the

very fast growth of the jet cross section with
ffiffiffi
s

p
implied by

the small x behavior of the PDF’s is problematic, and in
fact unphysical. Note that in the simple eikonal model, an
energy dependence of �eikðsÞ of type s0:3 (or faster) is not
acceptable because it implies that �totðsÞ grows with en-
ergy more rapidly than the observations. Following this
observation, the rapid growth of �jetðsÞ with s has been

tamed assuming that the threshold pmin
? of applicability of

perturbation theory also grows with s. This growth has
been connected to phenomena of ‘‘saturation,’’ or screen-
ing among the partons. In the framework of the model we
are considering a fast growth of �eikðsÞ is not only accept-
able but in fact necessary. A simple model where the
growth of �eikðsÞ is explained with the dominant contribu-
tion of a minijet cross section, calculated perturbatively
above an energy independent pmin

? , can provide a �eikðsÞ
with the needed properties. For consistency, it is however
necessary that the effects of saturation and parton screen-
ing are small.
The model we are describing, already at

ffiffiffi
s

p ¼
1800 GeV has a ratio �eik=�inel ’ 10. This implies that
the number of elementary interactions in an inelastic col-
lision at this energy is also approximately 10. This, at first
sight, may appear too large. The potential danger is that
this large average number of elementary interaction per
collision could result in a too large average multiplicity and
in a too soft inclusive spectrum of particles in the final
state. These questions can (and should) be addressed prop-
erly with a detailed Monte Carlo calculation that includes a
modeling of particle production in the presence of different
numbers of elementary interactions.
Figure 7 shows our calculation of the diffractive cross

section �diffðsÞ including the extrapolation to high energy.
The calculation is performed with Eq. (84), using energy
independent values w ¼ 3, r0 ¼ 0:19 fm and the two pa-
rametrization of �eikðsÞ shown in Fig. 6.
Figure 8 shows the result of our model for the total cross

section, comparing with the available data and extrapolat-
ing at higher energy. In the figures we show two calcula-
tions based on Eq. (82) using (as in the previous figure) the
constant values w ¼ 3 and r0 ¼ 0:19 fm, and the two
parametrizations of �eikðsÞ (the results for the model are
only plotted for

ffiffiffi
s

p
> 60 GeV).
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Figure 8 also shows the parametrizations for �pp
tot ðsÞ and

� �pp
tot ðsÞ suggested by the PDG [44,45]. The PDG estimate

of the extrapolation of the total pp cross sections falls in
between our two estimates that mark a range of uncertainty
in our prediction.

At the LHC energy (
ffiffiffi
s

p ¼ 14 TeV) the PDG prediction
is �tot ¼ 112:2 mb while our two calculations give �tot ¼
98:1 and 120.8 mb (at

ffiffiffi
s

p ¼ 10 TeV the PDG prediction is
�tot ¼ 105:7 mb, our calculations give 94.2 and 112.7 mb).
The extrapolation to

ffiffiffi
s

p ¼ 4:33� 105 GeV (that corre-
sponds to a proton cosmic ray particle with energy Elab ¼
1020 eV) is�tot ¼ 194 mb for the PDG extrapolations, and
146 and 229 mb for our calculations.

Recently two groups [8,9] discussed predictions of the
total pp cross section at high energy in the framework of
models that include a treatment of diffraction with a multi-
channel eikonal and multipomeron interactions. Both
groups arrive at a similar conclusion, namely, that the
inclusion of diffraction reduces the estimate of the total
cross section at LHC energy. For the two groups the
estimate of �tot at

ffiffiffi
s

p ¼ 14 TeV is of order 90 mb, ap-
proximately 20% smaller than the PDG. Their estimates of
the total cross section grow very slowly with energy reach-
ing �tot ’ 108 mb (for [9]) and �tot ’ 98 mb (for [8]) atffiffiffi
s

p ¼ 105 GeV (that corresponds to Elab ¼ 5:33�
1018 eV).

The main point that we want to make here is that it is
certainly the case that given a model for hnðb; sÞi [that in
the simple eikonal model is simply equal to twice the
eikonal function �ðb; sÞ], the inclusion of diffraction re-
duces the cross section. However, the estimate of the total
cross section and of its dependence on energy also involves
the calculation of the function hnðb; sÞi.

The conclusion that the cross section at LHC is of order
90 mb obtained by the authors in [8,9] should not be
considered as a consequence of the inclusion of diffraction
in the theoretical framework, but rather as the consequence
of the entire set of theoretical assumptions of their models.
Figure 9 shows, plotted as a function of

ffiffiffi
s

p
, the predic-

tions of our model for the slopes BelðsÞ and BdiffðsÞ of the
differential cross sections d�el=dt and d�diff=dt. For each
slope, the figure shows two curves that differ for the use of
the two different parametrizations of �eikðsÞ that are shown
in Fig. 6, and have already been used in Figs. 7 and 8. Note
how BdiffðsÞ is always larger than BelðsÞ.

VII. SUMMARYAND OUTLOOK

In this work we have discussed the problem of multiple
parton interactions in hadron collisions. If one takes into
consideration only the parton scatterings that have suffi-
ciently large momentum transfer, it becomes possible to
detect the final state partons as high p? jets and determine
event by event the number of hard parton interactions that
are present. It becomes therefore possible to study experi-
mentally the multiplicity distribution of parton interactions
above for example pmin

? . At sufficiently high c.m. energy

the probability of having more than one high p? parton
scattering in a single collision can be appreciable, and the
hard scattering multiplicity distribution becomes
nontrivial.
The calculation for the inclusive distribution of high p?

parton scattering is a textbook application of perturbative
QCD and can be performed from knowledge of the stan-
dard PDF’s. A theoretical prediction of the multiplicity

FIG. 8 (color online). The points are measurements of the pp
and p �p total cross sections. The dashed line is the fit of �totðsÞ
suggested by the PDG [45]. The other two lines are predictions
obtained from Eq. (82) using constant values w ¼ 3 and r0 ¼
0:19 fm. For the thin (black) [thick (blue)] curve we have used
for �eikðsÞ the fit shown with the corresponding lines in Fig. 6.

FIG. 9 (color online). Slope at t ¼ 0 of the differential cross
sections d�el=dt and d�diff=dt for elastic and inelastic diffrac-
tive events. The predictions are calculated with Eqs. (65) and
(66), using the functional form (77) for pð�Þ with w ¼ 3, and the
parametrization (45) for hnðb; sÞi with r0 ¼ 0:19 fm. The solid
and dashed curves use the two parametrizations of �eikðsÞ shown
in Fig. 6.
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distribution of high p? interactions in high energy hadron
collisions is however a highly nontrivial problem that
requires the introduction of additional theoretical concepts.

The standard PDF’s give the inclusive probability den-
sity for finding one single parton with fractional longitu-
dinal momentum x. This probability density is obtained
integrating over the parton transverse momentum, and
integrating over all possible momenta of the other partons
in the hadron. If one wants to compute the probability to
have exactly n hard interactions in one collision the infor-
mation contained in the PDF’s is clearly insufficient. One
needs to know:

(1) the probability to find a parton of a given x at
different impact parameters with respect to the had-
ron center of mass;

(2) the correlated probabilities for finding different

partons at ðx1; ~b1Þ, ðx2; ~b2Þ, ðx3; ~b3Þ, . . ..

The first problem should be addressed by introducing
impact parameter dependent PDF’s Fh

j ðx; b;Q2Þ that give
the probability of finding the parton of type j with frac-

tional longitudinal momentum x and impact parameter ~b
probing hadron h at the scale Q2. This problem has not yet
a well-determined solution, and all studies of this problem
have made the simplification to assume that the depen-
dences on x and b of the impact parameter PDF’s factorize,
that is, Fh

j ðx; b;Q2Þ ¼ fjðx;Q2Þ�̂ðbÞ, and estimated �̂ðbÞ
with simple phenomenological considerations. Studies of
the generalized PDF’s [13–15] should soon be able to shed
light on this question.

The problem of obtaining correlated PDF’s that give the
probability to find simultaneously several partons in differ-
ent elements of phase space is clearly much more difficult
and complex. In this work we suggested to parametrize the
effects of our lack of knowledge about the correlated PDF’s
introducing the effective configuration probability distri-
bution that is one function pð�Þ of the real, positive vari-
able�. Each one of the configurations of partons in the pair
of colliding hadrons has associated the real number �. The
physical meaning of � is that the expected number of
parton interactions that corresponds to the parton configu-
ration C is nðCÞ ¼ hni�, where hni is the average over all
configurations. The first two moments of the function pð�Þ
are unity (because of the normalization of a probability
density and to reproduce the correct hni), and by increasing
the 2nd moment of the pð�Þ distribution the width of the
multiplicity of parton interactions grows.

If one considers not only a subset of detectable (high
p?) parton interactions, but all of them, it becomes pos-
sible to relate these elementary interactions with the total
and elastic cross sections. This general idea has been
implemented in many works using an eikonal formalism.
A crucial ingredient of these models is the quantity
hnðb; sÞi that gives the average number of elementary
interactions for a hadron collision at impact parameter b

and c.m. energy
ffiffiffi
s

p
. In the simple eikonal model this

quantity is related to the elastic scattering profile function
by the relation �elðb; sÞ ¼ 1� exp½�hnðb; sÞi=2�. The cor-
responding inelastic cross section is then

�inelðsÞ ¼
Z

d2bf1� exp½�hnðb; sÞi�g:

The physical interpretation is that an inelastic interaction
corresponds to absorption and to at least one elementary
interaction, assuming Poisson fluctuations in their multi-
plicity. The same considerations that we have outlined for
hard interactions however apply, and it is natural to expect
that fluctuations in the number of elementary interactions n
are in fact much broader than Poissonian because of fluc-
tuations in the configurations of the colliding hadrons. This
effect can again be parametrized with a function pð�Þ. For
example the inelastic cross section can be rewritten as

�inelðsÞ ¼
Z

d2b
Z 1

0
d�pð�Þf1� exp½�hnðb; sÞi��g:

One can see that the parameter � controls the ‘‘trans-
parency’’ of a hadron collision. Different configurations of
the colliding hadrons have transparencies that are related to
�. Good and Walker [4] proposed that inelastic diffraction
originates from the different absorption of the different
components of the colliding hadrons. Therefore our for-
malism can be applied to the calculation of the inelastic
diffractive cross section, and in fact unavoidably implies
the presence of inelastic diffractive processes.
In other words, the function pð�Þ allows one to relate the

quantity hnðb; sÞi to the total and elastic cross sections, and
at the same time fixes the value of the diffractive cross
section. Vice versa, from the data on the total and elastic
cross sections, together with the data on inelastic diffrac-
tion, it is possible to extract information on hnðb; sÞi and on
the properties of pð�Þ.
We have performed an analysis of the data on pp and �pp

collisions obtained at high energy colliders, and obtained
information on hnðb; sÞi and pð�Þ. For the study of the
properties of pð�Þ we have used as a first approximation a
simple analytic form that depends on a single parameter.
To describe the measured diffractive cross section one is

forced to have a function pð�Þ with a large variance. This
in turn has very important consequences on the parameters
that describe hnðb; sÞi. It is remarkable that we find that
(within significant uncertainties) the function pð�Þ is in-
dependent from energy; moreover parametrizing hnðb; sÞi
in the form hnðb; sÞi ¼ �eikðsÞAðb; sÞ as the product of an
eikonal cross section times a geometrical overlap function,
we find that the geometrical factor can be taken as energy
independent, in contrast to results obtained in the simple
eikonal model that neglects fluctuations. The eikonal cross
section �eikðsÞ is much larger and grows much faster with
energy than in the simple eikonal model. Such a rapid
growth can however be readily explainable assuming that
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it is controlled by the increase of �jetðpmin
? ; sÞ with s

assuming a constant pmin
? and negligible screening effects.

We note that, at least in first approximation, the function
pð�Þ that we have extracted from the study of the total,
elastic, and diffraction cross sections is also applicable to
the study of the multiplicity distribution of high p? jets.
One can therefore make the prediction that the distribution
of the number of hard interactions per event will be broad,
with a non-negligible number of events containing several
interactions.

The prediction of the total cross section at LHC depends
on the energy dependence of �eikðsÞ. This is a problem we
have not discussed in detail here. It seems however natural
to expect a result around 110 mb with a significant uncer-
tainty. In the model we are discussing the eikonal cross
section �eikðsÞ is large and since �eikðsÞ=�inelðsÞ is equal to
the number of elementary interactions in a collision, one is
led to expect a large charged particle multiplicity and a soft
inclusive spectrum in the final state. These considerations
are also relevant for the study of ultrahigh energy cosmic
ray showers.
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APPENDIX A: ELECTROMAGNETIC FORM
FACTORS AND OVERLAP FUNCTION AðbÞ

In [1] Durand and Pi estimated the overlap function AðbÞ
for pp collisions from the electromagnetic form factor of
the proton. The simple physical idea behind their deriva-
tion is that the overlap function is the energy independent
geometric overlap of the hadronic matter distributions in
the colliding particles. More explicitly, one defines the
spatial distribution of matter in the hadron h as �hðrÞ,
with the normalization condition:

Z
d3r�hðrÞ ¼ 1: (A1)

The density in the transverse plane is then obtained with a
simple integration:

�̂ hðbÞ ¼
Z þ1

�1
dz�hð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p
Þ: (A2)

The overlap function in the collision between hadrons h1
and h2 is then obtained as

AðbÞ ¼
Z

d2b1d
2b2�̂h1

ð ~b1Þ�̂h2
ð ~b2Þ�½ ~b� ~b1 þ ~b2�:

(A3)

The normalization condition

Z
d2bAðbÞ ¼ 1 (A4)

follows automatically from the normalization of �h1ðrÞ and
�h1ðrÞ given by (A1).

To estimate the density of �hðrÞ of hadron h, Durand and
Pi make the assumption that it is simply the Fourier trans-
form of its electromagnetic form factor. For the proton one
has

Fpðq2Þ ¼ 1

ð1þ R2
pq

2Þ2 ; (A5)

with Rp ¼ 0:234 fm (or R�2
p ¼ 0:71 GeV2) and corre-

spondingly �pðrÞ / e�r=Rp . The geometric convolution

for proton-proton collisions is

AppðbÞ ¼ b3

96�R5
p

K3

�
b

Rp

�
; (A6)

where K3ðxÞ is the modified Bessel function of the third
kind.

APPENDIX B: FOUR CHANNELS MODEL

It is instructive to discuss a ‘‘minimum’’ model that
implements the Good-Walker ansatz [4] for inelastic dif-
fraction in the collision between two hadrons, where all
calculations can be performed explicitly. The minimum
model has 4 channels, to describe the 4 possible types of
scattering (target, projectile, and double diffraction to-
gether with elastic scattering). Without loss of generality
we can consider the scattering �p (here � and p are labels
to represent arbitrary hadrons). Each of the two colliding
hadrons can undergo inelastic diffraction with a transition
to an additional state. We will label the excited states for
the projectile and target particles as � and �; one therefore
has to consider the transitions� ! �� � � and p ! p� �
�. In the 4-channel model one has to study the 4-
dimensional vector space spanned by the orthonormal
basis of the 4 physical states j’mi:

fj’migðm¼1;4Þ ¼ fj�pi; j��i; j�pi; ��ig: (B1)

One can (in principle) study the 4� 4 transitions
h’fjSj’ii. In practice of course one is limited to the study

of the transitions j�pi ! j’mi (that correspond to the
processes of elastic scattering, target, projectile, and
double diffraction). The scattering amplitude is a 4� 4
matrix:

F̂ð ~q; sÞ ¼ i
Z d2b

2�
ei ~q	 ~b�̂ðb; sÞ: (B2)

The differential cross section for the transition i ! f is

d�i!f

dt
ðt; sÞ ¼ �j½F̂ð ~q; sÞ�fij2: (B3)

Integrating over all t values one obtains the transition cross
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sections

�i!fðsÞ ¼
Z

d2bj½�̂ðb; sÞ�fij2: (B4)

The profile matrix �̂ can be written in terms of the eikonal
matrix �̂ðb; sÞ:

�̂ðb; sÞ ¼ 1� exp½��̂ðb; sÞ�: (B5)

Using the Good and Walker ansatz, the eikonal matrix
�̂ðb; sÞ takes the form:

�̂ðb; sÞ ¼ hnðb; sÞi
2

M̂; (B6)

where hnðb; sÞi has the usual meaning of the average
number of parton interactions in a �p collision, and we

have introduced the 4� 4 matrix M̂. This matrix must be
real and have 4 real and positive eigenvalues �j; moreover

one must have M̂11 ¼ 1.
This is a consequence of the fact that one can define (as

in the previous section) the states jc ji as the eigenstates of

the M̂ matrix. These states undergo only absorption or
elastic scattering, and each has a transparency P0 ¼
e�hnðb;sÞi�j . Therefore hnðb; sÞi�j can be interpreted as the

average number of interactions for the state jc ji and this

quantity (and �j) must be positive. Moreover, to have the

correct average multiplicity of elementary interactions for
the initial state j’1i ¼ j�pi one must have

X
j

jhc jj�1ij2�j ¼ 1 (B7)

that implies M̂1;1 ¼ 1.

The matrix M̂ can be constructed explicitly making the
additional hypothesis that the (4-dimensional) space of the
physical states is the direct product of two (2-dimensional)
spaces for the beam and target particle, and moreover that
one has time reversal symmetry, and the amplitudes for the
transitions� ! � (p ! �Þ and � ! � (� ! p) are equal.
With these assumptions the most general form for the

matrix M̂ is

M̂ ¼ 1 	�

	� 1� 2
�

� �

 1 	p

	p 1� 2
p

� �
¼

1 	� 	p 	�	p

	� 1� 2
� 	�	p 	pð1� 2
�Þ
	p 	�	p 1� 2
p 	�ð1� 2
pÞ

	�	p 	pð1� 2
�Þ 	�ð1� 2
pÞ ð1� 2
�Þð1� 2
pÞ

0
BBB@

1
CCCA: (B8)

The eigenvalues and eigenvectors of the matrix M̂ are
easily calculable, noting that each of the 2� 2 matrices of
form

1 	
	 1� 2


� �

has eigenvalues:


1;2 ¼ 1� �� 
; (B9)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ 
2

q
; (B10)

and the corresponding eigenvectors are

~v 1;2 ¼ 1ffiffiffi
2

p f� ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p
;

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p g; (B11)

with r ¼ 
=� ¼ 
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ 
2

p
.

The eigenvalues of the 4� 4 matrix M̂ are then

�j ¼ ð1� �� � 
�Þð1� �p � 
pÞ (B12)

(with j 2 f1; 2; 3; 4g). The condition that the eigenvalues
are non-negative gives


�;p � 1=2; 	2
�;p � 1� 2
�;p: (B13)

The rotation matrix Cmj that connects the scattering eigen-

states jc ji to the physical states j’mi is

Cmj ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rp

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r�
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rp
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r�
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rp
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r�
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rp
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r�
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rp
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rp

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rp

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rp

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rp

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rp

p

0
BBBB@

1
CCCCA: (B14)

The profile functions for the different scattering pro-
cesses can now be given explicitly as

�mfmi
¼ X

j

CmfjCmij

�
1� exp

�
�hnðb; sÞi

2
�j

��
: (B15)

The model outlined above requires an estimate of the

function hnðb; sÞi that can be interpreted as the average
number of ‘‘elementary’’ interactions for a hadron crossing
at impact parameter b and c.m. energy

ffiffiffi
s

p
. In the general

case of the collision of two different hadrons (such as in
��p scattering) the model has 4 additional parameters
ð	�; 
�; 	p; 
pÞ that describe the matrix structure of the
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eikonal function. Obviously for pp scattering the model
has only two parameters ð	p; 
pÞ.

With the labeling of the physical states that we have
been using (namely, j’1i ¼ j�pi, j’2i ¼ j��i, j’3i ¼
j�pi, and j’4i ¼ j��i), the integration over all impact
parameters b of j�11ðbÞj2 yields the elastic cross section,
the integral of j�21ðbÞj2 (j�31ðbÞj2) gives the target (pro-
jectile) single diffraction cross section, and finally the
integral of j�41ðbÞj2 gives the double diffractive cross
section.

To connect this analysis to the discussion performed in
the main text, we note that we can define the 4 quantities pj

that are the probabilities jh’1jc jij2 to find the initial state

j’1i � j�pi in the scattering eigenstates jc ji. The pj are

given by

pj ¼ jhc jj�pij2 ¼
ð�� � 
�Þð�p � 
pÞ

4���p

¼ 1

4
ð1� r�Þð1� rpÞ: (B16)

It is straightforward to verify thatX
j

pj ¼
X
j

pj�j ¼ 1: (B17)

One can now define the function pð�Þ:

pð�Þ ¼ X
j

pj�½�� �j�: (B18)

This function, as a consequence of Eq. (B17) satisfies the
conditions:

Z 1

0
d�pð�Þ ¼ 1;

Z 1

0
d��pð�Þ ¼ 1:

It is now straightforward to see that one can recast the
expressions for the total, elastic, absorption, and diffractive
(that is the sum of the target, projectile, and double dif-
fraction) cross sections as integrals over � identical to the
expressions (59)–(62) in Sec. IVB.
It can be interesting to note that the 2nd moment of the

pð�Þ distribution is given by

Z
d��2pð�Þ ¼ X

j

pj�
2
j ¼ ð1þ 	pÞð1þ 	�Þ: (B19)
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