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A description of fragmentation functions which satisfy the momentum and isospin sum rules is

presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain

why the elementary (lowest order) fragmentation process q ! q� is completely inadequate to describe

the empirical data, although the crossed process � ! q �q describes the quark distribution functions in the

pion reasonably well. Taking into account cascadelike processes in a generalized jet-model approach, we

then show that the momentum and isospin sum rules can be satisfied naturally, without the introduction of

ad hoc parameters. We present results for the Nambu–Jona-Lasinio (NJL) model in the invariant mass

regularization scheme and compare them with the empirical parametrizations. We argue that the NJL-jet

model, developed herein, provides a useful framework with which to calculate the fragmentation functions

in an effective chiral quark theory.
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I. INTRODUCTION

Quark distribution and fragmentation functions are the
basic nonperturbative ingredients for a QCD-based analy-
sis of hard scattering processes [1–6]. Distribution func-
tions can be extracted by analyzing inclusive processes
[7,8] and their description in terms of effective quark
theories of QCD has been quite successful [9,10]. In recent
years there has been a significant effort to extract the
fragmentation functions by analyzing inclusive hadron
production (semi-inclusive) processes in eþe� annihila-
tion, deep-inelastic lepton-nucleon scattering and proton-
proton collisions [11,12]. Besides being of fundamental
interest in their own right, knowledge of fragmentation
functions is essential for the extraction of the transversity
quark distribution functions [6,13] from data, and to ana-
lyze several other interesting effects in semi-inclusive
processes [14].

Because of the importance of the fragmentation func-
tions many attempts have been made to describe them
using effective quark theories [15]. However, in order to
achieve reasonable agreement with the empirical parame-
trizations it was necessary to introduce new parameters,
like normalization constants, which cannot be justified on
theoretical grounds. A description of fragmentation func-
tions within effective quark theories, which automatically
satisfies the relevant sum rules [3] and describes the em-
pirical data reasonably well—without introducing new

parameters into the theory—has hitherto not been
achieved.
This failure to describe the fragmentation functions in

the same framework which is successful at describing the
distribution functions is surprising, because there exists a
general relation, the so called Drell-Levy-Yan (DLY) rela-
tion [16,17], which suggests a way to compute the frag-
mentation functions by analytic continuation of the
distribution functions into the region of Bjorken x > 1.
Although the derivation of this relation appears to be
very general (as we show in Appendix A), the basic as-
sumption that the distributions and fragmentations are
essentially one and the same function, defined in different
regions of the scaling variable, has not been proven.
Moreover, the approximations used to calculate the distri-
bution functions may not be sensible for the fragmentation
functions and vice versa. For example, in the fragmentation
process of a quark into a pion, q ! �þ n, where n is a
spectator, there is no a priori reason to truncate n to a
single quark state, as the DLY crossing arguments would
suggest for the case of a Bethe-Salpeter type vertex func-
tion for � ! q �q. One can actually give a quantitative
argument that the lightest component of n is dominant
only if the scaling variable z is very close to unity [18].
On the other hand, the phenomenological quark jet-

model, as formulated originally by Field and Feynman
[19], suggests that the meson observed in a semi-inclusive
process is one among many, that is, the spectator state n
contains many mesons. This model is based on a product
ansatz for a chain of elementary fragmentation processes,
where in each step a certain fraction of the quark momen-
tum is transferred to a meson, until eventually a very soft
quark remains. This final quark is assumed to annihilate
with the other remnants of the process without producing
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further observable mesons.1 In order for all of the quark
light-cone momentum to be transferred to the mesons, it is
actually necessary to assume an infinite number of steps
(mesons) in the decay chain, as will be explained in more
detail in Sec. IV. In this case, it is possible to satisfy the
momentum sum rule for fragmentation functions [3],
which is assumed valid in QCD-based fits to the data
[11,12]. Clearly, this sum rule cannot be satisfied in a
single step elementary fragmentation process.

The purpose of this paper is to apply the method of the
quark jet-model to calculate the spin-independent frag-
mentation functions in an effective chiral quark theory,
which has proven to be very successful for the description
of quark distribution functions [9,22,23]. We will concen-
trate on quark fragmentation into pions within the
Nambu–Jona-Lasinio (NJL) model [24], however the
methods illustrated here can easily be extended to other
fragmentation channels and applied within other effective
quark theories. In order to reconcile the quark jet-model
with our present NJL model description, we will introduce
a generalized product ansatz, which allows for the frag-
mentation of a quark into a finite number of pions accord-
ing to a certain distribution function, and in the end we take
the limit of infinitely many pions. We will show how the
momentum and isospin sum rules emerge naturally without
introducing any new parameters into the theory. Our nu-
merical results will demonstrate that this NJL-jet model
provides a very reasonable framework for describing the
fragmentation functions.

This paper is organized as follows: In Sec. II we begin
with the operator definitions for the quark distribution and
fragmentation functions and move on to discuss the sum
rules and the DLY relation. In Sec. III we give the expres-
sions for the elementary fragmentation functions in the
NJL model and discuss their physical interpretations and
sum rules. In Sec. IV we introduce the generalized product
ansatz to describe a chain of elementary fragmentation
processes in the spirit of the quark jet-model, derive the
integral equation for the fragmentation function and dis-
cuss the momentum and isospin sum rules. In Sec. V we
explain the model framework for the numerical calcula-
tions, present results and compare them with the empirical
fragmentation functions. A summary is given in Sec. VI.

II. OPERATOR DEFINITIONS AND SUM RULES

Operator definitions and sum rules for fragmentation
functions were first given in Ref. [3] and were further
elucidated in Ref. [25]. In this section we summarize the
basic relations for the fragmentation functions and for
clarity include those for the distribution functions also.

The spin-independent distribution function of a quark of
flavor q inside a hadron of spin-flavor h (for example h ¼
p " , �þ, etc.) and the spin-independent fragmentation
function for q ! h are defined by

fhqðxÞ ¼ 1

2

Z d!�

2�
eip�!�x

X̂
n
hpðhÞj �c ð0Þjpni

� �þhpnjc ð!�ÞjpðhÞi; (1)

Dh
qðzÞ ¼ z

12

Z d!�

2�
eip�!�=z

X̂
n
hpðhÞ; pnj �c ð0Þj0i

� �þh0jc ð!�ÞjpðhÞ; pni: (2)

The field operators refer to a quark of flavor q, although it
is not indicated explicitly. The symbol pðhÞ refers to a
hadron h with momentum p and pn labels the spectator
state. The light-cone components of a 4-vector are defined

as a� ¼ ðaþ; a�;aTÞ with a� ¼ ða0 � a3Þ= ffiffiffi
2

p
. Covariant

normalization is used throughout this paper and the sum-

mation symbol
P̂

n includes an integration over the on-
shell momenta pn.

2 Both expressions in Eqs. (1) and (2)
refer to a frame where pT ¼ 0. The physical content of the
functions in Eqs. (1) and (2) is most transparent if we
introduce the ‘‘good’’ light-cone quark field cþ
[22,26,27], which is defined by cþ � �þc where �þ ¼
1
2�

��þ and can be expressed as the Fourier decomposition

cþð!�Þ ¼
Z 1

0

dk�ffiffiffiffiffiffiffiffiffi
2k�

p
Z d2kT

ð2�Þ3=2
X
�

ðb�ðkÞuþ�ðkÞe�ik�!�

þ dy�ðkÞvþ�ðkÞeik�!�Þ: (3)

The index � denotes the spin-color of a quark with flavor q

and the spinors are normalized as uyþ�0 ðkÞuþ�ðkÞ ¼
vy
þ�0 ðkÞvþ�ðkÞ ¼

ffiffiffi
2

p
k���0;�. Substituting these expres-

sions into Eqs. (1) and (2) and using the result �c�þc ¼ffiffiffi
2

p
c y

þcþ, gives the following relations which are inde-
pendent of the normalization of states:

fhqðxÞdx ¼ dk�
Z

d2kT
X
�

hpðhÞjby�ðkÞb�ðkÞjpðhÞi
hpðhÞjpðhÞi ; (4)

Dh
qðzÞdz ¼ z2

6
dp�

Z
d2kT

X
�

hkð�Þjayh ðpÞahðpÞjkð�Þi
hkð�Þjkð�Þi :

(5)

1This picture of independent fragmentation is appealing be-
cause of its simplicity. More elaborate models for hadronization
are the string model [20] or the cluster model [21], which are
suitable for Monte Carlo analysis.

2In this normalization hp0ðh0ÞjpðhÞi ¼ 2p�ð2�Þ3�ð3Þðp0 �
pÞ�hh0 and jpðhÞ; pni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�Þ3p�

p
ayh ðpÞjpni, with

½ahðp0Þ; ahðpÞ�� ¼ �ð3Þðp0 � pÞ. The summation defined byP̂
n � P

n

R d4pn

ð2�Þ3 �ðp2
n �M2

nÞ�ðpn0Þ, where Mn is the invariant

mass of n, can also be expressed in terms of light-cone variables.
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Here dx ¼ dk�=p�, that is, k� ¼ xp� for some fixed
p� > 0 and dz ¼ dp�=k�, implying p� ¼ zk� for some

fixed k� > 0. The creation and annihilation operators, ayh
and ah, refer to the hadron h (see footnote 2) and kð�Þ
labels a quark state of flavor q with momentum k and spin-
color �.

According to Eq. (4) we can interpret fhqðxÞ as the light-
cone momentum distribution of q in h, where a sum over
the spin-color of q is understood, while the spin of h is
fixed. However, the result is independent of this spin
direction, since we will only consider the spin-independent
distributions. As mentioned earlier, Eq. (5) refers to the
frame where the produced hadron h has pT ¼ 0, but the
fragmenting quark has nonzero kT . To interpret this result
as a distribution of h in q, it is necessary to make a Lorentz
transformation to the frame where k? ¼ 0, but h has non-
zero p? (note the distinction between the subscripts T and
? ). This is discussed in detail in Refs. [3,6], with the result
that one can simply substitute

k T ¼ �p?
z

; (6)

leaving everything else unchanged. We then obtain from
Eq. (5) the result

Dh
qðzÞdz ¼ 1

6
dp�

Z
d2p?

X
�

hkð�Þjayh ðpÞahðpÞjkð�Þi
hkð�Þjkð�Þi ;

(7)

where the fragmenting quark now has k? ¼ 0. According
to Eq. (7) we can interpret Dh

qðzÞ as the light-cone momen-

tum distribution of h in q, where the factor 1=6 indicates an
average [25] of the spin-color of q, while the spin of h is
fixed.3 In fact, for the elementary distribution and frag-
mentation functions considered in the next section, the
naively expected relation

Dh
qðzÞ ¼ 1

dh
fqhðzÞ; (8)

is valid. Where dh is the spin degeneracy, or, in the general
case, the spin-color degeneracy of h. Generally however,
this relation is not necessarily valid, because q is off-shell
(its virtuality being determined kinematically by the scal-
ing variable and the transverse momentum) and h is on
shell, which breaks the naive symmetry under the inter-
change q $ h.

To obtain the momentum sum rule from Eq. (7) we
multiply both sides by z ¼ p�=k�, integrate over z from
0 to 1 and sum over h.4 Then one notes that the momentum
operator, represented in terms of hadron operators, is given
by

P̂� � X
h

Z 1

0
dp�

Z
d2p?ðp�a

y
h ðpÞahðpÞÞ: (9)

By assuming that the quark state jkð�Þi in Eq. (7) is an
eigenstate of this operator with eigenvalue k�, we obtain
the momentum sum ruleX

h

Z 1

0
dzzDh

qðzÞ ¼ 1: (10)

The physical content of Eq. (10) is that 100% of the initial
quark light-cone momentum (k�) is transferred to the
hadrons. The condition which lies at the basis of Eq. (10)
is that the initial quark state is an eigenstate of the mo-
mentum operator, Eq. (9), expressed solely in terms of
hadrons. That is, the quark hadronizes completely in the
sense that it gives all of its light-cone momentum to the
hadrons.
A similar argument leads to the isospin sum rule [3],

namely X
h

Z 1

0
dzthD

h
qðzÞ ¼ tq; (11)

where tq and th denote the 3-components of the isospins of

q and h. The physical content of this sum rule is that all of
the isospin of the initial quark is transferred to hadrons,
which is possible since the definition in Eq. (2) implies an
average over the isospin of the soft quark remainder of a
fragmentation chain (see Sec. IV). In general, there is no
sum rule for the baryon number or electric charge, because
the baryon number or average electric charge of the quark
remainder is not zero.5 If we simply integrate both sides of
Eq. (7) over z, we get the hadron multiplicity, which can be
interpreted as the number of mesons per quark. However,
there is no conservation law which leads to a sum rule for
the multiplicity.
There is an interesting relation based on charge conju-

gation and crossing symmetry, between the fragmentation
function for physical z < 1 and the distribution function for
unphysical x > 1:

Dh
qðzÞ ¼ ð�1Þ2ðsqþshÞþ1 z

dq
fhq

�
x ¼ 1

z

�
; (12)

which is called the DLY relation [16,17]. Here sq and sh
are the spins of q and h respectively, and dq is the spin-

color degeneracy of q. We derive this relation using two

3For the generalized case where h can also be a quark, we
summarize the definitions as follows: fhqðxÞ refers to fixed flavors
of q and h, while all other quantum numbers of q (spin, color,
etc.) are summed over, with those of h are fixed. Dh

qðzÞ refers to
fixed flavors of q and h, with an average over the other quantum
numbers of q (spin, color, etc.), while those of h are fixed. This
definition has the advantage that in a semi-inclusive process,
which involves the product fTq ðxÞDh

qðzÞ, the quark spin-color
summation is included in f but not in D, which avoids double
counting.

4A subtle point here is that in order to get an integral
R1
0 dp�

on the right-hand side of Eq. (9), one has to choose k� ¼ 1.
This does not influence the result, which depends only on z.

5The average of the electric charge is zero only if SU(3) flavor
symmetry is assumed.
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independent methods in Appendix A. The first approach,
which follows the original arguments [16], compares the
hadronic tensors for eh ! e0X (inclusive DIS) and
eþe� ! hX (inclusive hadron production), and uses cross-
ing relations for matrix elements of the current operator.
The second method—which to the best of our knowledge
has not been published before—starts directly from the
operator definitions in Eqs. (1) and (2) and uses charge
conjugation and crossing symmetries for matrix elements
of the quark field operator. If one has an effective quark
theory to calculate the quark distribution functions,
Eq. (12) would suggest a straightforward way to obtain the
fragmentation functions. However, as will become clear in
the following sections, for the lowest order (elementary)
processes such an attempt leads to disastrous results. That
is, the fragmentation functions obtained in this way are 1 or
2 orders of magnitude smaller than the empirical functions
and the sum rules in Eqs. (10) and (11) are not satisfied.

The reasons why Eq. (12) fails in actual applications are
as follows: (i) It is based on the assumption that the
distribution functions can be continued analytically be-
yond x ¼ 1. However, it is well known that the Q2 evolu-
tion equations lead to singularities at x ¼ 1, which are
(regularized) infrared singularities arising from the vanish-
ing gluon mass [5,28]. These render an analytic continu-
ation impossible. Someone may still argue that Eq. (12)
should be used only at the low energy (model) scale,
however it is actually broken there also, because of the
cutoff regularization. We will discuss this point in detail in
the next section. (ii) Most importantly, approximations
which work reasonably well for the distribution functions
may not be sensible for the fragmentation functions and
vice versa. For example, the assumption that the pion is a
q �q Bethe-Salpeter bound state is very reasonable for the
distribution function [9,10], but the DLY crossing argu-
ments then imply the truncation of the spectator state pn, of
Eq. (2), to a single quark state. Although this simple
assumption does not lead to any violation of conservation
laws, the sum rules in Eqs. (10) and (11) cannot be satisfied
in a single step fragmentation process.

For these reasons, we will not rely on Eq. (12) to
calculate the fragmentation functions, although we will
confirm its formal validity for the lowest order (elemen-
tary) functions. We note that the arguments given above do
not question the usefulness of Eq. (12) as a means to relate
the kernels of the Q2 evolution equations for the distribu-
tion and fragmentation functions (see Ref. [17] and
Appendix B). In fact, it is known that at leading order
(LO) in �s this relation between the kernels is valid,
although it is violated at next-to-leading order (NLO) [29].

III. ELEMENTARY DISTRIBUTION AND
FRAGMENTATION FUNCTIONS

The elementary distribution and fragmentation functions
for the pion are represented in Figs. 1 as cut diagrams.

Since the distribution function can also be obtained from a
straightforward Feynman diagram calculation [22,30],6 we
also illustrate the Feynman diagram for the distribution
function on the right hand side in Fig. 1(a). We denote the
elementary fragmentation function by dhq in order to dis-

tinguish it from the total fragmentation function Dh
q deter-

mined in Sec. IV. We obtain the following expressions
from the diagrams in Figs. 17:

f�q ðxÞ ¼ 1

2
ð1þ ���qÞ3g2�

Z d4k

ð2�Þ4
� TrD½SFðkÞ�þSFðkÞ�5ðk6 � p6 �MÞ�5�
� �ðk� � p�xÞ�ððp� kÞ2 �M2Þ (13)

¼ 1

2
ð1þ ���qÞ6g2�

Z d2kT
ð2�Þ3

k2T þM2

½k2T þM2 �m2
�xð1� xÞ�2

(14)

d�q ðzÞ ¼ 1

2
ð1þ ���qÞg2� z

2

Z d4k

ð2�Þ4
� TrD½SFðkÞ�þSFðkÞ�5ðk6 � p6 �MÞ�5�
� �ðk� � p�=zÞ�ððp� kÞ2 �M2Þ (15)

�
¼ z

6
f�q

�
x ¼ 1

z

��
(16)

FIG. 1. Figure (a) depicts the cut diagram (left) and Feynman
diagram (right) for the distribution function f�q ðxÞ. Solid lines

denote the quark and dashed lines the pion. Here k� ¼ xp� and
the two quark lines with momentum k are connected by a �þ.
Figure (b) depicts the cut diagram for the fragmentation function
d�q ðzÞ. Here p� ¼ zk� and the two quark lines with momentum

k are connected by a �þ. This diagram refers to a frame where
pT ¼ 0 and the substitution given in Eq. (6) is performed in the
final transverse momentum integral.

6This is seen simply by using completeness in Eq. (1) and the
identity cþð0Þycþð!�Þ ¼ Tðcþð0Þycþð!�ÞÞ in the limit
!þ ! 0� �, which follows from causality.

7The expressions given in this section refer to the NJL model,
however they actually have the same form in any effective chiral
quark model with pointlike pion-quark vertex functions.
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¼ 1

2
ð1þ ���qÞzg2�

Z d2p?
ð2�Þ3

p2
? þM2z2

½p2
? þM2z2 þ ð1� zÞm2

��2
(17)

where TrD indicates a trace over Dirac indices only. The
Feynman propagator of a constituent quark with massM is
denoted by SF and g� is the pion-quark coupling constant.
In the NJL model g� is defined via the residue of the q �q
t-matrix at the pion pole, and can be expressed in terms of
the q �q bubble graph by

g�2
� ¼ �@��ðq2Þ

@q2

��������q2¼m2
�

;

where ��ðq2Þ ¼ 6i
Z d4k

ð2�Þ4 TrD½�5SFðkÞ�5SFðkþ qÞ�:
(18)

We use the isospin notations ð�u; �dÞ ¼ ð1;�1Þ and
ð��þ ; ��0 ; ���Þ ¼ ð1; 0;�1Þ. For the distribution function
in the physical region (0< x< 1) a factor �ðp� � k�Þ ¼
�ð1� xÞ has to be supplied in Eq. (13), which expresses
the fact that the intermediate antiquark in Fig. 1(a) has
positive energy. Similarly, for the fragmentation function a
factor �ðk� � p�Þ ¼ �ð1� zÞ has to be supplied in
Eq. (15), because the intermediate quark in Fig. 1(b) has
positive energy. To obtain Eq. (17) we made the substitu-
tion given in Eq. (6).

The DLY relation on this level, indicated in brackets as
Eq. (16), shows that Eq. (13) can be considered as a
generalized distribution function, which gives the physical
distribution function in the region 0< x< 1 and the frag-
mentation function in the region x ¼ 1=z > 1. The reason
why we indicate this relation only in brackets is that it is
violated if the integrals are regularized. For example, if we
use a sharp cut-off (�) for the transverse quark momentum
in Eq. (14), a strict application of the DLY relation would
mean that the transverse momentum of the produced pion
in Eq. (17) should be cut at z�, which is unacceptable. The
more physical procedure is to impose jkTj<� on Eq. (14)
and jp?j<� on Eq. (17), which breaks the DLY relation.
A similar breakdown of the DLY relation occurs in any
other sensible regularization scheme. A noticeable conse-
quence of this is that in the chiral limit the distribution
function of Eq. (14) becomes a constant, but the fragmen-
tation function of Eq. (17) is not linear in z, as the DLY
relation indicated in Eq. (16) would suggest.

The relations for the distribution function

Z 1

0
dxf�q ðxÞ ¼ 1

2
ð1þ ���qÞ; and

Z 1

0
dxxf�q ðxÞ ¼ 1

2
ð1þ ���qÞ � 12 ;

(19)

lead to the usual number and momentum sum rules. For the

elementary fragmentation function the following relation
is obtained from Eq. (17):

Z 1

0
dzd�q ðzÞ ¼ 1

3
ð1þ ���qÞð1� ZQÞ

)
Z 1

0
dz
X
��

d�q ðzÞ ¼ 1� ZQ; (20)

where ZQ is the residue of the quark propagator in the

presence of the pion cloud. It is expressed in terms of the

renormalized quark self-energy �ð�Þ
Q ðkÞ of Fig. 2 as

1� ZQ ¼ �
�@�ð�Þ

Q

@k6
�
k6 ¼M

¼ � M

k�

�
�uQðkÞ

@�ð�Þ
Q

@kþ
uQðkÞ

�

¼ 3

2
g2�

Z 1

0
zdz

Z d2p?
ð2�Þ3

� p2
? þM2z2

½p2
? þM2z2 þ ð1� zÞm2

��2
; (21)

where uQ is the quark spinor ( �uQuQ ¼ 1). Because ZQ is

interpreted as the probability to find a bare constituent
quark without the pion cloud, Eq. (20) indicates that the
elementary fragmentation function is normalized to the
number of pions per quark. This is expected from our
general discussions in Sec. II and will be elucidated further
below. Because typical values of ZQ in models based on

constituent quarks are between 0.8 and 0.9, we see from
Eq. (20) that the momentum sum rule

R
1
0 dzz

P
��
d�q ðzÞwill

be much smaller than typical empirical values. For ex-
ample, the NLO analysis of Ref. [11] found a momentum
sum of ’ 0:74. From this we can anticipate that the ele-
mentary fragmentation functions, d�q , will be very small

compared to the empirical ones (see Sec. V).
In order to confirm that this does not mean that momen-

tum conservation is violated, we also give the expressions
for the distribution function of a quark q inside a parent
quarkQ and for the fragmentation function of q ! Q. The

operator definitions of these functions [fQq ðxÞ and DQ
q ðzÞ]

are exactly the same as in Eqs. (1) and (2) with the replace-
ment h ! Q, where the state jpðQÞi refers to fixed flavor,
spin, and color (c.f. the comments in footnote 3). Again we

will use the symbol dQq to denote the elementary fragmen-
tation process. The relevant cut diagrams are shown in

FIG. 2. The quark self-energy, �ð�Þ
Q ðkÞ ¼

�3ig2�
R d4p

ð2�Þ4 �5SFðk� pÞ�5�FðpÞ, where �F is the Feynman

propagator of the pion.
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Fig. 3 and a straightforward calculation, following the rules
already indicated in Eqs. (13) and (15), gives8

fQq ðxÞ ¼ ZQ�ðx� 1Þ�q;Q þ
�
1

2
� �q�Q

6

�
3

2
g2�ð1� xÞ

�
Z d2kT

ð2�Þ3
k2T þM2ð1� xÞ2

½k2T þM2ð1� xÞ2 þ xm2
��2

; (22)

dQq ðzÞ ¼ 1

6
ZQ�ðz� 1Þ�q;Q þ 1

6

�
1

2
� �q�Q

6

�
3

2
g2�ð1� zÞ

�
Z d2p?

ð2�Þ3
p2
? þM2ð1� zÞ2

½p2
? þM2ð1� zÞ2 þ zm2

��2
: (23)

In accordance with Eq. (8) these relations show that

dQq ðzÞ ¼ 1
6f

Q
q ðzÞ ¼ 1

6f
q
QðzÞ: (24)

Therefore the two quantities in Eqs. (22) and (23) describe
essentially the same object, namely, the splitting function
of a quark to another quark, which also includes a ‘‘non-
splitting’’ term proportional to ZQ. The normalization is

Z 1

0
dz6

X
�Q

dQq ðzÞ ¼ ZQ þ ð1� ZQÞ ¼ 1; (25)

where the factor 6 represents the summation over the spin
and color of Q. As expected, the second term in Eq. (23)
can be obtained from the elementary q ! � fragmentation
function expressed in Eq. (17), via the substitutions z !
1� z and �� ! ð�q � �QÞ=2. This directly leads to mo-

mentum conservation for the fragmentation of q into either
Q or � [see Eq. (29)].
This connection between splitting functions can also be

viewed another way: The second term in Eq. (22), which
describes the distribution of q inside Q with a pion specta-
tor, suggests that via the substitutions �q=2 ! �Q=2� ��
and x ! 1� xwe obtain the distribution function of a pion
inside the quark Q, namely

fQ� ðxÞ ¼ 1

2
ð1þ ���QÞg2�x

Z d2kT
ð2�Þ3

� k2T þM2x2

½k2T þM2x2 þ ð1� xÞm2
��2

: (26)

Comparison with Eq. (17) gives d�q ðzÞ ¼ fq�ðzÞ, in accor-

dance with Eq. (8). This relation further elucidates the
interpretation of the normalization given in Eq. (20) as
the number of pions per quark, namely

Z 1

0
dz
X
��

d�q ðzÞ ¼
Z 1

0
dz
X
��

fq�ðzÞ ¼ 1� ZQ: (27)

Finally, we write down the momentum sum rules for the
elementary splitting functions. In terms of the distribution
functions we have

Z 1

0
dxx

�X
�q

fQq ðxÞ þ
X
��

fQ� ðxÞ
�

¼ ZQ þ
Z 1

0
dxx

X
��

fQ� ð1� xÞ þ
Z 1

0
dxx

X
��

fQ� ðxÞ ¼ 1;

(28)

where in the second equality we used x ! 1� x and
Eq. (27). In terms of the fragmentation functions Eq. (28)
becomes

Z 1

0
dzz

�
6
X
�Q

dQq ðzÞ þ
X
��

d�q ðzÞ
�
¼ 1: (29)

In reference to the form of Eq. (23), we have the following
simple interpretation of the momentum sum rule of
Eq. (29): Because ZQ is the probability that the initial

quark q does not fragment at all, the fraction ZQ of the

momentum stays with the initial quark. The remaining
fraction (1� ZQ) is shared among the quark remainder

and the produced pion, that is, the first and second terms in
Eq. (29).
Although a description of fragmentation functions using

only the elementary fragmentation processes does not

FIG. 3. Figure (a) depicts the cut diagram (left) and Feynman
diagram (right) for the loop term in fQq ðxÞ of Eq. (22). Here k� ¼
xp� and the two quark lines with momentum k are connected by
a �þ. Figure (b) depicts the cut diagram for the loop term in
dQq ðzÞ of Eq. (23). Here p� ¼ zk� and the two quark lines with
momentum k are connected by a �þ. This diagram refers to a
frame where pT ¼ 0 and the substitution in Eq. (6) is performed
in the final transverse momentum integral.

8The tree level terms proportional to ZQ in Eqs. (22) and (23)
come from the vacuum state in the sum over n in
Eqs. (1) and (2), which contributes for the case where pðhÞ is
a quark. Using c ¼ ffiffiffiffiffiffiffi

ZQ

p
ĉ , where ĉ is the renormalized quark

field with unit pole residue of the propagator, gives the ZQ terms
in Eqs. (22) and (23). Note, in the loop terms all factors ZQ of the

propagators cancel. We also note that the loop terms in fQq ðxÞ and
dQq ðzÞ formally satisfy the DLY relation, that is dQq;loopðzÞ ¼ð�z=6ÞfQq;loopðx ¼ 1=zÞ, however it is violated after
regularization.
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violate any conservation law, it is completely inadequate
for the following reasons: First, there is a large probability
(ZQ) that the initial quark does not fragment. Second, if it

does fragment the momentum fraction 1� ZQ is shared

between the quark remainder and the pion. Both points are
in contradiction to the usual assumption of complete ha-
dronization, which is expressed by the momentum sum
rule of Eq. (10).

IV. GENERALIZED PRODUCTANSATZ FOR
QUARK CASCADES

From the previous section, it is clear that we have to
consider the possibility that the fragmenting quark pro-
duces a cascade of mesons. A simple model to describe
cascades is the quark jet-model of Field and Feynman [19].
However, the product ansatz used in this model assumes
from the outset that the probability for fragmentation in
each elementary process is 100%, and that the quark
produces an infinite number of mesons. Because these
assumptions are inconsistent with our present effective
quark theory, we will first introduce a generalized product
ansatz, then explain its physical significance and its rela-
tion to the original quark jet-model.

We assume that the maximum number of mesons which
can be produced by the fragmenting quark is N. We then
consider a process where the initial quark with light-cone
momentum k� � W0 (which we will simply call the mo-
mentum in the following) goes through a sequence of
momenta W0 � W1 � W2 � � � � � WN , and introduce
the momentum ratios

�n ¼ Wn

Wn�1

; n ¼ 1; . . .N: (30)

Our product ansatz for the fragmentation function, which
we will motivate shortly, is

D�
q ðzÞ ¼

XN
m¼1

Z 1

0
d�1

Z 1

0
d�2 . . .

Z 1

0
d�N

�X
QN

6dQ1
q ð�1Þ � 6dQ2

Q1
ð�2Þ � � � 6dQN

QN�1
ð�NÞ

� �ðz� zmÞ�ð��; ð�Qm�1
� �Qm

Þ=2Þ: (31)

Here the functions dQ
0

Q ð�Þ are our elementary Q ! Q0

splitting functions of Eq. (23), which represent the proba-
bility that a quark of flavor Q makes a transition to the
quark Q0, leaving the momentum fraction � to Q0. A sum
over repeated flavor indices is implied in Eq. (31); a flavor
sum over the quark remainder (QN) is included; for the
case N ¼ 1 we define Q0 � q; and the symbol �ði; jÞ
denotes the Kronecker delta. The factor 6 which multiplies
each elementary splitting function comes from the sum
over spin and color. The delta function in Eq. (31) selects a
meson, which is produced in the mth step with momentum

fraction zm of the initial quark:

zm ¼ Wm�1 �Wm

W0

¼ �1 � �2 � � ��m�1 � ð1� �mÞ;

where m> 1; and z1 ¼ 1� �1:

(32)

Because the pion has a mass we will exclude the unphys-
ical case of z ¼ 0, that is, whenever a pion is produced in
the mth step we will assume that �m � 1 in Eq. (32).
We will write the q ! Q splitting function of Eq. (23),

including the spin-color factor 6, in the form

6dQq ðzÞ ¼ ZQ�ðz� 1Þ�q;Q þ FQ
q ðzÞ; (33)

where

FQ
q ðzÞ ¼

�
1

2
� �q�Q

6

�
FðzÞ; and

FðzÞ ¼ 3

2
g2�ð1� zÞ

Z d2p?
ð2�Þ3

p2
? þM2ð1� zÞ2

½p2
?þM2ð1� zÞ2 þ zm2

��2
:

(34)

The function F satisfies the normalization [see Eq. (25)]

X
Q

Z 1

0
dzFQ

q ðzÞ ¼
Z 1

0
dzFðzÞ ¼ 1� ZQ: (35)

For the case N ¼ 1 it is easy to see that Eq. (31) reduces to
the elementary fragmentation function of Eq. (17), namely

D�
q ðzÞ !N¼1

FQ
q ð1� zÞj�Q¼�q�2�� ¼ 1

3ð1þ �q��ÞFð1� zÞ
¼ d�q ðzÞ: (36)

In order to illustrate the physical content of the ansatz
expressed by Eq. (31) we rewrite it identically as follows:
Noting that each factor of the product in Eq. (31) consists
of the two terms in Eq. (33), it is easy to see that all
products with the same number (call it k) of F’s and (N �
k) number of ZQ ’s make the same contribution to D�

q ðzÞ.
Therefore, we can introduce an ordering of the �’s in
Eq. (31). That is, take the first k �’s not equal to one
(�1; �2; . . .�k � 1), and the remaining �’s equal to one
(�kþ1; �kþ2; . . .�N ¼ 1), multiply by the combinatoric
factor NCk and perform a sum over k. For some fixed k,
only terms with m � k will contribute to the sum in
Eq. (31), because zm of Eq. (32) must be nonzero.9 Then
Eq. (31) is rewritten identically as

9As explained earlier, we only consider the case z > 0.
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D�
q ðzÞ ¼

XN
m¼1

XN
k¼m

PðkÞ
Z 1

0
d�1

Z 1

0
d�2 . . .

Z 1

0
d�k

�X
Qk

F̂Q1
q ð�1ÞF̂Q2

Q1
ð�2Þ . . . F̂Qk

Qk�1
ð�kÞ�ðz� zmÞ

� �ð��; ð�Qm�1
� �Qm

Þ=2Þ;

� XN
m¼1

D�
q;ðmÞðzÞ; (37)

which is expressed graphically in Fig. 4. The binomial
distribution

PðkÞ ¼ N
k

� �
ZN�k
Q ð1� ZQÞk; (38)

is the probability of producing kmesons out of a maximum
of N mesons and satisfies the normalization condition

XN
k¼0

PðkÞ ¼ 1: (39)

In Eq. (37) we defined the renormalized function F̂Q
q �

FQ
q =ð1� ZQÞ, that is [see Eqs. (34) and (35)]

F̂ Q
q ðzÞ ¼

�
1

2
� �q�Q

6

�
F̂ðzÞ; where F̂ðzÞ ¼ FðzÞ

1� ZQ

;

(40)

and Z 1

0
dz
X
Q

F̂Q
q ðzÞ ¼

Z 1

0
dzF̂ðzÞ ¼ 1: (41)

The physical interpretation of Eq. (37) is as follows:
(i) PðkÞ is the probability that k mesons out of a maxi-

mum of N mesons are produced.

(ii) F̂Q0
Q ð�Þ is the probability density that, if a meson is

emitted from the quarkQ, the momentum fraction�
is left to the remaining quark Q0.

(iii) The product F̂ð�1Þ � F̂ð�2Þ . . . F̂ð�kÞ is the proba-
bility density that, if k mesons are produced, each
meson carries its momentum fraction zm (m ¼

1; . . . k) of the original quark, where zm is given
by Eq. (32).

(iv) D�
q;ðmÞðzÞ is the probability density that the mth

meson has the momentum fraction z of the original
quark. This implies that at least m mesons must be
produced, which corresponds to the lower limit
(k ¼ m) of the summation in Eq. (37). The total
fragmentation function D�

q ðzÞ is then obtained by

summing the probability densities D�
q;ðmÞðzÞ.

We note that the original ansatz of Field and Feynman [19]
is an infinite product, which formally emerges from
Eq. (37) if we take the limit N ! 1 and assume that
PðkÞ is equal to zero for any finite k, that is, the probability
of the fragmenting quark to emit a finite number of mesons
is zero.
We now proceed with Eq. (37) in order to find the

integral equation satisfied by the fragmentation function.
For a fixed m, we can integrate over �mþ1; . . .�N by using

the normalization of F̂, that is,

Z 1

0
d�

X
Q

F̂Q
q ð�Þ ¼

Z 1

0
d�

Z 1

0
d�0X

Q0
F̂Q
q ð�ÞF̂Q0

Q ð�0Þ ¼ � � �

¼ 1: (42)

Then for all k � m the integrations over the same variables
�1; . . .�m remain, and the sum over k refers only to the
probabilities PðkÞ. Performing the shift �m ! 1� �m in
the integral over �m, we obtain

D�
qðmÞðzÞ ¼

�XN
k¼m

PðkÞ
�Z 1

0
d�1

Z 1

0
d�2 . . .

Z 1

0
d�m

� F̂Q1
q ð�1ÞF̂Q2

Q1
ð�2Þ . . . F̂Qm�1

Qm�2
ð�m�1Þd̂�Qm�1

ð�mÞ
� �ðz� �1�2 . . .�mÞ: (43)

The function d̂�q ðzÞ � d�q ðzÞ=ð1� ZQÞ is the renormalized

elementary q ! � fragmentation function, therefore [see
Eq. (36)]

FIG. 4. The left-hand side of the top figure is a graphical representation of Eq. (31) and the right-hand side of this figure represents
Eq. (37). The open circles denote the elementary q ! Q fragmentation function of Eq. (33) and the dots represent the second (meson
emission) term in Eq. (33). In the mth step, where a meson with momentum zW0 is selected by the delta function in Eq. (31), only the
meson emission term contributes. The term PðkÞ is the binomial distribution of Eq. (38) and the squares represent the renormalized
meson emission term, F̂Q

q ðzÞ, given by Eq. (40). The bottom figure is a graphical representation of Eq. (33).
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d̂ �
q ðzÞ ¼ F̂Q

q ð1� zÞj�Q¼�q�2�� ¼ 1
3ð1þ �q��ÞF̂ð1� zÞ:

(44)

From Eq. (43) it is easy to derive the following recursion
relation for m> 1:

D�
qðmÞðzÞ ¼ Rm½F̂Q

q 	D�
Qðm�1Þ�ðzÞ; where m> 1; (45)

while for m ¼ 1 we have

D�
qð1ÞðzÞ ¼ R1d̂

�
q ðzÞ: (46)

We have introduced the following ratios:

Rn ¼
P

N
k¼n PðkÞP

N
k¼n�1 PðkÞ

; where n ¼ 1; 2; . . .N; (47)

and used the following notation for the convolution of two
functions AðzÞ and BðzÞ:

½A 	 B�ðzÞ ¼
Z 1

0
dz1

Z 1

0
dz2�ðz� z1z2ÞAðz1ÞBðz2Þ: (48)

The total fragmentation function then becomes

D�
q ðzÞ ¼ R1d̂

�
q ðzÞ þ

XN
n¼2

Rn½F̂Q
q 	D�

Qðn�1Þ�ðzÞ; (49)

where D�
qðmÞ can be obtained from the recursion relation of

Eq. (45), with the starting value given by Eq. (46).
It is interesting at this stage to derive the sum rules for

the fragmentation function. A simple calculation using
Eq. (43) gives the following expressions for the multi-
plicity, the momentum sum and the isospin sum:

Z 1

0
dz
X
��

D�
q ðzÞ ¼

XN
k¼1

kPðkÞ ¼ Nð1� ZQÞ; (50)

Z 1

0
dz
X
��

zD�
q ðzÞ ¼ 1� XN

k¼0

PðkÞhzF̂ik

¼ 1� ðZQ þ ð1� ZQÞhzF̂iÞN; (51)

Z 1

0
dz
X
��

��D
�
q ðzÞ ¼

�q
2

�
1� XN

k¼0

PðkÞ
�
� 1

3

�
k
�

¼ �q
2

�
1�

�
ZQ � 1

3
ð1� ZQÞ

�
N
�
;

(52)

where hAi � R
1
0 dzAðzÞ. These expressions can be under-

stood as follows: If kmesons are produced with probability
PðkÞ, then Eq. (50) is simply the mean number of mesons;

the quantity PðkÞhzF̂ik in Eq. (51) is the mean momentum
fraction left to the quark remainder; and the quantity
PðkÞð�1=3Þk in Eq. (52) is the mean isospin fraction left
to the quark remainder.

Equations (51) and (52) indicate that, in the present
model, it is not possible to transfer the total momentum
and isospin of the original quark to the mesons, if the
maximum number of mesons is finite. The momentum
and isospin sum rules given in Eqs. (10) and (11) are valid
only in the limit N ! 1. While this may indicate a con-
ceptual limitation of the jet-model, we note that in general,
the QCD-based empirical analysis of fragmentation func-
tions also leads to divergent multiplicities. Therefore, we
find it more important to satisfy the momentum and isospin
sum rules given in Eqs. (10) and (11) than to have finite
multiplicities, and therefore we take the limit N ! 1. The
results then become independent of the form of the distri-
bution PðkÞ, if the following condition is satisfied for the
ratios in Eq. (47):

Rn !N!1
1; for all n ¼ 1; 2; . . . (53)

In fact, it is well known that in the limit N ! 1 our
binomial distribution of Eq. (38) becomes a normalized
Gaussian distribution (normal distribution)

1ffiffiffiffiffiffiffiffi
2�c2

p e�ððk�k0Þ2=2c2Þ, with the same mean value k0 ¼ Nð1�
ZQÞ and variance c2 ¼ NZQð1� ZQÞ as the original bino-
mial distribution. The validity of Eq. (53) can then easily
be confirmed. In fact, any distribution which approaches a
normal distribution in the limit N ! 1 satisfies the con-
dition given in Eq. (53).10

Using Eq. (53), we see from Eq. (49) that our fragmen-
tation function satisfies essentially the same integral equa-
tion as in the original quark jet-model [19]:

D�
q ðzÞ ¼ d̂�q ðzÞ þ ½F̂Q

q 	D�
Q�ðzÞ; (54)

where the driving term is given by Eq. (44) and the integral
kernel by Eq. (40). We finally write down the equations
which we solve in the next section. Defining two functions
AðzÞ and BðzÞ by the isospin decomposition

D�
q ðzÞ � 1

3½AðzÞ þ �q��BðzÞ�; (55)

and using Eqs. (40) and (44), we find the following integral
equations for AðzÞ and BðzÞ from Eq. (54):

AðzÞ ¼ F̂ð1� zÞ þ
Z 1

z

dy

y
F̂

�
z

y

�
AðyÞ; (56)

10The fact that in the limit N ! 1 the binomial distribution
becomes a normal distribution is known as the Moivre-Laplace
theorem, which can be formulated rigorously in integral form
(‘‘weak convergence’’). The central limit theorem [31] is an
extension of the Moivre-Laplace theorem to general distributions
PðkÞ with mean value proportional to N and variance c2 / N.
This indicates that Eq. (53) is actually valid for a wide class of
distributions. Although our NJL-jet model ansatz of Eq. (31)
leads to the binomial distribution, in the limit N ! 1 the results
hold for a wide class of distributions.
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BðzÞ ¼ F̂ð1� zÞ � 1

3

Z 1

z

dy

y
F̂

�
z

y

�
BðyÞ; (57)

where F̂ðzÞ is obtained by renormalizing the function FðzÞ
in Eq. (34) to unity. Using Eq. (55), we obtain the following
expressions for the favored, unfavured, and neutral frag-
mentation functions:

D�þ
u ¼ D��

d ¼ D��
�u ¼ D�þ

�d
¼ 1

3ðAþ BÞ; (58)

D��
u ¼ D�þ

d ¼ D�þ
�u ¼ D��

�d
¼ 1

3ðA� BÞ; (59)

D�0

u ¼ D�0

d ¼ D�0

�u ¼ D�0

�d
¼ 1

3A: (60)

From the form of Eqs. (56) and (57) it is easily seen that
hzAi ¼ 1 and hBi ¼ 3=4, which leads to the momentum
and isospin sum rules of Eqs. (10) and (11). For large z,

both functions AðzÞ and BðzÞ approach F̂ð1� zÞ and there-
fore the unfavored fragmentation functions in Eq. (59) are
suppressed for large pion momenta.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present the numerical results for the
fragmentation function of Eq. (54) in the NJL-jet model.
For reference, we also give the results for the elementary
distribution function of Eq. (14). Because the application
of the NJL model to the calculation of the quark distribu-
tion functions in the pion has been explained in detail in
Ref. [22], we will not repeat the explanations of the model
here. For convenience, we will use the same regularization
scheme, namely, the invariant mass, or Lepage-Brodsky
(LB) [32] regularization scheme, with the same parameters
as in Ref. [22]. The LB scheme is suitable for regularizing
integrals in terms of light-cone variables [33] and in terms
of the usual variables it is equivalent to the familiar 3-
momentum cutoff scheme [22]. That is, if we denote the 3-
momentum cutoff by�3, which is fixed in the usual way by
reproducing the experimental pion decay constant, a
bubble-type loop integral with two intermediate particles
of mass M1 and M2 is regularized by cutting off their
invariant mass M12 according to

M12 � �12 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þM2
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þM2
2

q
: (61)

In terms of light-cone variables, if we associate with par-
ticle 1 the transverse momentum qT and the momentum
fraction y of the total P� momentum, and to particle 2 we
associate the momentum fraction (1� y) and transverse
momentum �qT , then their invariant mass squared is

M2
12 ¼

M2
1 þ q2T
y

þM2
2 þ q2T
1� y

: (62)

The requirement M12 � �12 then leads to a y-dependent
transverse cutoff: q2T � �2

12yð1� yÞ �M2
1ð1� yÞ �M2

2y.
This condition also restricts the values of y from below and

above (0< y1 � y � y2 < 1). For example, for the inte-
gral in Eq. (17) of the elementary q ! � fragmentation
function we have M1 ¼ m� and M2 ¼ M, for the integral
in Eq. (23) of the elementary q ! Q fragmentation func-
tion we haveM1 ¼ M andM2 ¼ m� and for the integral in
Eq. (14) of the distribution function we have M1 ¼ M2 ¼
M. We also note that this regularization scheme does not
violate the sum rules.
Following Ref. [22] we use a constituent quark mass of

M ¼ 300 MeV. Then �3 ¼ 670 MeV and the invariant
mass cutoffs for the ð�; qÞ and ðq; qÞ systems are
1.42 GeV and 1.47 GeV, respectively. We did not inves-
tigate whether other parameter sets or other regularization
schemes lead to a better description of the fragmentation
functions.
As usual, we will associate a low energy renormalization

scale (Q2
0) to our NJL results and evolve them in Q2 by

using the QCD evolution equations. For the evolution of
the fragmentation functions we limit ourselves to LO. In
this case it has been verified [17] that a formal application
of the DLY relation, see Eq. (12), leads to the correct
connection between the evolution kernels of the distribu-
tion and fragmentation functions (see Appendix B).
However, the DLY relation is not actually used to relate
the distribution and fragmentation functions themselves.
We therefore use the Q2 evolution code of Ref. [34] at LO
for the distribution functions, and perform the transforma-
tion of the kernels as explained in Appendix B to obtain the
LO evolution of the fragmentation functions.11

In Fig. 5(a) we recapitulate the results of Fig. 4 of
Ref. [22], and show the minus-type (valence, q� �q)
u-quark distribution in a �þ and in Fig. 5(b) we give the
result for the plus-type (qþ �q) u-quark distribution in a
�þ. The dotted line shows the NJL model result based on
Eq. (14), the solid lines illustrate the distribution obtained
by associating a low energy scale of Q2

0 ¼ 0:18 GeV2 to

the NJL result and performing the Q2 evolution at LO and
NLO to Q2 ¼ 4 GeV2. The dashed line shows the empiri-
cal NLO parametrizations of Ref. [8]. We see that the LO
and NLO results show quantitative differences because of
the rather low value assumed for Q2

0, although the qualita-

tive behaviors are similar.
In Figs. 6 we present the corresponding results for the

minus-type and plus-type fragmentation functions for u !
�þ. The NJL-jet result, given by the dotted line, is the
solution of the integral equation in Eq. (54). Therefore the
dotted line in Figs. 6(a) and 6(b) show the functions 2

3BðzÞ
and 2

3AðzÞ, respectively, [see Eqs. (58) and (59)]. In order to
see the importance of the cascade processes, we also plot

11The DLY based relation between the evolution kernels for
distribution and fragmentation functions is violated at NLO [17].
Unfortunately, a NLO evolution code for the fragmentation
functions is not yet publicly available. In this paper we do not
attempt a quantitative comparison with the empirical functions,
therefore we leave the NLO calculation for future work.
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the driving term of the integral equation, namely 2
3 F̂ð1�

zÞ, as the upper dash-dotted line, which is the renormalized
elementary fragmentation function. As the lower dash-
dotted line we illustrate the elementary fragmentation
function, namely 2

3Fð1� zÞ. The result of the evolution

of the dotted line (Q2
0 ¼ 0:18 GeV2) to Q2 ¼ 4 GeV2 at

LO is shown by the solid line and the dashed line shows the
empirical NLO result of Ref. [11], evolved to Q2 ¼
4 GeV2.

Several important points are illustrated in Figs. 6. First,
as anticipated in Sec. III, the elementary fragmentation
function (lower dash-dotted line) is very small. Second,
Fig. 6(b) shows the tremendous enhancement at intermedi-
ate and small z of the plus-type fragmentation function

caused by the cascade processes [iterations of the integral
equation of Eq. (54)], while for the minus-type fragmenta-
tion function of Fig. 6(a) a small reduction is seen. Third,
the calculated result shown by the solid line has the correct
order of magnitude for intermediate and large z, when
compared with the empirical function. This point, which
reflects the fact that our model satisfies the momentum sum
rule, is very important, because effective quark model
calculations completed hitherto only considered the ele-
mentary fragmentation functions and introduced some ad
hoc parameters (like normalization constants) to obtain the
correct order of magnitude. Quantitatively, Figs. 6 indicate
that our fragmentation functions are too big at large z and
too small at smaller z. This is natural for the following

FIG. 5 (color online). Figure (a) depicts the minus-type (valence) quark distribution xðf�þ
u ðxÞ � f�

þ
�u ðxÞÞ and figure (b) illustrates the

plus-type quark distribution xðf�þ
u ðxÞ þ f�

þ
�u ðxÞÞ of the u-quark in a �þ. The dotted line is the NJL model result, used as input (Q2

0 ¼
0:18 GeV2) for the Q2 evolution. The solid line labeled by LO (NLO) is the result of LO (NLO) evolution to Q2 ¼ 4 GeV2. The
dashed line is the empirical NLO result of Ref. [8] at Q2 ¼ 4 GeV2.

FIG. 6 (color online). Figure (a) depicts the minus-type fragmentation function zðD�þ
u ðzÞ �D�þ

�u ðzÞÞ and figure (b) illustrates the
plus-type fragmentation function zðD�þ

u ðzÞ þD�þ
�u ðzÞÞ for u ! �þ. The dotted line is the NJL-jet model result, used as input (Q2

0 ¼
0:18 GeV2) for the Q2 evolution. The lower dash-dotted line is the elementary fragmentation function [d�q of Eq. (17)] and the upper

dash-dotted line is the renormalized elementary fragmentation function [d̂�q of Eq. (44)], which is the driving term of the integral

equation expressed in Eq. (54). The solid line is the result after LO evolution to Q2 ¼ 4 GeV2. The dashed line is the empirical NLO
result of Ref. [11], evolved to Q2 ¼ 4 GeV2.
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reasons: First, we can expect that a NLO calculation will
lead to a softening of the fragmentation functions. Second,
some of the observed pions are secondary ones, which
come from the decay of primary 	 and ! mesons. Third,
the coupling to other fragmentation channels, in particular,
the nucleon, antinucleon and kaon, will transfer some
amount of the hard quark momentum to these other had-
rons. Also, one should not forget that the empirical frag-
mentation functions have very large uncertainties, which
are not indicated in our figures. Nevertheless, Figs. 6 in-
dicate that the present NJL-jet model provides a reasonable
starting point for the description of fragmentation
functions.

Figure 7(a) shows the results for the favored fragmenta-
tion function of Eq. (58) and Fig. 7(b) shows the unfavored
fragmentation function of Eq. (59). Note, these figures
correspond to half the sum and half the difference of the
curves in Figs. 6. The upper dash-dotted line in Fig. 7(a)

shows the driving term, 23 F̂ð1� zÞ, of the integral equation
in Eq. (54), and the lower dash-dotted line shows the
elementary fragmentation function, 2

3Fð1� zÞ. For the

unfavored case these two functions are zero. Both figures
demonstrate the importance of cascade processes in the
present NJL-jet model.

VI. SUMMARYAND CONCLUSIONS

In this paper we used the NJL model as an effective
quark theory to study the simplest fragmentation function,
namely, the fragmentation of unpolarized quarks to pions.
Our aim was to develop a framework which satisfies the
momentum and isospin sum rules in a natural way, without
the introduction of ad hoc parameters. This framework
should also give fragmentation functions that have the
correct order of magnitude at intermediate and large z.

We explained in detail, that for this purpose, the simplest
approximation where a truncation is made to the one-quark
spectator state, in the defining relation given by Eq. (2), is
completely inadequate. Although this approximation does
not violate any conservation law, it gives very small frag-
mentation functions; because the probability for the ele-
mentary fragmentation process is small in effective
theories based on constituent quarks and the quark remain-
der can carry an appreciable amount of momentum.
In order to overcome these difficulties we followed the

idea of the quark jet-model and made a generalized product
ansatz to describe the cascade processes in the NJL model.
We explained that this ansatz corresponds to a binomial
distribution for the number of mesons emitted from the
quark. However, in the limit that the maximum number of
mesons becomes very large the results are independent of
the form of this distribution function. Our formulation thus
represents an extension of the original quark jet-model,
which assumed an infinite number of mesons from the
outset. We have shown in detail that this NJL-jet model
describes fragmentation processes where 100% of the ini-
tial quark light-cone momentum is transferred to mesons.
The momentum sum rule of Eq. (10), which is assumed
valid in all QCD-based empirical fits, is then satisfied
automatically without introducing any new parameters
into the theory. We have also shown that the isospin sum
rule of Eq. (11) is naturally satisfied in this approach.
The comparison with the empirical fragmentation func-

tions shows that our calculated functions have the correct
order of magnitude for intermediate and large z. We high-
lighted that a straightforward extension to include the NLO
terms in the Q2 evolution and to include the effect of
primary 	 and!mesons, as well as fragmentation to other
hadronic channels, will improve the description.
Therefore, we can conclude that our NJL-jet model pro-

FIG. 7 (color online). Figure (a) depicts the favored fragmentation function zD�þ
u ðzÞ and the figure (b) illustrates the unfavored

fragmentation function zD�þ
�u ðzÞ. In figure (a) the lower dash-dotted line is the elementary fragmentation function (d�q of Eq. (17)) and

the upper dash-dotted line is the renormalized elementary fragmentation function [d̂�q of Eq. (44)], which is the driving term of the

integral equation in Eq. (54). Note, these functions are zero for the unfavored case. The solid line is the result after LO evolution to
Q2 ¼ 4 GeV2. The dashed line is the empirical NLO result of Ref. [11], evolved to Q2 ¼ 4 GeV2.
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vides a reasonable framework to analyze fragmentation
functions in an effective quark theory.

For future work in this direction it is important to derive
the jet-model type product ansatz from field theory. The
rainbow-ladder scheme for the quark self-energy may pro-
vide a suitable framework for this purpose. An attempt can
then be made to use this truncation scheme to consistently
describe the cascade processes for the fragmentation func-
tions and to include the contribution from the hadron cloud
around the quark for the distribution functions. However, it
is important to bear in mind that a truncation schemewhich
works well for fragmentation processes may not be suitable
for the distribution functions and vice versa. To establish a
scheme which respects the sum rules and which gives a
satisfactory description of both types of processes is an
important task for future research.
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APPENDIX A: PROOF OF THE DLY RELATION

In this appendix we will prove the DLY relation ex-
pressed in Eq. (12) in two independent ways. First, we
follow the original derivation of Ref. [16] in terms of the
hadronic tensors and second we start from the operator
definitions given in Eqs. (1) and (2). In order to illustrate
the spinor algebra the formulae in this Appendix refer to
the case where h is a proton, however it is trivial to modify
the expressions for the case where h is a pion.

1. General crossing relations

We consider the following Green function

�Ma

ðp; pnÞ ¼

Z
d4xe�ip�xhpnjTðOað0Þ ��
ðxÞÞj0i; (A1)

where �
ðxÞ is an interpolating field for the nucleon

and Oa is another local field operator. We also define

the N-amputated Green function by �Ma

ðp; pnÞ ¼

��a
�ðp; pnÞiGN;�
ðpÞ, where GN is the nucleon propagator.

From the spectral representation of Eq. (A1) or from the
familiar reduction formalism, we can derive the relations

hpnjOajpi ¼ ��aðp; pnÞ
ffiffiffiffiffiffiffiffiffiffi
2MN

p
uNðpsÞ; (A2)

h �p; pnjOaj0i ¼ ð�Þ ��að�p; pnÞ
ffiffiffiffiffiffiffiffiffiffi
2MN

p
vNðpsÞ: (A3)

In Eq. (A3) the sign is (þ ) ifO is a fermion type operator
and (� ) if it is a boson type operator. Also, �p denotes an
antinucleon with 4-momentum p� ¼ ðENðpÞ;pÞ. The nu-
cleon spinors are denoted by uN and vN. Our covariant
normalization implies the following matrix elements of the
nucleon field operator: h0j�ð0Þjpi ¼ ffiffiffiffiffiffiffiffiffiffi

2MN

p
uNðpsÞ and

h �pj�ð0Þj0i ¼ ffiffiffiffiffiffiffiffiffiffi
2MN

p
vNðpsÞ. Equations (A2) and (A3)

are the basic crossing relations which will be used in the
following.

2. Comparison of hadronic tensors

Here we use the above crossing relations to find the
connection between the hadronic tensors (spin-
independent parts only) for the processes eh ! e0X and
eþe� ! hX, where h denotes a hadron (proton) [4]:

W��
h ðp; qÞ ¼ 1

4�

X̂
n
ð2�Þ4�4ðqþ p� pnÞhpjJ�jpni

� hpnjJ�jpi
¼
�
�g�� þ q�q�

q2

�
Fh
1ðx; q2Þ

þ 1

p � q
�
p� � p � q

q2
q�
��
p� � p � q

q2
q�
�

� Fh
2 ðx; q2Þ; (A4)

�W��
h ðp; qÞ ¼ 1

4�

X̂
n
ð2�Þ4�4ðq� p� pnÞh0jJ�jp; �pni

� hp; �pnjJ�j0i
¼
�
�g�� þ q�q�

q2

�
�Fh
1ðz; q2Þ

þ 1

p � q
�
p� � p � q

q2
q�
��
p� � p � q

q2
q�
�

� �Fh
2ðz; q2Þ: (A5)

Here jpi is the state of the hadron h with momentum p and

we use x ¼ �q2

2p�q and z ¼ 2p�q
q2

¼ � 1
x . We also definedP̂

n ¼
P

n

R d4pn

ð2�Þ3 �ðp2
n �M2

nÞ�ðpn0Þ, where Mn is the in-

variant mass of the state n. Using Eq. (A2) and its complex
conjugate for the current operator J�:

hpnjJ�jpi ¼
ffiffiffiffiffiffiffiffiffiffi
2MN

p
���ðp; pnÞuNðpsÞ; (A6)

hpjJ�jpni ¼
ffiffiffiffiffiffiffiffiffiffi
2MN

p
�uNðpsÞ��ðp; pnÞ; (A7)

where ��

 ¼ ð�0

��y�Þ
, that is, ��� ¼ ��y�0. We insert

these relations into Eq. (A4). Since we consider the spin-
independent part only, we can sum over the nucleon spin s

and divide by 2, using
P

suNðpsÞ �uNðpsÞ ¼ p6 þMN

2MN
. This

gives
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4�W��
h ðp; qÞ ¼ 1

2

X̂
n
ð2�Þ4�4ðqþ p� pnÞ

� Tr½ðp6 þMNÞ��ðp; pnÞ ���ðp; pnÞ�:
(A8)

For the hadronic tensor in Eq. (A5), we first use charge
conjugation and then Eq. (A3) and its complex conjugate
for the current operator J�:

h0jJ�jp; �pni ¼ h0jC�1ðCJ�C�1ÞCjp; �pni
¼ h0jðCJ�C�1Þj �p; pni;¼ �h0jJ�j �p; pni
¼ ffiffiffiffiffiffiffiffiffiffi

2MN

p
�vNðpsÞ��ð�p; pnÞ;

(A9)

hp; �pnjJ�j0i ¼ �h �p; pnjJ�j0i
¼ ffiffiffiffiffiffiffiffiffiffi

2MN

p
���ð�p; pnÞvNðpsÞ: (A10)

We insert these relations into Eq. (A5), sum over the

nucleon spin s and divide by 2 using
P

svNðpsÞ �vNðpsÞ ¼
��p6 þMN

2MN
. This gives

4� �W
��
h ðp;qÞ ¼�1

2

X̂
n
ð2�Þ4�4ðq�p�pnÞ

�Tr½ð�p6 þMNÞ��ð�p;pnÞ ���ð�p;pnÞ�:
(A11)

By comparing Eqs. (A8) with (A11) we obtain the DLY
crossing relation for the hadronic tensors:

�W
��
h ðp; qÞ ¼ �W

��
h ð�p; qÞ; where sh ¼ 1

2: (A12)

The minus sign in Eq. (A12) comes from the Dirac algebra,
and for a spinless hadron the minus sign is changed to plus.
Equation (A12) implies the following relation between the
structure functions in Eqs. (A4) and (A5)12:

�F h
1ðz; q2Þ ¼ �Fh

1 ð�x; q2Þ ¼ �Fh
1

�
1

z
; q2

�
; (A13)

�F h
2ðz; q2Þ ¼ Fh

2 ð�x; q2Þ ¼ Fh
2

�
1

z
; q2

�
: (A14)

The well-known relation Fh
2 ðxÞ ¼ 2xFh

1 ðxÞ becomes, with
x ! �x and using the first equalities in Eqs. (A13) and
(A14):

�F h
2ðzÞ ¼ � 2

z
�Fh
1ðzÞ; (A15)

which also holds for spinless bosons.

The connection between the structure function �Fh
1 and

the fragmentation function Dh
qðzÞ in the Bjorken limit is as

follows: The cross section for the process eþe� ! hX is
[4]13

d�h

dz
¼ 2�2�z

q2
ð �Fh

1ðz; q2Þ þ
z

6
�Fh
2ðz; q2ÞÞ ¼

4

3

�2�z

q2
�Fh
1ðzÞ:
(A16)

Usually this is divided by the total cross section for
eþe� ! hadrons

�tot ¼ 4��2

q2
X
q

e2q � 4��2

3q2
R; (A17)

where
P

q refers to the quark flavor only. Then we obtain

1

�tot

d�h

dz
¼ 1

R
z �Fh

1ðzÞ: (A18)

This is compared to the original definition of the fragmen-
tation function [1]:

1

�tot

d�h

dz
� 1

R
3
X
q

e2qðDh
qðzÞ þDh

�qðzÞÞ (A19)

to obtain

�F h
1ðzÞ ¼

3

z

X
q

e2qðDh
qðzÞ þDh

�qðzÞÞ: (A20)

Because we know how to express Fh
1 ðxÞ in the Bjorken

limit by the distribution functions fhqðxÞ, we obtain from

Eq. (A13):

�F h
1ðzÞ ¼ �Fh

1

�
1

z

�
¼ � 1

2

X
q

e2q

�
fhq

�
1

z

�
þ fh�q

�
1

z

��
: (A21)

Comparing (A20) and (A21) we obtain

Dh
qðzÞ ¼ � z

6
fhq

�
1

z

�
; where sh ¼ 1

2
; (A22)

and a similar result holds for the antiquarks. Equa-
tion (A22) expresses the DLY relation of Eq. (12) between
the distribution and fragmentation functions. For the case
of a spinless hadron the minus sign in Eq. (A22) becomes a
plus sign.

3. Comparing the operator definitions

Starting from the operator definitions given in Eqs. (1)
and (2), we obtain

12By relations like Eq. (A13) we mean the following: Take a
particular physical value of z for the ðeþ; e�Þ process (0< z <
1). Then the corresponding (unphysical) value of the Bjorken
variable for the ðe; e0Þ process is x ¼ 1=z and Eq. (A13) gives the
connection between the structure functions.

13We remind the reader that the symbol h denotes a particular
hadron with a specified spin direction, e.g., p " (although the spin
averaged cross section considered here does not depend on the
spin direction). Therefore, the cross section measured for the
case that the spin of the produced nucleon is not observed has an
additional factor of 2, which is not included in Eq. (A16).

ITO, BENTZ, CLOËT, THOMAS, AND YAZAKI PHYSICAL REVIEW D 80, 074008 (2009)

074008-14



fhqðxÞ ¼ 1

2

X̂
n
�ðp�x� p� þ pn�Þhpj �c jpni�þhpnjc jpi;

(A23)

Dh
qðzÞ ¼ z

6

1

2

X̂
n
�

�
p�
z

� p� � pn�
�

�hp; �pnj �c j0i�þh0jc jp; �pni: (A24)

For definiteness we consider again the case where h is a
proton. We use Oa ¼ c � in Eq. (A1), which gives

hpnjc jpi ¼ ��ðp; pnÞ
ffiffiffiffiffiffiffiffiffiffi
2MN

p
uNðpsÞ; (A25)

h �p; pnjc j0i ¼ ��ð�p; pnÞ
ffiffiffiffiffiffiffiffiffiffi
2MN

p
vNðpsÞ: (A26)

We insert Eq. (A25) and its complex conjugate into the
operator definition, Eq. (A23), and average over the nu-
cleon spin. This gives

fhqðxÞ ¼ 1

4

X̂
n
�ðp�x� p� þ pn�Þ

� Tr½ðp6 þMNÞ�ðp; pnÞ�þ ��ðp; pnÞ�: (A27)

For the fragmentation function in Eq. (A24), we use the
charge conjugation relations of the quark field operators

Cc �C�1 ¼ ðC�0Þ�
c y

 and C �c �C�1 ¼ c 
C
�, where

C ¼ i�2�0, to rewrite the matrix elements in Eq. (A24)
as follows:

h0jc �jp; �pni ¼ ðC�0Þ�
hpn; �pjc 
j0i
; (A28)

hp; �pnj �c �j0i ¼ h �p; pnjc 
j0iC
�: (A29)

Then we use C��C ¼ ð��ÞT and Eq. (A26) to write

hp; �pnj �c �j0i�þ
�
h0jc 
jp; �pni

¼ �vNðpsÞ½�ð�p; pnÞ�þ ��ð�p; pnÞ�vNðpsÞ � 2MN:

(A30)

Averaging over the nucleon spins we finally obtain

Dh
qðzÞ ¼ � z

6

1

4

X̂
n
�

�
p�
z

� p� � pn�
�

� Tr½ð�p6 þMNÞ ��ð�p; pnÞ�þ�ð�p; pnÞ�:
(A31)

Comparison of Eqs. (A27) and (A31) gives

Dh
qðzÞ ¼ � z

6
fhq

�
x ¼ 1

z

���������p!�p
; (A32)

where p ! �p means to reverse all 4 components of p�

and after this replacement p0 ¼ ENðpÞ> 0.

We now consider the property of the distribution func-
tion in Eq. (A27) under p� ! �p�. Expressing the sum-

mation
P̂

n in terms of light-cone momenta, the distribution
in Eq. (A27) can be written in the form

fhqðxÞ ¼ 1

4

X
n

Z d4k

ð2�Þ3
�ðp�ð1� xÞÞ
2p�ð1� xÞ �ðkþ � eNðpÞ

þ enðp� kÞÞ�ðk� � p�xÞ
� Tr½ðp6 þMNÞ�ðp; p� kÞ�þ ��ðp; p� kÞ�;

(A33)

where enðpnÞ ¼ p2
n?þM2

n

2pn�
and eNðpÞ ¼ p2

?þM2
N

2p�
. We then re-

place p� ! �p� and then k� ! �k� in the integral. This
gives

fhqðxÞjp!�p ¼ � 1

4

X
n

Z d4k

ð2�Þ3
�ðp�ðx� 1ÞÞ
2p�ð1� xÞ

� �ðkþ � eNðpÞ þ enðp� kÞÞ
� �ðk� � p�xÞ
� Tr½ð�p6 þMNÞ�ð�p;�pþ kÞ�þ

� ��ð�p;�pþ kÞ�: (A34)

Because the result of taking the trace in Eq. (A34) must be
the plus component of a Lorentz four vector constructed
from p� and k�, we have

Tr ½ð�p6 þMNÞ�ð�p;�pþ kÞ�þ ��ð�p;�pþ kÞ�
¼ �Tr½ðp6 þMNÞ�ðp; p� kÞ�þ ��ðp; p� kÞ�:

(A35)

If we use Eq. (A33) to define a function FðxÞ by fhqðxÞ ¼
�ð1� xÞFðxÞ, we obtain from Eqs. (A34) and (A35):
fhqðxÞjp!�p ¼ �ðx� 1ÞFðxÞ. From Eq. (A32) we then

obtain the connection between the distribution and the
fragmentation function as

fhqðxÞ ¼ �ð1� xÞFðxÞ; (A36)

Dh
qðzÞ ¼ ��ð1� zÞ z

6
F

�
1

z

�
: (A37)

Note, for spinless bosons there is no minus sign in
Eq. (A37). This result agrees with Eq. (A22) and would
suggest that fhq and Dh

q are essentially one and the same

function, defined in different regions of the variable.
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APPENDIX B: DLY TRANSFORMATION OF
EVOLUTION KERNELS

In this appendix we explain the DLY based relation
between the evolution kernels for distribution and frag-
mentation functions, which is known to be valid at LO [17].
Using Eq. (12), we consider the following transformation
of the quark and gluon distribution functions:

fhqðxÞ !
�
� z

6

�
fhq

�
x ¼ 1

z

�
; (B1)

fhgðxÞ !
�
� z

16

�
fhg

�
x ¼ 1

z

�
; (B2)

where the upper (lower) sign holds if h is a boson (fer-
mion). Using the well-known evolution equations at LO
[5], it is easy to derive the corresponding transformation of
the evolution kernels. For the minus-type (flavor nonsing-
let) combination q� �q, the kernel (Pqq) is unchanged. For

the flavor singlet combination,
PNf

i¼1 qi þ �qi, which cou-

ples to a gluon, the evolution kernel is transformed as
follows:

PqqðxÞ PqgðxÞ
PgqðxÞ PggðxÞ

� �
! PqqðzÞ 2NfPgqðzÞ

1
2Nf

PqgðzÞ PggðzÞ
 !

: (B3)

Here Nf ¼ 3 is the number of flavors used in the Q2

evolution equations. For reference, we summarize the
forms of the individual kernels below:

PqqðxÞ ¼ 4

3

�
1þ x2

ð1� xÞþ þ 3

2
�ðx� 1Þ

�
; (B4)

PqgðxÞ ¼ Nf½x2 þ ð1� xÞ2�; (B5)

PgqðxÞ ¼ 4

3

1þ ð1� xÞ2
x

; (B6)

PggðxÞ ¼ 6

�
x

ð1� xÞþ þ 1� x

x
þ xð1� xÞ

�

þ
�
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2
� Nf

3

�
�ð1� xÞ: (B7)
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