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We suggest a simple highly predictive ansatz for charged lepton and light neutrino mass matrices, based

on the assumption of universality of Yukawa couplings. Using as input the charged lepton masses and light

neutrino masses, the six parameters characterizing the leptonic mixing matrix VPMNS are predicted in

terms of a single phase �, which takes a value around � ¼ �
2 . Correlations among various physical

quantities are obtained; in particular VPMNS
13 is predicted as a function of �m2

21, �m
2
31, and sin2ð�solÞ, and

restricted to the range 0:167< jVPMNS
13 j< 0:179.
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I. INTRODUCTION

Understanding the pattern of fermion masses and flavor
mixing is still one of the open fundamental questions in
particle physics. The discovery of large leptonic mixing, in
contrast to small quark mixing, has rendered the flavor
puzzle even more intriguing.

In the standard model and in most of its extensions, the
arbitrariness of fermion masses and mixing stems from the
fact that the gauge invariance does not constrain the flavor
structure of the Yukawa couplings. The fact that, in the
standard model, only Yukawa couplings can be complex,
has motivated the hypothesis of universality of strength of
Yukawa couplings (USY) [1], which would all have the
same strength, with flavor-dependent phases. The conse-
quences of USY have been analyzed in various works, both
for the quark [2] and lepton sectors [3]. Such an USY
structure for the Yukawa couplings could arise from
higher-dimensional theories [4]. It is worth recalling that
when applied to the quark sector, the USY hypothesis can
accommodate the main features of the Cabibbo-
Kobayashi-Maskawa matrix, but cannot account for the
observed strength of CP violation in the quark sector,
measured by the rephasing invariant jIm½VubVcbV

�
ubV

�
cs�j.

However, sufficient CP violation can be obtained [5] in
extensions of the standard model where an USY structure
is assumed, but where extra down singlet quarks are intro-
duced and mix with the standard quarks.

In this paper, we suggest a highly predictive USYansatz
which is able to accommodate our present experimental
knowledge on lepton masses and mixing and makes defi-
nite predictions, which can be tested in the near future.
More specifically, in this USY ansatz, once the charged
lepton and neutrino masses are fixed, the three leptonic
mixing angles, the Dirac phases, and the two Majorana

phases are all predicted in terms of only one free parame-
ter. This highly constrained system implies interesting
correlations among various physical quantities.
The size of VPMNS

13 is predicted as a function of tanð�solÞ
and the neutrino mass differences �m2

21, �m
2
31. For central

values of sin2ð�solÞ and �m2
ij, one obtains jVPMNS

13 j ¼
0:178, clearly at the reach of the next round of experiments
[6]. The ansatz also predicts the strength of Dirac-type CP
violation, measured by the invariant quartet ICP �
jIm½V12V23V

�
22V

�
13�jPMNS. For central values of sin2ð�atmÞ,

sin2ð�solÞ, and �m2
ij, one obtains ICP ¼ 0:009 06, which

can be measured in neutrino oscillation experiments [6].
This paper is organized as follows. In the next section,

we describe the Ansatz and its parameter space, both in the
charged lepton and neutrino sectors. In Sec. III, we evalu-
ate the lepton mixing and derive some predictions of the
ansatz for various physical quantities, including jVPMNS

13 j,
double beta decay, and the strength of the Dirac-type CP
violation. Section IV contains some numerical results and
figures illustrating correlations among various physical
quantities. Finally, our conclusions are contained in Sec. V.

II. THE ANSATZ AND ITS PARAMETER SPACE

A. The charged lepton sector

We propose the following USY structure for the charged
lepton mass matrix

Ml ¼ clffiffiffi
3

p � Ky
� �

1 1 1

1 eial 1

1 1 eibl

2
664

3
775;

K� ¼ diagð1; 1; ei�Þ:
(1)

The phase � does not affect the charged lepton mass
spectrum but contributes to the leptonic mixing. Using

the trace, determinant, and second invariant of Hl �
MlM

y
l , one can derive exact expressions for the phases

*gbranco@ist.utl.pt
†juca@cftp.ist.utl.pt

PHYSICAL REVIEW D 80, 073016 (2009)

1550-7998=2009=80(7)=073016(6) 073016-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.073016


al, bl, and the parameter cl in terms of the masses:

cl ¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þm2
� þm2

e

q

3sin2
�
al
2

�
þ 3sin2

�
bl
2

�
þ sin2

�
al þ bl

2

�

¼ 81

4

m2
�m

2
� þm2

em
2
� þm2

em
2
�

ðm2
� þm2

� þm2
eÞ2��������sin

�
al
2

�
sin

�
bl
2

���������¼ 27

4

mem�m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

� þm2
� þm2

eÞ3
q : (2)

From the charged lepton hierarchy, one obtains to an ex-
cellent approximation

jalj ’ 6
me

m�

; jblj ’ 9

2

m�

m�

: (3)

Obviously, in Eq. (2) al and bl enter in a symmetric way.
The choice of Eq. (3) is required in order to obtain the right
eigenvalue ordering.

B. The effective neutrino mass matrix

We assume that lepton number is violated at a high
energy scale, leading at low energies to the following
effective neutrino mass matrix:

M� ¼ c�ffiffiffi
3

p
eia� 1 1
1 e�ia� 1
1 1 eib�

2
64

3
75: (4)

The three parameters, c�, b�, and a� of the neutrino mass
matrix ansatz in Eq. (4) are entirely determined by the
three neutrino masses. We find from the trace, second

invariant, and determinant of H� � M�M
y
�

3c2� ¼ m2
3 þm2

2 þm2
1 cosða�Þ ¼ 1� 27

2
d�

cosðb�Þ ¼
1þ 27

2 d� � 81
8 ��

1� 27
4 d�

(5)

where

d� ¼ m1m2m3

ðm2
3 þm2

2 þm2
1Þ3=2

;

�� ¼ m2
1m

2
2 þm2

1m
2
3 þm2

2m
2
3

ðm2
3 þm2

2 þm2
1Þ2

:

(6)

At this stage, it is worth emphasizing the predictive
power of the ansatz. From Eqs. (2) and (5), it is clear that
once the parameters ðcl; bl; alÞ, and ðc�; b�; a�Þ are fixed by
the charged lepton and neutrino masses, the six parameters
of the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) ma-
trix, VPMNS, are completely determined in terms of a single
parameter, the phase �.

III. EVALUATION OF LEPTON MIXING

A. Diagonalization and parametrization of the lepton
mass matrices

The diagonalization of the Hermitian charged lepton

mass matrix Hl � MlM
y
l is carried out through

Vy
l �Hl � Vl ¼ diagðm2

e; m
2
�;m

2
�Þ

with the unitary matrix Vl given by

Vl ¼ Ky
� � F �Wl

where F

F ¼
1ffiffi
2

p �1ffiffi
6

p 1ffiffi
3

p

� 1ffiffi
2

p �1ffiffi
6

p 1ffiffi
3

p

0 2ffiffi
6

p 1ffiffi
3

p

0
BB@

1
CCA (7)

and Wl is a unitary matrix close to the identity. Given the
strong hierarchy of the charged lepton masses, to an ex-
cellent approximation, one obtains for Wl

Wl ’
1 meffiffi

3
p

m�
�i

ffiffi
2
3

q
me

m�

� meffiffi
3

p
m�

1� 1
2 ð

m�

m�
Þ2 i

m�ffiffi
2

p
m�

�i
ffiffi
3
2

q
me

m�
i

m�ffiffi
2

p
m�

1� 1
2 ð

m�

m�
Þ2

0
BBBB@

1
CCCCA: (8)

The diagonalization of the neutrino mass matrix is
achieved through

Vy
� �M� � V�

� ¼ D� ¼ diagðm1; m2; m3Þ (9)

where mi denote the neutrino masses. In order to under-
stand the main features of V� in the framework of our
ansatz, it is useful to introduce a convenient parametriza-
tion. Let us now introduce the dimensionless parameters ",
� defined by

" ¼ m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þm2
2 þm2

1

q ; � ¼ m1

m2

: (10)

The neutrino masses can then be written

m1 ¼
ffiffiffi
3

p
c�"� m2 ¼

ffiffiffi
3

p
c�"

m3 ¼
ffiffiffi
3

p
c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2 � �2"2

p
:

(11)

By substituting mi as functions of ", � in Eqs. (5) and
(6), we obtain d�, �� as well as a�, b� as functions of " and
�

d� ¼ �"2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2ð1þ �2Þ

q
;

�� ¼ "2½1þ �2 � "2ð1þ �2 þ �4Þ�:
(12)

The matrix V� is then entirely given as a function of these
two parameters ð"; �Þ, which are fixed by neutrino mass
ratios. Furthermore, for our ansatz, V� is exactly factoriz-
able in the following way:
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V� ¼ F � K	 �O� � KM (13)

where F was given in Eq. (7) and K	, KM are

diagonal unitary matrices containing phases, which will
contribute to the Dirac and Majorana-type phases of the

lepton mixing, K	 ¼ diagð1; ei	;�iÞ and KM ¼
diagðei
̂M ; ei�̂M ; ei	̂M Þ. As mentioned, all these phases and
the angles of orthogonal matrix O� can be expressed as
functions of � and ".

So far all our results are exact. Our numerical results for
VPMNS will be obtained through exact numerical diagonal-
ization ofHl and H�. However, in order to get an overview
of the physical implications of this USYansatz, it is useful
to derive some analytical expressions which hold to a good
approximation. Let us parametrize O� in the following
way:

O� ¼ O23 �O13 �O12 (14)

with

O23 ¼
1 0 0
0 cosð�̂23Þ sinð�̂23Þ
0 � sinð�̂23Þ cosð�̂23Þ

2
64

3
75;

O13 ¼
cosð�̂13Þ 0 sinð�̂13Þ

0 1 0
� sinð�̂13Þ 0 cosð�̂13Þ

2
64

3
75

O12 ¼
cosð�̂12Þ sinð�̂12Þ 0
� sinð�̂12Þ cosð�̂12Þ 0

0 0 1

2
64

3
75:

It turns out that in the relevant region of parameter
space, " is relatively small, " � 0:2. Therefore, we make
an expansion in powers of " which yield

tanð�̂12Þ ¼ � ffiffiffiffi
�

p �
1þ 8�þ 8�2 � 3�3 � 3

4ð1� �Þ "2 þOð"4Þ
�

tanð�̂23Þ ¼ "
ð1� �Þffiffiffi

2
p

�
1þ 37�� 2�2 � 2

8
"2 þOð"4Þ

�

tanð�̂13Þ ¼ "
ffiffiffiffiffiffi
2�

p �
1þ 4þ �þ 4�2

8
"2 þOð"4Þ

�

tanð	Þ ¼ �"
ð10�� 3�2 � 3Þ

4ð1� �Þ þOð"3Þ: (15)

The leptonic mixing matrix is given by

VPMNS ¼ Vy
l � V� ¼ ðWy

l F
TK�Þ � ðFK	O�KMÞ: (16)

This formula is exact and it will be used in the numerical
computation of VPMNS. However, it is useful to obtain
analytical approximate expressions for VPMNS. Using
Eqs. (16) and (14), and neglecting the small contribution
from Wl given by Eq. (8), one obtains��������VPMNS

12

VPMNS
11

�������� � j tanð�solÞj ¼ j tanð�̂12Þj

jVPMNS
13 j ¼ j sinð�̂13Þj

(17)

which identifies these two lepton mixing angles in terms
of our parametrization. Up to second order in ", from
Eq. (15), one obtains tan2ð�solÞ and jVPMNS

13 j expressed in

terms of the measured �m2
31, �m

2
21 and the lightest neu-

trino mass, m1

tan2ð�solÞ ¼ m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21 þm2
1

q

jVPMNS
13 j2 ¼ 2m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21 þm2
1

q
�m2

31 þ �m2
21 þ 3m2

1

:

(18)

Eliminating m1 from Eq. (18), one obtains the interesting
sum rule expressing jVPMNS

13 j in terms of measured quanti-

ties

jVPMNS
13 j ¼ ffiffiffi

2
p j tanð�solÞj

ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

�m2
31

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� tan4ð�solÞ þ ð1þ 2tan4ð�solÞÞ �m
2
21

�m2
31

r : (19)

For central values of sin2ð�solÞ and �m2
ij one finds

jVPMNS
13 j ¼ 0:178: (20)

For �atm one obtains

sin 2ð�atmÞ ¼ 4
9

�
1� cosð�Þ þ 3

2"ð1� �Þ sinð�Þ

þOð"2Þ
�
: (21)

It is clear that �atm crucially depends on �, the phase

defined in Eq. (1). It is interesting to note that a good fit
of �atm is obtained for � ¼ �

2 .

B. Double beta decay

We evaluate now Mee, which controls the strength of
double beta decay and is given by

Mee � jm1ðVPMNS
11 Þ2 þm2ðVPMNS

12 Þ2 þm3ðVPMNS
13 Þ2j:

(22)

We compute Mee in two steps. First, we evaluate the
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contribution to Majorana phases from KM ¼
diagðei
̂M ; ei�̂M ; ei	̂M Þ. This can be done by focusing only

on the diagonalization of the neutrino mass matrix: Vy
� �

M� � V�
� ¼ diagðm1; m2; m3Þ. It is clear that these phases

appear when diagonalizing M� only with FK	O�, without

KM

ðFK	O�Þy �M� � ðFK	O�Þ�
¼ diagðm1e

2i
̂M ; m2e
2i�̂M ; m3e

2i	̂M Þ: (23)

In leading order, we find1

2
̂M ¼ ��

2
� 9� 12�� �2

4ð1� �Þ "

2�̂M ¼ �

2
þ 1þ 12�� 9�2

4ð1� �Þ "

2	̂M ¼ �þ ð1� �Þ
2

":

(24)

We can then write

Mee ¼ jm1e
2i
̂M ðV11Þ2 þm2e

2i�̂M ðV12Þ2 þm3e
2i	̂M ðV13Þ2j

(25)

where here V is the lepton mixing matrix VPMNS but

without the last KM phases, i.e. V ¼ VPMNS � K�
M ¼

Wy
l F

TK�FK	O�.

Since, the matrix FTK�F in V only gives a contribution

in the 2–3 plane, andWl
12 andW

l
13 are all of the order of "

5

or smaller, we may read the expressions for V11, V12, and
V13 directly from the leading order expressions for

tanð�̂12Þ ¼ � ffiffiffiffi
�

p �
1þ 8�þ 8�2 � 3�3 � 3

4ð1� �Þ "2
�

tanð�̂13Þ ¼ "
ffiffiffiffiffiffi
2�

p �
1þ 4þ �þ 4�2

8
"2
�

tanð	Þ ¼ �"
ð10�� 3�2 � 3Þ

4ð1� �Þ :

(26)

Using Eqs. (24)–(26) together with m1, m2, and m3 ex-
pressed in terms of c�, �, and " [as in Eq. (11)], we find the
following leading order expression:

Mee ¼ 9
ffiffiffi
3

p
2

�"2
�
1� ð1þ �2Þ

2
"2 � ð1þ �2Þ2

8
"4
�
c�:

(27)

C. Dirac-type CP violation

The strength of the Dirac-type CP violation is given by
the imaginary part of any rephasing invariant quartet of
VPMNS, e.g.

ICP ¼ jIm½V12V23V
�
22V

�
13�PMNSj: (28)

Using Eqs. (1), (7), (8), and (14), we can evaluate ICP in
terms of ", �, and �, obtaining in second order of "

ICP ¼ 2�"

9ð1þ�Þ
�
�
1� cosð�Þ� "

3ð10�� 3�2 � 3Þ
4ð1��Þ sinð�Þ

�
: (29)

From Eq. (21), it is clear that the phase � is strongly
correlated with sinð�atmÞ. Then, for the central value of
sin2ð�atmÞ, which is obtained with � ¼ �

2 , and central

values of sin2ð�solÞ and �m2
ij, one gets jICPj ¼ 0:0105, a

value obtained neglecting the charged lepton contribution,
which is small. Further on, in Sec. IV, we shall give an
exact numerical example.

D. Majorana-type CP violation

It is well known that in the case of Majorana neutrinos,
the basic rephasing invariants, in the leptonic sector, are
bilinears of the type VPMNS

jk VPMNS�
jl with k � l. In fact, in

the case of three leptonic flavors, it has recently been
shown that there are six rephasing invariant independent
‘‘Majorana-type’’ phases from which one can reconstruct
the full VPMNS matrix using 3� 3 unitarity [7]. One can
choose as basic Majorana phases

	1 ¼ Arg½V11ðV13Þ�� �1 ¼ Arg½V12ðV13Þ��
	2 ¼ Arg½V21ðV23Þ�� �2 ¼ Arg½V22ðV23Þ��
	3 ¼ Arg½V31ðV33Þ�� �3 ¼ Arg½V32ðV33Þ��:

(30)

where we have dropped the PMNS superscript in the Vij’s.

The 	i, �i can be evaluated in the present USY ansatz and
we obtain in leading order,

	1 ¼ � 3�

4
� 11� 16�þ �2

8ð1� �Þ "

�1 ¼ ��

4
þ 16�� 11�2 � 1

8ð1� �Þ "

	2 ¼ ��

4
� arctan

�
3 sinð�Þ

1� cosð�Þ
�

�2 ¼ 5�

4
� arctan

�
3 sinð�Þ

1� cosð�Þ
�

	3 ¼ 3�

4
� arctan

�
3 sinð�Þ

1� cosð�Þ
�

�3 ¼ �

4
� arctan

�
3 sinð�Þ

1� cosð�Þ
�
:

(31)

IV. NUMERICAL RESULTS

The predictive power of our ansatz is best shown with a
set of figures. Figure 1 demonstrates the dependence of the1Obviously, the phases 
̂M, �̂M, 	̂M are defined modulo �.
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solar mixing angle on the value ofm1. We allow for explicit
experimental uncertainties of �m2

21 ¼ 7:65þ23
�20 �

10�5 eV2 and �m2
31 ¼ 2:40þ12

�11 � 10�3 eV2. It is clear,

that a central value for sin2ð�solÞ ¼ 0:3 implies a prediction
for the value of m1: 0:0316 eV<m1 < 0:0345 eV. From
Fig. 2 and 3, it also follows that 0:167< jVPMNS

13 j< 0:179
and that 0:003 15<Mee < 0:003 45. Notice that, choosing
the neutrino mass differences and sin2ð�solÞ ¼ 0:304þ22

�16

within these 1� experimental constraints, our model ac-
commodates the upper limit for jVPMNS

13 j2 < 0:004. The
mixing angle sin2ð�atmÞ and the experimental observable
measuring CP violation ICP depend crucially on the angle
� and thus we may plot the two experimental observables
against each other. From Fig. 4 we find, for a central value
of sin2ð�solÞ ¼ 0:5, that 0:0090< ICP < 0:0098.

Next, we give an explicit numerical example, where six
of the input parameters of the ansatz are fixed by the known
charged lepton masses, two neutrino mass differences
�m2

21, �m
2
31, together with a chosen value for the lightest

neutrino mass m1. Then, the six parameters of VPMNS are

all predicted with a single free parameter, namely, the
phase �, which is taken to be � ¼ �

2 .

INPUT:

cl ¼ 1023:72 eV al ¼ 1:729� 10�3 a� ¼ 0:66

bl ¼ 0:2677 b� ¼ 0:5077

c� ¼ 0:0290352 eV �¼�

2

where, for this particular example we have � ¼ 0:4286 and
" ¼ 0:1927. We then find
OUTPUT

jVPMNSj ¼
0:815 73 0:550 15 0:178 67
0:301 73 0:662 98 0:685 14
0:493 50 0:507 73 0:706 16

2
64

3
75;

with

sin 2ð�solÞ ¼ 0:313; sin2ð�atmÞ ¼ 0:485;

jVPMNS
13 j2 ¼ 0:0319

 0.0028

 0.003

 0.0032

 0.0034

 0.0036

 0.0038

 0.004

 0.0042

 0.28  0.285  0.29  0.295  0.3  0.305  0.31  0.315  0.32  0.325  0.33

M
ee

sin2(θsol)

FIG. 3. Mee as a function of sin2�sol, assuming 1� uncertain-
ties in neutrino mass differences.

 0.0075

 0.008

 0.0085

 0.009

 0.0095

 0.01

 0.0105

 0.011

 0.0115

 0.012

 0.44  0.46  0.48  0.5  0.52  0.54  0.56  0.58

I C
P

sin2(θatm)

FIG. 4. ICP as a function of sin2�atm, assuming 1� uncertain-
ties in neutrino mass differences.

FIG. 1. m1 as a function of sin2�sol, assuming 1� uncertainties
in neutrino mass differences.

 0.155

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.28  0.285  0.29  0.295  0.3  0.305  0.31  0.315  0.32  0.325  0.33

|V
13

|

sin2(θsol)

FIG. 2. jV13j as a function of sin2�sol, assuming 1� uncertain-
ties in neutrino mass differences.

HIGHLY PREDICTIVE ANSATZ FOR LEPTONIC MIXING . . . PHYSICAL REVIEW D 80, 073016 (2009)

073016-5



and

me ¼ 0:51 MeV m1 ¼ 4:15� 10�3 eV �m2
21 ¼ 7:664� 10�5 eV2

m� ¼ 105:5 MeV m2 ¼ 9:69� 10�3 eV �m2
31 ¼ 2:401� 10�3 eV2

m� ¼ 1770 MeV m3 ¼ 0:049 17 eV:

We obtain for the Majorana observables

Arg
V11V

�
13 V12V

�
13

V21V
�
23 V22V

�
23

V31V
�
33 V32V

�
33

0
@

1
APMNS

¼
�2:535 �0:6145
�2:230 2:731
0:7857 �0:3545

0
@

1
A

and for the strength of the Dirac-type CP violation and
double beta decay

Mee ¼ 3:53� 10�3 eV; ICP ¼ 0:009 06:

V. CONCLUSIONS

We have pointed out that a simple ansatz, inspired by the
hypothesis of universality of Yukawa couplings, leads to a
highly predictive scheme for leptonic mixing. If one uses
as input the charged lepton and neutrino masses, then the
three mixing angles and the three CP violating phases
entering in VPMNS are all predicted in terms of a single
phase which takes the value � � �

2 . The ansatz predicts a

relatively large value of jVPMNS
13 j and of ICP, clearly at the

reach of the next round of experiments [6]. Furthermore,
the ansatz predicts various testable correlations among
physical quantities.
The USY ansatz has clearly a great appeal. A crucial

open question is finding a symmetry principle, possibly
implemented in a framework with extra dimensions [4],
which can naturally lead to the universality of the strength
of Yukawa couplings.
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