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We show that, within the seesaw mechanism, an almost decoupled right-handed (RH) neutrino species

NDM with massMDM * 100 GeV can play the role of dark matter (DM). The NDM’s can be produced from

nonadiabatic conversions of thermalized (source) RH neutrinos with mass MS lower than MDM. This is

possible if a nonrenormalizable operator is added to the minimal type I seesaw Lagrangian. The observed

DM abundance can be reproduced for MDM�
1=4 � 10�13�eff�, where �eff is a very high energy new

physics scale, � � ðMDM �MSÞ=MDM, and � & 1 is a parameter determined by the RH neutrino

couplings.
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I. INTRODUCTION

The results from neutrino oscillation experiments repre-
sent a success for the seesaw mechanism [1], the simplest
way to understand why neutrinos are massive, yet so light
compared to all other massive particles in the standard
model (SM).

Indeed, within the seesaw, the atmospheric and the solar
neutrino mass scales point to a high energy scale
�1015 GeV compatible with grand unification and at the
same time one can understand the observed large mixing
angles. Moreover, neutrino oscillations support leptogene-
sis [2], an attractive way to explain the observed baryon
asymmetry of the Universe and a direct consequence of the
seesaw mechanism.

Despite the great progress made in recent years in deriv-
ing, especially from leptogenesis [3], interesting con-
straints on those seesaw parameters that escape the low
energy experiments investigation, we still lack a way to
probe the seesaw mechanism. The main obstacle is that, for
natural choices of the seesaw parameters, the heavy right-
handed (RH) neutrinos, predicted by the seesaw, are not
expected to be detected at colliders, because they would be
either too heavy or too weakly coupled. Moreover, they
usually decay very fast, disappearing from the cosmologi-
cal lore. If leptogenesis is the right explanation of the
observed matter-antimatter asymmetry of the Universe,
produced from the CP violating decays of the RH neutri-
nos, this would be the only relic trace left over at present.

However, in this paper, we show that a weakly coupled
RH neutrino species can play the role of cold dark matter
(DM). The scenario we present differs significantly from
the one proposed in [4], where the lightest RH neutrino
with a OðKeVÞ mass plays the role of warm DM, and
neutrino Yukawa couplings are much smaller compared
to charged leptons’ and quarks’ Yukawa couplings. In our
model, we assume that all RH neutrinos are heavy, with the

lightest RH neutrino mass not lower than the electroweak
scale. In this way, the neutrino Yukawa couplings can be of
the same order as the other massive fermions.

II. FAILURE OF THE MINIMAL PICTURE

The (type I) seesaw mechanism [1] is a minimal way to
explain neutrino masses. The SM Lagrangian is extended
adding a Yukawa interaction term between three RH neu-
trinos �R and the three left-handed doublets l via a Higgs
doublet � and a Majorana mass term M,

�LYþM ¼ �lL�h�R � 1

2
��c
RM�R þ H:c:; (1)

where h is the matrix of the neutrino Yukawa couplings.
After electroweak symmetry breaking, induced by the

Higgs vacuum expectation value v, the Yukawa interaction
generates a Dirac mass termmD ¼ hv. In the seesaw limit,
M � mD, the spectrum of mass eigenstates splits into
three light neutrinos �i with masses given by the seesaw
formula,

diag ðm1; m2; m3Þ ¼ �UymD

1

M
mT

DU
?; (2)

whereU is the leptonic mixing matrix, and into three heavy
neutrinosNi with massesM1 � M2 � M3. These coincide,
with very good approximation, with the eigenvalues of the
Majorana mass matrix.
Neutrino oscillation experiments measure two neutrino

mass-squared differences. For normal schemes one has
m2

3 �m2
2 ¼ �m2

atm and m2
2 �m2

1 ¼ �m2
sol, whereas for

inverted schemes one has m2
3 �m2

2 ¼ �m2
sol and m2

2 �
m2

1 ¼ �m2
atm. For m1 � matm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

atm þ �m2
sol

q
¼

ð0:050� 0:001Þ eV [5] the spectrum is quasidegenerate,

while for m1 � msol �
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

sol

q
¼ ð0:008 75�

0:000 12Þ eV [5] it is fully hierarchical (normal or in-
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verted). For definiteness we will refer to the case of normal
schemes, but all the discussion applies to inverted schemes
as well.

The RH neutrino decays can be conveniently described

in terms of the decay parameters Ki � ~�Di=HðT ¼ MiÞ,
where ~�Di are the decay widths. These can be related to the
neutrino masses introducing the effective neutrino masses,

defined as ~mi � ðmy
DmDÞii=Mi, such that Ki ¼ ~mi=m?,

where m? ’ 1:08� 10�3 eV. Assuming N1 to be heavier
than the Higgs boson, from the LEP bound [6] one has
M1 * 115 GeV and the Ni lifetimes are then given by

�i ¼ 8�v2

~miM
2
i

’ 5

Ki

�
TeV

Mi

�
2 � 10�13 sec : (3)

Let us now impose that one among the three RH neutrinos
species Ni plays the role of the DM particle which we
indicate with NDM. This implies �DM 	 t0 ’ 4�
1017 sec , where t0 is the age of the Universe. However,
since the NDM decays would produce ordinary neutrinos, a
much more stringent lower bound comes from neutrino
telescopes [7],

�DM
t0

* � � 1: (4)

In the range MDM � 105–9 GeV, the AMANDA limits on
neutrino flux implies �� 109 [8,9], while in the range
MDM � 102–5 GeV, where the atmospheric neutrino flux
is observed, the lower bound is more relaxed. In any case,
since strong future improvements are expected from the
ICE CUBE experiment, we will leave indicated the depen-
dence on � in the following discussion [10]. From the
relation (3), this translates into an upper bound on the
decay parameter KDM (or equivalently on the effective
neutrino mass ~mDM) given by

KDMð ~mDM=eVÞ & 10�30ð33Þ

�

�
TeV

Mi

�
2
: (5)

Moreover, imposing that the NDM abundance explains the
measured DM contribution to the energy density of the
Universe, one finds a condition on rDM � ðNNDM

=N�Þprod,
the ratio of the number of NDM to the photon number at the
time of the NDM production, occurring at temperatures
higher than the electroweak phase transition,

rDM � 10�9ð�DMh
2Þ TeV
MDM

� 10�10 TeV

MDM

: (6)

Assuming that the correct value of rDM is produced by
some external mechanism, for example, from inflaton de-
cays, a trivial DMmodel is obtained if the condition Eq. (5)
is satisfied. Within such a scenario one can indifferently
identify either N1 or N2 or N3 with NDM. The orthogonal
seesaw matrix � [12] is a useful tool to parametrize the
Dirac mass matrix mD, such that

mD ¼ UD1=2
m �D1=2

M ; (7)

with Dm � diagðm1; m2; m3Þ and DM �
diagðM1;M2;M3Þ. The effective neutrino masses can then
be expressed as linear combinations of the neutrino masses
~mi ¼ P

hmhj�hij2 and one easily obtains ~mi 	 m1.
Therefore, the upper bound Eq. (5) applies to m1 as well,
implying hierarchical light neutrinos. It also implies that�
has to be close to the special form

1 0 0
0 cos! sin!
0 � sin! cos!

0
@

1
A; (8)

or to those other two obtained by column cyclic permuta-
tion. Therefore, assuming exactly one of these three forms
for the orthogonal matrix, the condition Eq. (6) is fulfilled
only assuming some mechanism for the NDM production
based on physics beyond the type I seesaw SM extension.
Even allowing small deviations from these special forms,
one undergoes a severe obstacle within the type I seesaw.
Indeed one can think of different processes producing the
NDM abundance, such as inverse decays or scatterings
involving the top quark or gauge bosons. However, in all
cases one has approximately rDM � KDM, and it would
then be impossible to satisfy simultaneously the two re-
quirements Eqs. (5) and (6).
Let us consider a particular example that clearly shows

such a difficulty but that at the same time, as we will see,
will suggest a solution relying on a simple and reasonable
extension of the type I seesaw Lagrangian.
We investigate the possibility that the NDM production is

induced by the mixing of NDM with one of the other two
RH neutrinos acting as a source, and that we indicate with
NS. Notice that NS has necessarily a thermal abundance if
the reheat temperature is approximately higher than MS.
This is because there cannot be more than one RH neutrino
species with ~mi & m?.
For definiteness we can assume that NDM and NS are the

two lightest RH neutrinos and hence there are only two
possibilities: either MDM ¼ M1 and MS ¼ M2 or
vice versa. In this case N3 does not play any role in the
NDM production, but it is necessary to reproduce correctly
the neutrino masses.
This scenario is realized choosing the following form for

the orthogonal matrix

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
�" 0

"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
0

0 0 1

0
B@

1
CA; (9)

representing a perturbation, with cos! ¼ 1, of the special
form in Eq. (8). Here the prime index indicates that we are
reexpressing � into a basis where the RH neutrino mass
term is still diagonal but in a way that MDM is always the
first eigenvalue and MS the second eigenvalue. Notice that
we can choose " real and for convenience positive.
Moreover, notice that the choice cos! ¼ 1 is not restric-
tive. Indeed, in any case a value cos! � 1 would not be
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relevant for the DM production, but notice that it would be
important if one simultaneously imposes successful lepto-
genesis from NS decays, a possibility that will be discussed
elsewhere [13].

In order to describe the RH neutrino mixing, it is con-
venient to work in the ‘‘Yukawa basis,’’ where the Yukawa
interaction term is diagonal. This can be diagonalized

by mean of a biunitary transformation, Dh �
diagðhA; hB; hCÞ ¼ Vy

LhUR. The RH neutrino mixing ma-
trix UR can be found considering that it diagonalizes hyh,
namely, Uy

RðhyhÞUR ¼ diagðh2A; h2B; h2CÞ. Then, from the

expression Eq. (7), one can see that our choice for �0
simply results in

UR ¼
cos	 � sin	 0
sin	 cos	 0
0 0 1

0
@

1
A; (10)

with sin	 ’ "
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS=MDM

p
and in

hA ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1MDM

p
v

; hB ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
msolMS

p
v

;

hC ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
matmM3

p
v

:

(11)

This clearly shows that although N3 does not mix, it is
necessary to reproduce the atmospheric neutrino mass
scale. Imposing the condition (5), one can see that " has
to be tiny. Indeed one has

~m 1 ’ m1 þmsolj"j2; (12)

and therefore the upper bound Eq. (5) translates into the
upper bounds [14]

m1

eV
&

10�33

�

�
TeV

MDM

�
2
; j"j & 10�16ffiffiffiffi

�
p

�
TeV

MDM

�
: (13)

This implies a hierarchical light neutrino spectrum and a
tiny mixing angle between the two lightest RH neutrinos.
The description of the production of the NDM abundance
proceeds very similarly to the case of light active-sterile
neutrino oscillations [15] and, in particular, to the case
described in [16], where transitions occur in the nonadia-
batic regime as it will prove to be in our case. Let us write
down the Hamiltonian for the two lightest RH neutrinos in
the Yukawa basis. This will be the sum of two terms: a pure
kinetic term and a second term accounting for matter
effects described by a potential that in the Yukawa basis
is diagonal and given by [17]

VI � h2I T
2=ð8kÞ ðI ¼ A; BÞ; (14)

in the approximation of ultrarelativistic neutrinos, imply-
ing E� k and T � MS=3. Notice that in any case for T &
MS the NS abundance is exponentially suppressed and the
NDM production would stop anyway. In order to further
simplify the problem, we also employ a monochromatic
approximation where all neutrinos have the same mean

energy value k� 3T. As usual, we can subtract from the
Hamiltonian a term proportional to the identity, irrelevant
in neutrino oscillations. Therefore, in the Yukawa basis, the
relevant Hamiltonian can be recast as

�H ¼ �M2

12T

� � cos2	þ ðvA � vBÞ sin2	
sin2	 cos2	� ðvA � vBÞ

� �
;

(15)

where we defined vI � T2h2I =ð4�M2Þ and �M2 � M2
S �

M2
DM. Approximating cos2	 ’ 1, one can see that there is a

resonance at a temperature

Tres ’ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M2

h2A � h2B

s
’ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��M2

p

hB
; (16)

only if �M2 < 0, i.e., only if M1 ¼ MS <MDM ¼ M2.
Using Eq. (11), Tres can be conveniently recast as

Tres ’ 107MDM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v

MS

�
1� M2

S

M2
DM

�s
: (17)

If MDM * 2MS one has Tres ’ 107MDM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v=MS

p
. In this

case, introducing zres � MDM=Tres ’ 10�7
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MS=v

p
, one

can envisage a problem. The NS’s thermalize for zeq ’
ð6=KSÞ1=3 ’ 0:8 [18]. Imposing zres > zeq leads to an un-

acceptably large value of MS, MD, and of the reheat
temperature. Therefore, unless one assumes an initial ther-
mal abundance, one is forced to consider the degenerate
limit, for � � ðMDM �MSÞ=MDM � 1. In this limit one

now obtains Tres ’ 107MDM�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v=MDM

p
and zres ’

10�7��1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDM=v

p
. For � & 10�13MDM=TeV, this time

one can have zres * zeq. Therefore, the degenerate limit has

to be considered as a more attractive option.
Because of the tiny mixing angle the transitions at the

resonance occur in the nonadiabatic regime. Indeed let us
calculate the adiabaticity parameter at the resonance,

�res � 1

2 _	m‘m

��������res
¼ sin22	

j�M2j
6TresHres

: (18)

HereHres ’ 1:66
ffiffiffiffiffiffi
g?

p
T2
res=MPl is the value of the expansion

rate at the resonance. Using the conditions Eq. (13) and (4),
one obtains the upper bound �res & 10�26ðTeV=MDMÞ2.
The NDM abundance rDM can then be calculated as the
fraction of NS’s that is converted into NDM. This is ap-
proximately given by the Landau-Zener formula,

rNDM
� NDM

NS

� ð1� e�ð�=2Þ�resÞ ’ �

2
�res: (19)

Comparing with the condition Eq. (6), it is evident that
neutrino mixing between heavy RH neutrinos cannot pro-
duce the right NDM abundance, at least not within a mini-
mal type I seesaw extension of the SM. This conclusion is
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confirmed by more precise calculations beyond the
Landau-Zener approximation.

III. AWAY OUT FROM NONRENORMALIZABLE
OPERATORS

Let us consider the possibility that adding higher dimen-
sional effective operators to the minimal type I seesaw
Lagrangian Eq. (1), while not affecting neutrino masses
and mixing, enhances the NDM production from neutrino
mixing. In particular, let us consider the following
dimension-five effective operator [19]

L eff / 
AB

�eff

j�j2 �Nc
ANB; (20)

where � is the usual Higgs field, 
 is a dimensionless
coupling matrix, and �eff is an unspecified very high
energy new physics scale that we treat as a free parameter.

This operator yields a new contribution to ‘‘matter ef-
fects’’ into the Hamiltonian [13], that in the Yukawa basis
can be written as

Heff ’ T2

12�eff


IJ: (21)

This result follows from the computation of the tempera-
ture dependent finite real part of the RH neutrino self-
energy [17]:

Re ½�NðTÞ
 ¼ 
IJ

�

Z d4q

ð2�Þ3 �ðq
2 �m2

�ÞnbðqÞ; (22)

where nbðqÞ ¼ 1
ejq�uj�1

is the Bose-Einstein distribution

with u being the four-velocity of the thermal bath.
Assuming zero Higgs mass one then immediately deduces
the corresponding correction to the Hamiltonian (21).

We can reasonably assume that h2B � Tres=�eff . In this
way in the Yukawa basis the total interaction term is
approximately still diagonal and with the same eigenval-
ues. The relevant Hamiltonian describing neutrino oscilla-
tions can then be written as

�Heff ’ �M2

12T

�vB sin2	þ vAB
eff

sin2	þ vAB
eff vB

� �
; (23)

where we introduced vIJ
eff � T3
IJ=ð2�M2�effÞ. Notice

that the resonance condition on the temperature, Eq. (16),
does not change. However, now the mixing angle is differ-
ent and receives a contribution from the off-diagonal terms
in Heff , such that sin2	eff ’ vAB

eff .

Imposing again that mixing is responsible for the DM
production, since we know that the mixing angle 	 induced
by the Yukawa coupling hA is by far too small to play any
role, it can be assumed to be exactly zero. This is a good
feature since otherwise one could have objected that radia-
tive corrections could induce a large value anyway, spoil-
ing the stability of NDM on cosmological scales. However,

if it is exactly zero, one can invoke some symmetry that
protects it from radiative corrections.
Therefore, the adiabaticity parameter can now bewritten

as

�eff
res ’ sin22	eff

j�M2j
6TresHres

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffij�M2jp

MPl

5�2
eff�

2
; (24)

where we used Eq. (16) for Tres and defined � �
g1=4? h3=2B =
AB. Using again the Landau-Zener approxima-
tion for an estimation of the NDM abundance, rNDM

� �res,

and imposing again the condition Eq. (6), we obtain the
condition

MDM�
ð1=4Þ � 10�13�eff�: (25)

It is easy to verify that the assumption h2B �
Tres=�eff translates into a condition MS �
10�2 GeV g1=3? �2=3=
4=3

AB , easily verified except for tiny

values of 
AB. Notice also that using Eq. (11) one can

recast �� ð10�9=
ABÞðMS=TeVÞ3=4. From the condition
Eq. (25), one then finds in the hierarchical case, i.e.,
MDM * 2MS,

MS &

�
�eff

1013 TeV

�
4
�
10�9


AB

�
4
TeV; (26)

showing that in order not to satisfy MS * 100 GeV the
couplings cannot be too large. On the other hand, in the
more interesting degenerate limit (� � 1) one finds

MDM �
�

�eff

1013 TeV

�
4
�
10�9


AB

�
4
TeV; (27)

showing, conversely, that in order not to have too large
values of MDM the couplings cannot be too small. Notice
that too large values logðMDM=TeVÞ & 5–8 would spoil
the cosmologically stability of NDM, leading to unobserved
neutrino fluxes at neutrino telescopes. Indeed in this case
the nonrenormalizable operator and the mixing with MS

would induce too fast decays of the NDM’s into Higgs and
leptons [22]. For �eff �MGUT–MPl one has then 
AB *
10�13–�10. The smallness of 
AB can be explained in two
ways. In the case when �eff �MGUT the operator (20) can
be generated radiatively from the coupling to the grand
unified theory (GUT) scale particles. For example, one can
assume the Yukawa coupling (with the strength h) between
RH neutrino, Higgs, and heavy (m�MGUT) fermion. This
coupling generates at one loop the operator (20) after
heavy fermion is integrated out. The values of 
AB are,
therefore, given by h2ðTresÞ and, if hðTresÞ * 10�4–�5, they
come out naturally in the desired region. Alternatively, if
the operator (20) is generated gravitationally (�eff �MPl)
the smallness of the coefficients 
AB can be explained in
the models where the effective value of MPl in the early
universe is different from its present value (e.g., see
Ref. [23]). However, the consequent decay channels at
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present should be estimated with 
AB � 1. A detailed
analysis of the constraints from decays will be presented
elsewhere [13]; however, it is remarkable that the mecha-
nism is viable for reasonable values of the involved
parameters.

IV. CONCLUSIONS

We presented a new scenario where the role of DM is
played by heavy RH neutrinos. The scenario is based on a
mechanism where the DM RH neutrinos are produced
through mixing enhanced by the additional presence of
higher dimensional effective operators into the usual
type I seesaw Lagrangian. The mechanism relies crucially
on the fact that is necessary to convert just a very small
fraction of the source RH neutrinos into the DM RH
neutrinos. In this way the additional operator has the effect
of enhancing the mixing without spoiling any other suc-
cessful feature of the type I seesaw mechanism and at the
same time preserving the DM RH neutrino’s stability on
cosmological times. A straightforward prediction of the
mechanism is that the lightest neutrino mass has to vanish.
It also seems quite general that the DM RH neutrinos
decay, and this could lead to signatures in cosmic rays.
The recent detected excess of positrons in the HEAT and

PAMELA experiments have been interpreted as due to
decaying DM particles with a mass higher than 300 GeV
and a lifetime of approximately �DM � 1026 sec [24].
Therefore, our mechanism seems to have the right features
to explain this excess. These results are quite interesting
since they are not only fully compatible with our model but
also because the value for the lifetime corresponds to the
saturation of the lower bound Eq. (4) from the AMANDA
data when MDM � 105–9 GeV and a signal should be ex-
pected from the ICE CUBE experiment.
It should also be noticed that the special orthogonal form

Eq. (9) predicted by the mechanism corresponds [25] to a
particular sequential dominated model [26]. Therefore, the
proposed scenario for the solution of the DM conundrum
restricts remarkably the seesaw parameter space, providing
a potential smoking gun for the seesaw mechanism.
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