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We show that certain little Higgs models with symmetry breaking SUðNÞ ! SOðNÞ for N � 4 admit

topologically stable solitons that may contribute to cosmological dark matter. We have constructed a

spherically symmetric soliton and estimated its mass in the case of SUð5Þ ! SOð5Þ. Its mass is estimated

to be around 10.3 TeV. Whether this particle is a fermion or a boson depends on the value of an integer-

valued parameter of the underlying theory, analogous to the number of colors of QCD. In either case, the

particle is neutral. If it is a fermion, it is a Majorana particle, which could take part in a seesaw mechanism

for neutrino masses.
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I. INTRODUCTION

The hot big bang model of cosmology tells us that the
Universe cooled down from a primordial hot and dense
state to the present state of galaxies and other large-scale
structures with a mean temperature of about 2.73 K [1].
Certain theories of grand unification predict that the
Universe underwent a series of phase transitions as it
cooled down, similar to what we observe in condensed
matter systems. Phase transitions in the early Universe
can give rise to certain stable configurations of matter
known as topological defects. Different types of topologi-
cal defects can arise depending on the symmetry breaking
mechanism of the underlying field theory [2]. They can
appear in the forms of magnetic monopoles, cosmic
strings, domain walls, textures, and skyrmions [3].

A field theory described by a continuous symmetry
group G, spontaneously breaks down to a subgroup H �
G, and the space of all accessible vacua of the theory called
the vacuum manifold is defined to be the space of cosets of
H in G. The theory possesses a topological defect if some
homotopy group of the coset space �dðM � G=HÞ is
nontrivial. When d ¼ 0, 1, and 2 the defects, respectively,
are domain walls, strings (vortices), and magnetic mono-
poles or textures. The case d ¼ 3, which plays a major role
in this paper, gives rise to pointlike topological defects
called skyrmions.

Recently there has been much interst in a class of field
theoretic models called the little Higgs models [4–6] in the
context of weak scale symmetry breaking. These models
provide a new logical possibility for natural electroweak
symmetry breaking and a new partial resolution of the
hierarchy problem in elementary particle physics.
Introduction of new symmetries at the TeV scale by these
models provides the cancellation of all quadratically diver-
gent contributions to the Higgs mass at the one-loop level
and pushes up the hierarchy problem to an energy scale of
around 10 TeV. Little Higgs models have generated a lot of

interest since any potential candidate to solve the hierarchy
problem deserves serious attention.
Among the many possible ways of implementing the

little Higgs paradigm, the littlest Higgs model [5] is the
simplest and most economical. This theory introduces a
weakly coupled new physics at TeVenergies, stabilizes the
electroweak scale with a naturally light Higgs, and is the
smallest extension of the standard model to date.
In this paper we address the interesting new possibility

of bridging the natural electroweak symmetry breaking and
cosmological dark matter—the nonbaryonic, nonrelativis-
tic, and weakly interacting matter that constitutes about
22% of matter in the Universe. Since the Higgs particles
appear as pseudo Nambu-Goldstone bosons in little Higgs
models, skyrmion solutions that are stable and electrically
neutral can also come out quite generically. We demon-
strate the existence of a pointlike, electrically neutral, and
topologically stable structure—a particle with a Z2 charge,
which could be a viable dark matter candidate. Its mass,
estimated in the context of the littlest Higgs model with
T parity [7], is found to be around 10.3 TeV which is well
below the unitarity limit [8] of viable dark matter particles.
(The existence of other topological defects in the little
Higgs model was investigated in [9].)
We start with a class of nonrenormalizable effective field

theories for pseudo Nambu-Goldstone bosons, in which a
symmetry group SUðNÞ is broken down to its real sub-
group SOðNÞ for N � 4. The case N ¼ 5 is of most
interest, as it appears in the little Higgs models.
At small energy scale compared to the symmetry break-

ing scale, the effective action has the form

S1 ¼ f2

8

Z
d4x tr@��@��y þ � � � ; (1)

where f is a parameter with dimension of energy and� is a
scalar field given by a differentiable map from the
Minkowsky space R1;3 to a nonlinear target manifoldMN,
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�: R1;3 ! MN: (2)

The target manifold MN is the subset of symmetric ma-
trices in SUðNÞ

M N ¼ f�j� ¼ �T;��y ¼ 1; det� ¼ 1g: (3)

It has a global symmetry � ! g�gT , g 2 SUðNÞ. Any
� 2 MN can be reduced to the identity by this trans-
formation [10]. That is, there is a g 2 SUðNÞ such that
� ¼ ggT . If we change g � gh, with h 2 SOðNÞ, the
product ggT is unchanged. Thus we can identify MN ¼
SUðNÞ=SOðNÞ. The canonical projection to the cosets is p:
SUðNÞ ! MN , pðgÞ ¼ ggT .

At spatial infinity, the field �ðxÞ must approach a con-
stant; the choice of this constant among all matrices sat-
isfying Eq. (3) will break the symmetry SUðNÞ down to its
real subgroup SOðNÞ. The parameter f sets the scale of the
symmetry breaking; in the little Higgs models it is ex-
pected to be of the order of a TeV. The ellipsis in Eq. (1)
indicates that we are ignoring higher derivative terms,
which are expected to be unimportant in the limit of
‘‘low’’ energies, that is, energies of the order of f.

Among the higher derivative terms we can add a new
term that does not change the hyperbolic nature of the field
equations and is still second order in time. This is the
‘‘Skyrme term’’ [3] given by

S2 ¼ 1

32e2

Z
d4x tr½@��; @��y�½@��; @��y�y: (4)

The value of the dimensionless constant e depends on
the details of the renormalizable theory of which Eq. (1) is
the effective action. We will see that in the presence of this
term, the effective action supports a topological soliton,
whose mass is proportional to M ¼ fI=e, with I given in
Eq. (22).

The more familiar Skyrme model [11,12] is for the
spontaneous breakdown of the symmetry SUð2Þ � SUð2Þ
to SUð2Þ. The Nambu-Goldstone bosons are then the
� mesons. The action of the Skyrme model is then

S ¼ f2�
2

Z
d4x tr@�g@

�gy þ 1

32e2

Z
d4x tr½@�g; @�gy�

� ½@�g; @�gy�y þ � � � : (5)

Closer in spirit to these papers are the Hopf soliton [13]
(the case of M2) and even more so, the model studied in
[14], which is the case of M3.

II. TOPOLOGICAL CONSERVED CHARGE

A continuous function �, R3 ! MN, that approaches a
constant at infinity can also be thought of as a map�, S3 !
MN , by identifying the points at infinity. The homotopy
group �3ðMNÞ has as elements the equivalence classes of
such maps that can be deformed continuously into each
other. It is well known that [15]

�3ðM2Þ ¼ Z; �3ðM3Þ ¼ Z4;

�3ðMNÞ ¼ Z2; N � 4:
(6)

The case N ¼ 3 was studied in a different context some
years ago [14]. We will focus here on the case N � 4,
which includes the little Higgs models. There is just one
nontrivial equivalence class of maps �: R3 ! MN; we
will need to determine which representative of this class
has the least energy. The nontrivial element of
�3ðSOðNÞ=SOðNÞÞ is just the projection of the generator
of �3ðSUðNÞÞ.

III. A SPHERICALLY SYMMETRIC ANSATZ

Recall Skyrme’s spherically symmetric (‘‘hedgehog’’)
ansatz for a soliton of winding number 1:

g2ðxÞ ¼ ei��x̂!ðrÞ; !ð0Þ ¼ ��; !ð1Þ ¼ 0: (7)

The boundary conditions on ! ensure that the limits at
r ¼ 0, 1 are direction independent:

g2ð1Þ ¼ 12; g2ð0Þ ¼ �12: (8)

This ansatz is spherically symmetric in the sense that a
rotation in space can be compensated by the adjoint action
of SUð2Þ:

g2ðRðAÞxÞ ¼ Ag2ðxÞAy; (9)

where R, SUð2Þ ! SOð3Þ, is the usual homomorphism.
The obvious topologically nontrivial map g2g

T
2 is not

spherically symmetric: it is just cylindrically symmetric
around the x2 axis. This is because the representative A of
the rotation matrix does not cancel (is not orthogonal)
unless the rotation is around the x2 axis. In fact, the energy
minimizing configuration inM2 is only cylindrically sym-
metric [13]. If there is a spherically symmetric configura-
tion, it is likely to have less energy.
There [14] is another spherically symmetric map g3,

R3 ! SUð3Þ, which interpolates between the identity at
infinity and a cube root of unity at the origin:

g3ð1Þ ¼ 13; g3ð0Þ ¼ eðð2�iÞ=3Þ13: (10)

It is a generator or �3ðSUð3ÞÞ. To construct it we start with
the spherically symmetric ansatz

½g3ðxÞ�kl ¼ AðrÞ½�kl � x̂kx̂l� þ BðrÞ�klnx̂n þ CðrÞx̂kx̂l;
x̂i � xi=jxj; (11)

with the constraints jCj ¼ 1, A�B ¼ B�A, jAj2 þ jBj2 ¼ 1
to be unitary and CðA2 þ B2Þ ¼ 1 to have determinant 1.
Under the action g3ðxÞ ! Rg3ðRxÞRT this is spherically
symmetric.
So we get

AðrÞ ¼ e�ði=2Þ�ðrÞ cos�ðrÞ; CðrÞ ¼ ei�ðrÞ;

BðrÞ ¼ e�ði=2Þ�ðrÞ sin�ðrÞ:
(12)
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The boundary conditions

�ð1Þ ¼ 0; �ð0Þ ¼ 2�=3;

�ð1Þ ¼ 0; �ð0Þ ¼ �
(13)

ensure that the winding number is 1. Computing �3ðxÞ ¼
g3ðxÞgT3 ðxÞ,

½�3ðxÞ�kl ¼ e�i�ðrÞ�kl þ ½e2i�ðrÞ � e�i�ðrÞ�x̂kx̂l: (14)

Finally, we can embed in MN to get a spherically
symmetric representative for the generator of �3ðMNÞ
for N � 4:

�NðxÞ ¼ �3ðxÞ 0
0 1N�3

� �
: (15)

For �NðxÞ ¼ gNðxÞgTNðxÞ with

gNðxÞ ¼ g3ðxÞ 0
0 1N�3

� �
(16)

and gN: R
3 ! SUðNÞ has winding number 1 by the above

construction. The configuration is spherically symmetric
under the action �ðxÞ � R�ðRxÞRT .

IV. MINIMUM ENERGY SOLITON

The mass of the soliton in the theory with action S1 þ S2
will be the minimum of the energy

Hð�Þ � f2I1ð�Þ þ 1

e2
I2ð�Þ; (17)

where

I1ð�Þ ¼ 1

8

Z
d3x tr@i�@i�

y; (18)

I2ð�Þ ¼ 1

32

Z
d3x tr½@i�; @j�

y�½@i�; @j�
y�y; (19)

among all functions �: R3 ! MN equivalent to the non-
trivial element of�3ðMNÞ. Since this topological charge is
valued in Z2, the topological soliton and its antiparticle are
identical. In the absence of other interactions a single such
soliton will be stable. Their number is not conserved—a
pair of them can annihilate when they come in contact with
each other.

As with skyrmions in QCD, it is clear that under a
scaling ��ðxÞ ¼ �ð�xÞ, the two terms in the energy scale
are opposite to each other:

I1ð��Þ ¼ ��1I1ð�Þ; I2ð��Þ ¼ �I2ð�Þ: (20)

Minimizing in the scale parameter, we see that the mini-
mum energy will be proportional to f=e:

Hmin ¼ ðf=eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1ð�ÞI2ð�Þ

q
: (21)

We can make a variational estimate for the constant

I ¼ min
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1ð�ÞI2ð�Þ

q
: (22)

The minimizing configuration should be invariant under
the simultaneous rotation of the coordinate x and a rotation
by some SUð2Þ subgroup (analogous to isospin in the
Skyrme model) of SUðNÞ.
It is not difficult to make an estimate for the soliton mass

M. Substituting the spherically symmetric ansatz Eq. (15)
in Eq. (17) and after some calculation we find

Eð�Þ ¼ �
Z

f2½3r2�02 þ 4ð1� cos3�Þ�dr

þ �
Z 2

e2r2
ð1� cos3�Þ2dr

þ �
Z 2�02

e2
ð3� cos3�� 2 cos6�Þdr: (23)

We can find the minimum of energy in two ways: (i) by
taking a variational ansatz for �ðrÞ or (ii) by solving Eð�Þ
numerically. The variational ansatz gives an answer almost
as good as the numerical solution.
We tried the following ‘‘stereographic’’ ansatz for �ðrÞ

�ðrÞ ¼ 4�

3
arctan

�
Rn

rn

�
(24)

for n ¼ 1, 2, 3, and 4. They satisfy the boundary conditions
given in Eq. (13). The lowest value for energy was obtained
for n ¼ 2 and R ¼ R0 	 1:13

ef . The value of the minimum

energy is EðR0Þ � M ¼ 105 f
e . The numerical solution of

the differential equation for � gives a slightly lower value
of energy close to the variational ansatz:

E ¼ 102:8
f

e
: (25)

We plot the solution in Fig. 1 in units where e ¼ f ¼ 1; the
dashed curve is the variational ansatz with n ¼ 2 and the
solid curve is the numerical solution.
We need an estimate for the value of the dimensionless

parameter e as well as f to get a number for the mass of the

2 4 6 8 10
r

0.5

1.0

1.5

2.0

FIG. 1. The solution for �ðrÞ in units where e ¼ f ¼ 1.
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soliton M. Precision electroweak constraints put a lower
bound on the symmetry breaking scale f typically of about
500 GeV [16] for little Higgs models with T parity [7]. The
Skyrme constant is in principle determined by the under-
lying renormalizable theory of which the little Higgs
model is the effective theory. At the moment we do not
know what this effective theory is; even if we knew it, we
do not yet know how to compute such constants. But it is
reasonable to expect that e will have the same order of
magnitude as for QCD; this is the best we can do with our
current knowledge. In QCD e 	 5, as we can deduce from
the value of the nucleon mass. Assuming that the size of the
Skyrme term in the little Higgs model has the same size as
that of QCD, we get an estimate for the mass of the soliton

M * 10:3 TeV: (26)

Since the mass of this particle is below the unitarity
bound ( & 340 TeV) [8], it cannot be excluded from the
list of viable dark matter candidates. Possible cosmological
implications such as relic abundance, decay1 and annihi-
lation cross sections of these particles should be explored.

The coefficient Nc of the Wess-Zumino-Witten term
(which is equal to the number of colors of QCD) deter-
mines whether the baryon is a boson or a fermion: for odd
Nc it is a fermion and for even Nc it is a boson. We do not
yet know if the analogous parameter in the little Higgs

models is even or odd: both possibilities would give the
same effective theory at the electroweak scale. When our
skyrmion is a boson, it can be represented by a real scalar
field S whose couplings have the discrete symmetry S !
�S. The conserved quantity associated with this symmetry
is the topological charge of the little Higgs model. The
phenomenological consequences of such scalars have been
investigated in [17]. When our particle is a fermion, it is a
Majorana particle. In this case it could be the fermion
responsible for the neutrino masses in a seesaw mechanism
[18]. To flesh out this idea, we need to understand the
mixing matrix of the topological soliton with neutrinos,
induced by the anomalous coupling of neutrinos of the
bosons of the little Higgs models [19,20].
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