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The addition of gauge-singlet fermions to the standard model Lagrangian renders the neutrinos massive

and allows one to explain all that is experimentally known about neutrino masses and lepton mixing by

varying the values of the Majorana mass parameters M for the gauge singlets and the neutrino Yukawa

couplings �. Here we explore the region of parameter space where M values are much smaller than the

neutrino Dirac masses �v. In this region, neutrinos are pseudo-Dirac fermions. We find that current solar

data constrain M values to be less than at least 10�9 eV, and discuss the sensitivity of future experiments

to tiny gauge-singlet fermion masses. We also discuss a useful basis for analyzing pseudo-Dirac neutrino

mixing effects. In particular, we identify a simple relationship between elements of M and the induced

enlarged mixing matrix and new mass-squared differences. These allow one to directly relate bounds on

the new mass-squared differences to bounds on the singlet fermion Majorana masses.

DOI: 10.1103/PhysRevD.80.073007 PACS numbers: 14.60.Pq, 14.60.St

I. INTRODUCTION

Nonzero neutrino masses reveal that the minimum stan-
dard model needs to be modified. Current data (mostly
from solar, atmospheric, reactor, and accelerator neutrino
oscillation experiments), however, provide only minimal
insight as to how the standard model ought to be extended.
Several completely different new physics scenarios can be
constructed and all safely agree with observations; i.e., all
lead to small neutrino masses and nontrivial mixing among
the three so-called active neutrino weak eigenstates, �e,
��, and ��. Additions to the standard model that fit the data

include right-handed neutrinos, SUð2ÞL triplet fermions or
scalars, leptoquarks, etc. Recent summaries of the current
experimental and theoretical situation can be found, for
example, in [1–7].

One version for the new standard model, �SM, consists
of the minimum standard model augmented by a few (at
least two) SUð2ÞL �Uð1ÞY gauge-singlet Weyl fermions
N, normally referred to as right-handed neutrinos. At the
renormalizable level, the most general �SM Lagrangian
consistent with SUð3Þc � SUð2ÞL �Uð1ÞY gauge invari-
ance is

L �SM ¼ Lold � ��iL
�HNi � Xn

i;j¼1

Mij

2
NiNj þ H:c:;

(1.1)

where Lold is the minimal standard model Lagrangian, L
are the SUð2ÞL lepton doublet fields L ¼ ð�‘ÞT , and H is
the standard model Higgs doublet field. ��i are neutrino
Yukawa couplings and Mij are Majorana masses for the N

fields. Note thatM is a symmetric matrix:Mij ¼ Mji. � ¼
e, �, �, i ¼ 1; . . . n, and n � 2 is the number of right-

handed neutrino fields. After electroweak symmetry break-
ing, Eq. (1.1) describes 3þ n Majorana neutral fermions,
referred to as neutrinos. In general, all neutrino mass
eigenstates �1; �2; . . . ; �3þn (with mass m1; m2; . . . ; m3þn)
are linear combinations of the active neutrinos plus the n
right-handed neutrinos. Since these singlet fermions do not
couple to any of the standard model gauge bosons, they
will also be referred to as sterile neutrinos.
The phenomenology associated to Eq. (1.1) depends

dramatically on the values of the �SM parameters � and
M (see, for example, [8]). Even after the current data are
taken into account, the spectrum of possibilities remains
vast. When the matrix M vanishes exactly, the six1 neutral
states fuse into three Dirac fermions with masses propor-
tional to the (square roots of the) eigenvalues of �y�. In
this case, the classical global symmetry of L�SM is en-
hanced and includes the lepton-number symmetry Uð1ÞL
[and its nonanomalous cousin Uð1ÞB�L]. This indicates
thatM can be interpreted as a symmetry breaking parame-
ter (when � � 0) so that (i) quantum corrections to M are
proportional to M itself and hence (ii) any value of M is
technically natural.
When M � 0, one can identify three qualitatively dis-

tinct regions of the �, M parameter space. In the region
whereM � �v,2 where v is the vacuum expectation value
of the neutral component of H, the six neutrino masses
‘‘split’’ into three lighter, mostly active states with masses

1For the remainder of this section, we restrict our discussion to
n ¼ 3 right-handed neutrinos.

2Beware of the abuse of notation and keep in mind that � and
M are matrices. For a more detailed discussion of this so-called
seesaw limit, see, for example, [9].
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generically of order �2v2=M and three heavier, mostly
sterile states with masses M. This phenomenon is referred
to as the seesaw mechanism [10], and it was argued in [8]
that all values of M * 1 eV are phenomenologically al-
lowed. For small enough M (in general M much smaller
than the weak scale), the �SM can be tested experimentally
since the mostly sterile, heavier states are accessible at
different facilities (see, for example, [9,11,12]). It has also
been pointed out that the mostly heavy states may qualify
as viable warm dark matter [13]. Finally, for extraordinary
choices of � (for recent discussions see [14,15]), mostly
sterile neutrinos with weak-scale masses can be detected at
high-energy collider experiments.

The other two distinct regions of the �, M parameter
space are characterized by M� �v and M � �v. In the
former, all six neutrino masses are of the same order, and
all six neutrino mass eigenstates are characterized by ‘‘ho-
mogeneous’’ mixtures of active and sterile flavors. Such a
scenario is both hard to study quantitatively and severely
constrained by current solar and atmospheric neutrino data.
In this paper, we explore the latter possibility: right-handed
neutrino Majorana masses M much smaller than the so-
called Dirac neutrino masses �v. Under these circumstan-
ces, neutrinos are pseudo-Dirac fermions [16–18].

Pseudo-Dirac neutrinos are Majorana neutrinos made up
of roughly fifty-fifty mixtures of active and sterile neutri-
nos, and come in quasidegenerate pairs. These will be
properly defined in Sec. II. In the limit M ! 0, neutrinos
are Dirac fermions and hence can accommodate all current
experimental data (as discussed above), so our main goal is
to estimate an upper bound for M. Given our current
understanding of neutrinos, the most stringent constraints
on very small M values are provided by solar data. The
data, the estimation procedure, and our results are pre-
sented in Sec. III. Other constraints and predictions, as
well as expectations for the future, are discussed in
Sec. IV. A summary of what is currently known about
pseudo-Dirac �SM neutrinos and the �SM Lagrangian
[Eq. (1.1)] in general is presented in Sec. V.

II. ‘‘ANTISEESAW’’: MASSES AND MIXING

In the case of n ¼ 3 right-handed neutrinos, after elec-
troweak symmetry breaking, the 6� 6 Majorana neutrino
mass matrix is

M� ¼ 03 m
mT �m

� �
; (2.1)

where 03 stands for the 3� 3 zero matrix,

�m ¼ �Tm ¼ VT
R�

D
mVR (2.2)

is the symmetric 3� 3 Majorana right-handed neutrino
mass matrix, and we choose the weak basis where the 3�
3 Dirac neutrino mass matrix is written as

m ¼ U�mD: (2.3)

This can be achieved by redefining the right-handed neu-
trino fields N. Above, the superscript D indicates a diago-
nal matrix while VR and U are unitary matrices.
Since we are interested in the limit mD � �Dm—Dirac

masses much larger than Majorana right-handed neutrino
masses—we can write

M� ’ 13 ���
�T 13

� �
1ffiffiffi
2

p U� �U�
13 13

� �

� mDð13 þ �DÞ 03
03 �mDð13 � �DÞ

� �
1ffiffiffi
2

p

� Uy 13
�Uy 13

� �
13 �

��y 13

� �
; (2.4)

where 13 is the 3� 3 unit matrix, and the elements of � are
small (this will be shown a posteriori) so that

13 �
��y 13

� �
13 ��
�y 13

� �
¼ 13 03

03 13

� �
þOð��y; �y�Þ:

(2.5)

�D is a diagonal dimensionless matrix of small numbers.
Equation (2.4) is satisfied, at leading order, if

� ¼ U

�
�D

2
þ "

�
; (2.6)

where " is a dimensionless matrix of small numbers whose
diagonal elements vanish. Both �D and " are functions of
�m and mD:

�m ¼ 2�DmD þ "TmD þmD"; (2.7)

and

mD"T ¼ �"mD: (2.8)

Note thatmD and " do not commute and that �m is indeed a
symmetric matrix with units of mass. Throughout we will
ignore the possibility, ruled out by data, that different
diagonal entries of mD are identical. According to
Eq. (2.7), in the weak basis of choice and at leading order,
the diagonal elements of �m, proportional to �

D, determine
the mass-squared splittings between the quasidegenerate
states, while the off-diagonal elements proportional to "
contribute only to the active-plus-sterile mixing matrix.
The 6� 6 neutrino mixing matrix is

V ¼

Ve1 Ve2 Ve3 Ve10 Ve20 Ve30

V�1 V�2 V�3 V�10 V�20 V�30

V�1 V�2 V�3 V�10 V�20 V�30

Vs11 Vs12 Vs13 Vs11
0 Vs12

0 Vs13
0

Vs21 Vs22 Vs23 Vs21
0 Vs22

0 Vs23
0

Vs31 Vs32 Vs33 Vs31
0 Vs32

0 Vs33
0

0
BBBBBBBB@

1
CCCCCCCCA

¼ 1ffiffiffi
2

p 13 ��
�y 13

� �
U �U
13 13

� �
; (2.9)
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¼ 1ffiffiffi
2

p Uð13 � �D

2 � "Þ �Uð13 þ �D

2 þ "Þ
13 þ �D

2 � " 13 � �D

2 þ "

 !
; (2.10)

where we define the weak eigenstates as ��, � ¼ e, �, �,
s1, s2, s3 and the mass eigenstates as �i, i ¼ 1, 2, 3, 10, 20,
30. In the Dirac limit �m ! 0, V�i ¼ �V�i0 ¼ U�i=

ffiffiffi
2

p
(� ¼ e, �, �, i ¼ 1, 2, 3) and mi ¼ �m0

i (i ¼ 1, 2, 3).
We will order our states in the ‘‘usual’’ way [19]: m2

1 <
m2

2 <m2
3, m

2
10 <m2

20 <m2
30 (m

2
3 <m2

1 <m2
2, m

2
30 <m2

10 <

m2
20) in the case of a normal (inverted) mass hierarchy. We

assume the �D parameters small enough that the same mass
hierarchy applies for the primed and unprimed eigen-
masses. More specifically, jm2

i �m2
i0 j � m2

i for all i ¼ 1,

2, 3.
In the next section we will concentrate on two subsets of

the six neutrino mixing scenario: the case of two active and
one right-handed neutrino, and the case of two active and
two right-handed neutrinos. These will be described in
more detail below and should serve as more concrete
pedagogical examples.

In the case of two active (�e and �a, a linear combination
of �� and ��) and one sterile neutrino �s, the 3� 3

neutrino mass matrix can be written as

M� ¼
0 0 m sin�
0 0 m cos�

m sin� m cos� �m

0
@

1
A; (2.11)

where �m � m� is the Majorana mass of the right-handed
neutrino. In the limit � � 1 (and ignoring the case when �
is very close to 0 or 	=2), and assuming all parameters are
real,

VTM�V ¼
0 0 0
0 mð1þ �

2Þ 0
0 0 �mð1� �

2Þ

0
B@

1
CA; (2.12)

where

V ¼
Ve1 Ve2 Ve20

Va1 Va2 Va20

Vs1 Vs2 Vs20

0
@

1
A

¼
cos� sin�ffiffi

2
p ð1� �

4Þ � sin�ffiffi
2

p ð1þ �
4Þ

� sin� cos�ffiffi
2

p ð1� �
4Þ � cos�ffiffi

2
p ð1þ �

4Þ
0 1ffiffi

2
p ð1þ �

4Þ 1ffiffi
2

p ð1� �
4Þ

0
BB@

1
CCA: (2.13)

This system is described by three neutrino mass eigen-
states: a massless one, �1, which is a linear combination of
�e and �a, and two massive ones, �2;20 , which are almost

degenerate in mass squared in the limit � � 1: m2
2;20 ’

m2ð1	 �Þ, m2
2 �m2

20 ¼ 2m2�. In a vacuum, the survival

probability of electron neutrinos Pee with energy E after a
distance L has been traversed is

1� Pee ¼ sin22�

2

�
1� �

2

�
sin2

�
m2ð1þ �ÞL

4E

�

þ sin22�

2

�
1þ �

2

�
sin2

�
m2ð1� �ÞL

4E

�

þ sin4�sin2
�
2m2�L

4E

�
;

¼ sin22�sin2
�
m2L

4E

�
þOð�2Þ: (2.14)

On the other hand, the oscillation probabilities of active
neutrinos into sterile neutrinos are

Pes ¼ sin2�sin2
�
2m2�L

4E

�
; (2.15)

Pas ¼ cos2�sin2
�
2m2�L

4E

�
: (2.16)

Equation (2.14) agrees, of course, with the well-known
two-neutrino oscillation probability in a vacuum in the
limit � � 1. On the other hand, in the very long distance
limit, 2m2�L� E, the oscillation due to the small mass-
squared splitting can be observed on top of the averaged-
out ‘‘active–active’’ oscillations,

lim
L�E=m2

ð1� PeeÞ ¼ sin22�

2
þ sin4�sin2

�
2m2�L

4E

�
:

(2.17)

In the case of two active (�e and �a, a linear combination
of �� and ��) and two sterile neutrinos �s1 and �s2 , the 4�
4 neutrino mass matrix can be expressed as follows, as-
suming all parameters are real:

M� ¼
0 0 m1 cos� m2 sin�
0 0 �m1 sin� m2 cos�

m1 cos� �m1 sin� �m1 �m3

m2 sin� m2 cos� �m3 �m2

0
BBB@

1
CCCA:

(2.18)

For concreteness, we allow � 2 ½0; 	=2
 and define m2
2 >

m2
1. In this case, reexpressing �m1 ¼ m1�1, �m2 ¼ m2�2,

�m3 ¼ ½ðm2
2 �m2

1Þ=m2
�3, and assuming all �i � 1 and �
not too close to 0 or 	=2,

VTM�V ¼
m1ð1þ �1

2 Þ 0 0 0
0 m2ð1þ �2

2 Þ 0 0
0 0 �m1ð1� �1

2 Þ 0
0 0 0 �m2ð1� �2

2 Þ

0
BBB@

1
CCCA; (2.19)

where
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V ¼
Ve1 Ve10 Ve2 Ve20

Va1 Va10 Va2 Va20

Vs11 Vs11
0 Vs12 Vs12

0

Vs21 Vs21
0 Vs22 Vs22

0

0
BBB@

1
CCCA

¼ 1ffiffiffi
2

p U2ð1� EÞ2 �U2ð1þ EÞ2
ð1þ EÞy2 ð1� EÞy2

� �
; (2.20)

and the 2� 2 matrices

U2 ¼ cos� sin�
� sin� cos�

� �
;

ð1	 EÞ2 ¼
1	 �1

4 � m1

m2
�3

	�3 1	 �2
4

 !
:

(2.21)

This system is characterized by four mass eigenstates �1,
�2, �10 , �20 which are pairwise quasidegenerate in mass

squared. Oscillations are described by six distinct oscilla-
tion frequencies: �m2

12 ¼ m2
2 �m2

1 þm2
2�2 �m2

1�1,
�m2

102 ¼ m2
2 �m2

1 þm2
2�2 þm2

1�1, �m2
120 ¼ m2

2 �m2
1 �

m2
2�2 �m2

1�1, �m2
1020 ¼ m2

2 �m2
1 �m2

2�2 þm2
1�1,

�m2
101 ¼ 2m2

1�1, and �m2
202 ¼ 2m2

2�2 (in the limit �1,

�2 � 1). It is convenient to also express the two small
frequencies in terms of the elements of the Majorana mass
matrix for the right-handed neutrinos: �m2

101 ¼ 2m1�m1,

and �m2
202 ¼ 2m2�m2. If all elements of �m are of the same

order of magnitude, one expects �m2
202 >�m2

101 since

m2
2 >m2

1.
In a vacuum, the survival probability of electron neutri-

nos Pee with energy E after a distance L has been traversed
is

1� Pee ¼ sin22�

4

��
1� �1

2
� �2

2

�
sin2

�
�m2

12L

4E

�
þ
�
1� �1

2
þ �2

2

�
sin2

�
�m2

102L

4E

�
þ
�
1þ �1

2
� �2

2

�
sin2

�
�m2

120L

4E

�

þ
�
1þ �1

2
þ �2

2

�
sin2

�
�m2

1020L

4E

��
þ �3

sin2�

2m2

�
ðcos2�m1 � sin2�m2Þ cos

�
�m2

12L

2E

�

þ ðcos2�m1 þ sin2�m2Þ cos
�ð�m2

12 ��m2
110 ÞL

2E

�
þ ð�cos2�m1 þ sin2�m2Þ cos

�ð�m2
110 � �m2

120 ÞL
2E

�

� ðcos2�m1 þ sin2�m2Þ cos
�
�m2

120L

2E

��
þ cos4�sin2

�
�m2

101L

4E

�
þ sin4�sin2

�
�m2

202L

4E

�
; (2.22)

¼ sin22�sin2
�ðm2

2 �m2
1ÞL

4E

�
þOð�2Þ: (2.23)

Above, Oð�2Þ indicates terms which are of order the prod-
uct of two �i, i ¼ 1, 2, 3 (�21, �1�2, etc.). It is trivial to note
that, for small enough �1, �2, �3, the two-flavor vacuum
oscillation expression is reproduced, as expected. Finally,
in the very long baseline limit, assuming that the fast 12
(and 102, 120, 1020) oscillations average out,

lim
L�E=ðm2

2
�m2

1
Þ
ð1� PeeÞ ¼ sin22�

2
þ cos4�sin2

�
2m2

1�1L

4E

�

þ sin4�sin2
�
2m2

2�2L

4E

�
:

(2.24)

Again as expected, in the very long baseline limit the
electron neutrino survival probability is equal to the aver-
aged out ‘‘active oscillation’’ effect, plus two long-
wavelength components driven by the 101 and 202 mass-
squared splittings. Two features are readily visible: One is
that there is no dependency on the off-diagonal �3 parame-
ter [this only appears as Oð�2Þ level corrections to the
coefficients of the different terms in Eq. (2.24)]. The
second is that, assuming cos4�� sin4�, we expect to be
more sensitive to �2 than �1, as the 202 oscillations ‘‘turn
on’’ before the 101-oscillations (remember m2

2 >m2
1).

III. CURRENT CONSTRAINTS

If one assumes that there are three right-handed neutri-
nos with Majorana masses much smaller than the Dirac
neutrino masses that govern ‘‘active’’ neutrino oscillations,
current experimental data can be used to constrain the
right-handed neutrino Majorana mass matrix �m. There
are, however, too many free parameters in �m, and the
individual upper bound on each of these is not very illumi-
nating and outside the aspirations of this work. Such a
bound will also depend on aspects of neutrino masses
and mixing that are currently unknown, including the
neutrino mass hierarchy and jUe3j2. We are, however,
interested in asking what is the constraint on �m assuming
that all its elements are of the same order of magnitude.
Hence we will concentrate on the current experimental
upper bound on the element of �m that is best constrained.
This will become clear in the following paragraphs.
Consider that the three neutrino mass eigenstates �1, �2,

�3 identified experimentally [19] are in reality split into,
say,3 six states �1, �2, �3, �10 , �20 , �30 . As discussed in the

3The current data are also consistent with two right-handed
neutrinos. In this case, the massless neutrino mass eigenstate is
not split, and also does not contain a sterile neutrino component.
This is identical to the 2þ 1 case [Eq. (2.11)] discussed in the
previous section.
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previous section, these splittings will manifest themselves
via new, very long wavelength oscillations characterized
by the �m2

i0i mass-squared differences (i ¼ 1, 2, 3). These,

on the other hand, are proportional to �mii
mi, and the

largest new mass-squared splitting is associated to the
�mii

value associated to the largest m2
i . In turn, the largest

m2
i value depends on the neutrino mass hierarchy. In the

case of an inverted mass hierarchy, m2
2 >m2

1 *
2� 10�3 eV2 is the largest m2

i . On the other hand, if the
hierarchy is normal, m2

3 * 2� 10�3 eV2 is the largest m2
i

while m2
2 >m2

1 and m2
2 * 8� 10�5 eV2.

Ignoring jUe3j-driven effects, �m2
303 is best constrained

by the disappearance of muon-type neutrinos and antineu-
trinos produced in the atmosphere. We estimate that these
experiments are sensitive to �m values that lead to new
oscillation lengths which are not much larger than the
diameter of the earth, or

L303
osc ¼ 1

�3

�
10�3 eV2

m2
3

��
E

100 MeV

�
� 102 km & 104 km:

(3.1)

Hence atmospheric experiments can ‘‘see’’ �3 values larger
than around 10�2. This, in turn, translates into a sensitivity

to �m elements of order �m *
ffiffiffiffiffiffiffiffiffiffiffi
10�3

p
� 10�2 eV. A more

detailed estimate can be extracted from the analyses per-
formed in [20]. In more detail, atmospheric data constrain
the new mass-squared difference to be less than about
10�4 eV2. In the case of a normal mass hierarchy, this
translates into 4�3 � 10�3 eV2 & 10�4 eV2 or �3 & 0:03
and �m & 0:001 eV. The estimate above was made for
m2

3 ¼ 2� 10�3 eV2.

�m2
202 (and �m2

101) is best constrained by solar neutrino

experiments. Ultimately, one is sensitive to oscillation
lengths of order the earth–sun distance (1 A:U: ¼ 149:6�
106 km). Naively, the sensitivity to �2 and �1 can be
estimated from

L101;202
osc ¼ 10�7

�1;2

�
8� 10�5 eV2

m2
1;2

��
E

1 MeV

�
� 1 A:U:

& 1 A:U:;

(3.2)

which translates into �1;2 * 10�7 if both m1 and m2 are of

the same order. This translates into a sensitivity to �m
elements of order �m *

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 10�5

p
� 10�7 eV. Both sen-

sitivity estimates (�3 * 10�2 and �1;2 * 10�7) are quoted

assuming the Dirac neutrino mass hierarchy is normal. In
the case of an inverted hierarchy the sensitivity of atmos-
pheric neutrino experiments to �3 is markedly worse, while
that of solar neutrino experiments to �1;2 is markedly

better. Finally, if the Dirac neutrino masses are quaside-

generate and much larger in magnitude than
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

13

q
�

0:05 eV (the atmospheric mass-squared difference), the

sensitivity to all �i is expected to be better than estimated
above.
In conclusion, constraints on �1;2 from solar neutrino

data provide, by far, the best bound on a given �m element,
regardless of the neutrino mass hierarchy. Therefore, we
will concentrate on the effect of the seesaw right-handed
neutrinos in solar oscillations. We will further assume
jUe3j is small enough so that �3 and �30 related effects in
experiments with electron neutrinos in the initial state are
negligible and will concentrate on an effective system
consisting of the electron neutrino, the linear combination
�a of �� and �� orthogonal to the one in �3;30 , and either

one or two sterile states.

A. Oscillation of solar neutrinos, 2þ 1 case

We first discuss the case of only one right-handed neu-
trino, Eq. (2.11), where m1 � 0. The 2þ 1 scenario cap-
tures most of the physics of the 2þ 2 case, which will be
discussed in the next subsection, and contains all the
relevant information in the limit m1 � m2. In the 2þ 1
case, the effect of right-handed neutrinos is entirely cap-
tured by one dimensionless parameter �. Furthermore, the
neutrino mass responsible for the oscillation of solar neu-
trinos and reactor antineutrinos at KamLAND is uniquely
determined: m2 ¼ ð7:59	 0:21Þ � 10�5 eV2 [21] from
KamLAND data. We will show that � is constrained to
be small enough that this measurement is not affected by
the presence of the sterile neutrino [see Eq. (2.14)]. The
other parameter in M�, the mixing angle �, is mostly
determined by solar data, more specifically those from
SNO and Super-Kamiokande. We will argue later that the
impact of �m on the determination of � is not significant.
We first briefly discuss how neutrinos produced in the

core of the sun propagate towards the surface of the sun and
then to a detector on earth, and calculate the relevant
transition probabilities. We hence construct the effective
Hamiltonian H in the flavor basis in the presence of the
matter [22]:

H ¼ My
�M�

2E
þ

A
0

0

0
@

1
A

¼
Aþ m2sin2�

2E
m2 sin� cos�

2E
m2� sin�

2E
m2 sin� cos�

2E
m2cos2�

2E
m2� cos�

2E
m2� sin�

2E
m2� cos�

2E
m2ð1þ�2Þ

2E

0
BB@

1
CCA; (3.3)

where A ¼ ffiffiffi
2

p
GFNe is the matter potential due to elec-

trons, GF is the Fermi constant, Ne is the position-
dependent electron number density, and E is the neutrino
energy. In principle, we should also consider the effect of
neutral current interactions due to the presence of neutrons.
This contribution, however, is expected to be negligible in
the sun given that it consists mostly of hydrogen (hence
‘‘neutron-poor’’), and the proton and electron neutral cur-
rent contributions cancel out. Under this approximation,
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analytical solutions for the transition probability can be
easily obtained as long asNe is a simple enough function of
the neutrino position.

It is easy to understand how an electron neutrino pro-
duced in the sun’s core propagates first to the sun’s surface
and later to the detectors on earth. It is illustrative to
discuss what happens in the � ! 0 limit. In this case, one
of the eigenvectors of H [Eq. (3.3)], with eigenvalue
m2=2E, is independent of A and is purely sterile. In the
basis defined by Eq. (2.13) it is neither �2 nor �20 but

1=
ffiffiffi
2

p ð�2 þ �20 Þ.4 The other two states are purely active
and can be obtained by diagonalizing the familiar matter-
affected two-by-two neutrino propagation Hamiltonian.
For m2 values of interest, electron neutrinos are produced
in the sun’s core and propagate adiabatically, exiting the

sun as an incoherent mixture of �1 and 1=
ffiffiffi
2

p ð�2 � �20 Þ
with probabilities cos2�M and sin2�M, respectively, where
the matter mixing angle is defined at the production region
by the familiar expression

sin2�M ¼ �sin2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�cos2�� AÞ2 þ�2sin22�
p ;

cos2�M ¼ �cos2�� Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�cos2�� AÞ2 þ�2sin22�
p ;

(3.4)

where � � m2=2E. In this case, Pee at the surface of the
sun (or the earth) is given by

lim
�!0

Psolar
ee ¼ cos2�MjVe1j2 þ sin2�M

2
jVe2 � Ve20 j2

¼ cos2�Mcos
2�þ sin2�Msin

2�; (3.5)

which is the familiar result for solar neutrino oscillations in
the so-called large mixing angle (LMA) region.

Figure 1 depicts the evolution of the instantaneous ei-
genvalues of H inside the sun, as a function of R, the
distance from the sun’s center, for � � 0. For illustrative
purposes we choose, for the Hamiltonian parameters, E ¼
5 MeV, m2 ¼ 8:1� 10�5 eV2, sin2� ¼ 0:3, � ¼
3� 10�1. The LMA Mikheyev-Smirnov-Wolfenstein
(MSW) resonance (between the largest eigenvalue and
the smallest one) can be readily identified (at R� 0:1).
One can also see the impact of � � 0: the top two eigen-
values are split for all values of R. Furthermore, there is
another ‘‘resonance’’ [23] due to the small but nonzero � at
larger R between the two heaviest Hamiltonian eigenstates.
This will be discussed momentarily.

Assuming that the crossing of the LMAMSW resonance
is adiabatic and that � � 1, the electron neutrino survival
probability can be written as

Pee¼

���������������
1 0 0
	 


V

expð�i
0
1Þ 0 0

0 expð�i
0
2Þ 0

0 0 expð�i
0
3Þ

0
BB@

1
CCA

�
1 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Pc

p � ffiffiffiffiffiffi
Pc

p

0
ffiffiffiffiffiffi
Pc

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Pc

p

0
BB@

1
CCA

�
expð�i
1Þ 0 0

0 expð�i
2Þ 0

0 0 expð�i
3Þ

0
BB@

1
CCAVy

mat

1

0

0

0
BB@

1
CCA
���������������

2

;

(3.6)

where [24]

Pc ¼ e��jVs2j2 � e��

1� e�� ;

� ’ 9:8

�
�

10�4

��
m2

8� 10�5 eV2

��
0:862 MeV

E

�
;

(3.7)

V is given by Eq. (2.13), and Vmat is the unitary matrix that
diagonalizes Eq. (3.3) at the production point. Equation
(3.6) can be understood as follows. The electron neutrino is
first expressed in the basis of the Hamiltonian at the
production point. It then propagates adiabatically (each
component acquiring a phase factor 
i, i ¼ 1, 2, 3) until
it gets to the location of the resonance between the two
‘‘heaviest’’ instantaneous Hamiltonian eigenstates. Around
that point, the unitary evolution is characterized by the
matrix containing Pc, which is the crossing probability
between the two Hamiltonian eigenstates. Finally, it prop-
agates from that point until it gets to the earth (each
component acquiring a phase factor 
0

i, i ¼ 1, 2, 3), where
we compute the probability that this state is an electron
neutrino. For a similar discussion of Pee in the presence of
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FIG. 1 (color online). The evolution of instantaneous eigen-
values of the Hamiltonian inside the sun in the 2þ 1 scenario,
Eq. (3.3), for E ¼ 5 MeV, m2 ¼ 8:1� 10�5 eV2, sin2� ¼ 0:3,
� ¼ 3� 10�1.

4In the limit � ! 0, �2 and �20 have the same mass-squared
and hence any linear combination of them is an eigenstate of the
propagation Hamiltonian in a vacuum.
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a new small mass-squared difference, see, for example,
[20].

We can estimate Pee for � * 10�3 when Pc in Eq. (3.7)
vanishes to a very good approximation for all neutrino
energies below 10 MeV. If we consider the case A � �
in the production region (this is an excellent approximation
in the upper energy range of the 8B solar neutrino spec-
trum), Pee is very easy to compute since the electron
neutrino is a Hamiltonian eigenstate at birth (correspond-
ing to the heaviest Hamiltonian eigenstate) and the entire
evolution of the state inside the sun is adiabatic. In sum-
mary, the electron neutrino exits the sun as the heaviest
neutrino mass eigenstate, which we will assume to be �2

(which is the case for � positive) and

Pee ¼ jVe2j2 ¼ sin2�

2

�
1� �

2

�
; (3.8)

Pea ¼ jV�2j2 ¼ cos2�

2

�
1� �

2

�
; (3.9)

Pes ¼ jVs2j2 ¼ 1

2

�
1þ �

2

�
: (3.10)

It is easy to see that under these circumstances there is no
value of � that provides a good fit to the solar neutrino data,
as we will discuss in more detail in Sec. III C.

On the other hand, in the limit � � 10�3, it is sufficient
to keep only the leading order (� ! 0) limit of Vmat. In
more detail,

Vy
mat

1
0
0

0
@

1
A ¼

cos�M
sin�M
0

0
@

1
AþOð�Þ; (3.11)

where �M is defined in Eq. (3.4). At the surface of the sun,
after integrating over the neutrino production region, the
electron neutrino is an incoherent mixture of �1 (with
probability cos2�M) and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pc

p
�2 �

ffiffiffiffiffiffi
Pc

p
�20

5 (with
probability sin2�M). The latter may undergo vacuum os-
cillations on its way between the sun’s surface and the
earth with an oscillation probability given by

Pð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pc

p
�2 �

ffiffiffiffiffiffi
Pc

p
�20 ! �eÞ

¼
��������Ve2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pc

p � Ve20
ffiffiffiffiffiffi
Pc

p
exp

�
�i

2m2�L

2E

���������
2

;

¼ sin2�

2

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pcð1� PcÞ

q
cos

�
2m2�L

2E

��
: (3.12)

Combining all the information above,

Pee ¼ cos2�Mcos
2�þ sin2�M

sin2�

2

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pcð1� PcÞ

q

� cos

�
2m2�L

2E

��
;

Pea ¼ cos2�Msin
2�þ sin2�M

cos2�

2

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pcð1� PcÞ

q

� cos

�
2m2�L

2E

��
;

Pes ¼ sin2�M
1

2

�
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pcð1� PcÞ

q
cos

�
2m2�L

2E

��
: (3.13)

Figure 2 depicts Pe� � ¼ e, a, s for solar neutrinos as a

function of energy for m2 ¼ 7:6� 10�5 eV2, sin2� ¼
0:31, and two different values of � ¼ 1� 10�7 and � ¼
5� 10�8. In order to compute Pe� , we integrate over the

neutrino production region in the sun’s core, taking into
account that �M depends on Ne at the production point. For
high-energy solar neutrinos Pes is small and Pee is very
similar to the standard LMA solution to the solar neutrino
puzzle. For low-energy solar neutrinos, the oscillatory
pattern becomes more pronounced and Pes becomes sig-
nificantly nonzero. As already briefly discussed, for much
larger values of �, Pc ! 0 and Pes ’ sin2�M=2 is roughly
equal to one-half for high-energy solar neutrinos. On the
flip side, for smaller values of �, Pc ! 1=2 and the argu-
ment of the cosine in Eq. (3.13) is vanishingly small. In this
case, as already discussed, sterile neutrino effects disap-
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FIG. 2 (color online). Pe� for solar neutrinos at the surface of
the earth, � ¼ e, a, s, as a function of neutrino energy for m2 ¼
7:6� 10�5 eV2, sin2� ¼ 0:31. Top: � ¼ 1� 10�7. Bottom:
� ¼ 5� 10�8.

5An irrelevant relative phase factor between �2 and �20 has
been omitted.
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pear and we recover the standard LMA solution to the solar
neutrino puzzle.

B. Oscillation of solar neutrinos, 2þ 2 case

It is straightforward to generalize the results obtained in
the previous subsection to the case of two active (�e and
�a) and two sterile neutrinos (�1 and �2). In this case, the
Hamiltonian that governs neutrino oscillations in neutral
hydrogen matter characterized by an electron number den-
sity Ne is

H¼My
�M�

2E
þ

A
0
0

0

0
BBB@

1
CCCA

¼ U2

12

� �

�
Acos2�þm2

1

2E Acos�sin�
�1m

2
1

2E

�3ð�m
2m1
m2

Þ
2E

Acos�sin� Asin2�þm2
2

2E
�3�m

2

2E

�2m
2
2

2E
�1m

2
1

2E
�3�m

2

2E

m2
1
ð1þOð�2ÞÞ

2E Oð�2Þ
�3ð�m

2m1
m2

Þ
2E

�2m
2
2

2E Oð�2Þ m2
2
ð1þOð�2ÞÞ

2E

0
BBBBBBBB@

1
CCCCCCCCA

� Uy
2

12

 !
:

(3.14)

Here, M� is given by Eq. (2.18), while U2 and 12 are
defined in Eq. (2.21). We define �m2 � m2

2 �m2
1. Note

that a diagðU2; 12Þ rotation expresses the Hamiltonian in an
active–sterile-mass-squared basis where the top two com-
ponents consist of two mass-squared states that are mostly
active, while the bottom two components consist of two
mass-squared states that are mostly sterile. The
Hamiltonian is block diagonal in this basis in the limit
�1;2;3 ! 0. In this limit, of course, we are left with the

standard MSW Hamiltonian for two active neutrino
flavors.

Figure 3 depicts the evolution of the instantaneous ei-
genvalues ofH inside the sun, as a function R, the distance
from the sun’s center, for �1;2;3 � 0. For illustrative pur-

poses, we choose E ¼ 10 MeV, m2
1 ¼ 1� 10�6 eV2,

m2
2 ¼ 8:2� 10�5 eV2, sin2� ¼ 0:32, �1 ¼ 3� 10�1,

�2 ¼ 4� 10�1, and �m3 ¼ 10�3 eV for the Hamiltonian
parameters. The LMA MSW resonance (between the larg-
est eigenvalue and the smallest one) can be readily identi-
fied (at R� 0:1). One can also see the impact of �1;2;3 � 0:
the top two and the bottom two eigenvalues are split for all
values of R. Similar to the 2þ 1 case discussed in the
previous subsection, there are two other resonances [23]
due to the small but nonzero �1;2;3 at larger R between the

two largest and two smallest Hamiltonian eigenstates.
From the Hamiltonian Eq. (3.14), it is easy to see that these
are governed by the small parameters �1 (resonance be-

tween the two lightest states) and �2 (resonance between
the two heaviest states). �3 connects the heaviest active
state to the lightest ‘‘sterile’’ state (and vice versa) and, for
physically interesting values of the neutrino oscillation
parameters, its effects are not visible.
As in the 2þ 1 case, �m2 ¼ ð7:59	 0:21Þ � 10�5 eV2

is fixed by the results of the KamLAND experiment, and
sin2� is constrained to be large. In this case, electron
neutrino production in the sun’s core and subsequent
propagation can be described as follows. The electron
neutrino is produced as an incoherent superposition of
the two mostly active states [this is true as long as A �
�1;3m

2
1=ð2EÞ for all values of E of interest]. The two

components then evolve adiabatically until they hit the
resonances governed by �1 and �2. Hence the electron
neutrino exits the sun as an incoherent mixture offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pc1

p
�1 �

ffiffiffiffiffiffiffiffi
Pc1

p
�10 (with probability cos2�M) andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Pc2

p
�2 �

ffiffiffiffiffiffiffiffi
Pc2

p
�20 (with probability sin2�M).

6 Here,
�M is defined by Eq. (3.4). The crossing probabilities are
given by

Pc;i ¼ e��ijVsii
j2 � e��i

1� e�� ;

�i ’ 9:8

�
�i

10�4

��
m2

i

8� 10�5 eV2

��
0:862 MeV

E

�
;

i ¼ 1; 2; (3.15)

where Vsii are given in Eq. (2.20). On their way to the

surface of the earth, both of these states can undergo
vacuum oscillations driven by the mass-squared differ-
ences 2m2

1�1 and 2m2
2�2 [see Eq. (2.24)]. One can write
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FIG. 3 (color online). The evolution of instantaneous eigen-
values of the Hamiltonian inside the sun in the 2þ 2 scenario,
Eq. (3.14), for E ¼ 10 MeV, m2

1 ¼ 1� 10�6 eV2, m2
2 ¼ 8:2�

10�5 eV2, sin2� ¼ 0:32, �1 ¼ 3� 10�1, �2 ¼ 4� 10�1, and
�m3 ¼ 10�3 eV.

6Relative phases between �i and �i0 , i ¼ 1, 2 have been
ignored as neither of them is observable in practice.
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Pee ¼ cos2�M �Pð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Pc1

p
�1�

ffiffiffiffiffiffiffiffi
Pc1

p
�10 ! �eÞ

þ sin2�M �Pð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Pc2

p
�2�

ffiffiffiffiffiffiffiffi
Pc2

p
�20 ! �eÞ; (3.16)

where Pð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pc1

p
�1 �

ffiffiffiffiffiffiffiffi
Pc1

p
�10 ! �eÞ is given by

Eq. (3.12) with Pc, m, � replaced by Pc1, m1, �1, respec-

tively, and Ue2;e20 replaced by Ue1;e10 . Similarly,

Pð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pc2

p
�2 �

ffiffiffiffiffiffiffiffi
Pc2

p
�20 ! �eÞ is given by Eq. (3.12)

with Pc, m, � replaced by Pc2, m2, �2, respectively. After
the dust settles,

Pee ¼ cos2�M
cos2�

2

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc1ð1� Pc1Þ

q
cos

�
m2

1�1L

E

��
þ sin2�M

sin2�

2

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc2ð1� Pc2Þ

q
cos

�
m2

2�2L

E

��
;

Pea ¼ cos2�M
sin2�

2

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc1ð1� Pc1Þ

q
cos

�
m2

1�1L

E

��
þ sin2�M

cos2�

2

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc2ð1� Pc2Þ

q
cos

�
m2

2�2L

E

��
;

Pes ¼ cos2�M
1

2

�
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc1ð1� Pc1Þ

q
cos

�
m2

1�1L

E

��
þ sin2�M

1

2

�
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc2ð1� Pc2Þ

q
cos

�
m2

2�2L

E

��
;

(3.17)

where Pes � Pes1 þ Pes2 and �M is given by Eq. (3.4). In
all expressions above, we have assumed all �1;2;3 much
smaller than 1. This will be justified a posteriori (see
Sec. III C) for �1 and �2, and we postulate that it is valid
for �3. The impact of a ‘‘large’’ �3 is mostly felt in the
diagonalization of H [Eq. (3.14)] in the production region,
which we assumed is properly described only by the matter
mixing angle �M [see Eq. (3.11)]. The bound one would
obtain on �m3 via these effects is much worse (by many
orders of magnitude) than the bounds on �m1 and �m2

discussed in the next subsection. As explained earlier, we
are interested in the most stringent bound on any element
of �m and will not consider these �3 effects henceforth. On
a related note, Eq. (3.17) does not depend on �3, similar to
Eq. (2.24). For this reason we will not discuss �3 effects or
bounds.

Figure 4 depicts Pe� for solar neutrinos at the surface of

the earth, � ¼ e, a, s, as a function of neutrino energy for
m2

1 ¼ 1:0� 10�6 eV2, m2
2 ¼ 8:2� 10�5 eV2, sin2� ¼

0:31, and �1 ¼ 1� 10�6, plus two different values of �2 ¼
1� 10�9 and �2 ¼ 1� 10�7. It is easy to see that domi-
nant �1 effects are most visible for low-energy solar neu-
trinos, when cos2�M is significantly different from zero
[Fig. 4 (top)]. On the other hand, dominant �2 effects are
identical to the ones observed in the 2þ 1 case, where �2
plays the role of �. The main distinction is the fact that in
the 2þ 1 casem2 was constrained by KamLAND, while in
the 2þ 2 case neitherm2

1 norm
2
2 is strongly constrained by

data, except through their difference: m2
2 �m2

1 ¼
7:6� 10�5 eV2. In the case when both �1 and �2 are
non-negligible [Fig. 4 (bottom)], one can see that �2 effects
are dominant for high-energy solar neutrinos (cf. Figure 2),
while �1 and �2 effects ‘‘add up’’ for the low-energy solar
neutrinos.

C. Constraints from experimental data

The flux of electron neutrinos from the sun has been
measured, sometimes as a function of energy, by a variety
of experiments and in a variety of ways. The flux of active

neutrinos from the sun has also been unambiguously mea-
sured for 8B neutrinos. Here, we use recent data from [25–
31] in order to constrain � (in the 2þ 1 case) and �1;2 (in
the 2þ 2 case). In order to compute the expected event
rates at the different experiments we use parameters from
the BS05(OP) version of the standard solar model [32].
We do not attempt an exhaustive analysis of all neutrino

data but instead concentrate on the features that most
impact our results. We make use of the following observ-
ables. More details are provided in the Appendix.
(i) 
CC (SNO), the integrate 8B neutrino flux measured

via �e þ 2H ! e� þ pþ p at SNO [25–27]. This
observable is sensitive only to the electron neutrino
component of the solar neutrino flux.
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FIG. 4 (color online). Pe� for solar neutrinos at the surface of
the earth, � ¼ e, a, s, as a function of neutrino energy for m2

1 ¼
1:0� 10�6 eV2, m2

2 ¼ 8:2� 10�5 eV2, sin2� ¼ 0:31. Top:

�1 ¼ 1� 10�6, �2 ¼ 1� 10�9. Bottom: �1 ¼ 1� 10�6, �2 ¼
1� 10�7.
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(ii) 
NC (SNO), the integrated 8B neutrino flux mea-
sured via �e;a þ 2H ! �e;a þ nþ p at SNO [25–

27]. This observable is sensitive to the active neu-
trino component of the solar neutrino flux.

(iii) 
ES (SuperK), the 8B neutrino flux measured via
�e;a þ e� ! �e;a þ e� at Super-Kamiokande [28]

integrated over a handful of recoil electron energy
bins. This observable is sensitive to the active neu-
trino component of the solar neutrino flux. The cross
section for muon or tau-type neutrino–electron scat-
tering is about 0.16 times that of electron-type neu-
trino–electron scattering when integrated over the 8B
neutrino energy spectrum. SNO also has data on
neutrino–electron elastic scattering (also included),
but with significantly fewer statistics than Super-
Kamiokande.

(iv) 
ES (Borexino), the 7Be neutrino flux7 measured via
�e;a þ e� ! �e;a þ e� at Borexino [31]. This ob-

servable is sensitive to the active neutrino compo-
nent of the solar neutrino flux. The cross section for
muon or tau-type neutrino–electron scattering is
about 0.21 times that of electron-type neutrino–elec-
tron scattering for 7Be neutrinos.

(v) 
Ga, the measurement of the solar neutrino flux
using inverse  decay in gallium [29]. This observ-
able is sensitive to neutrinos produced in all distinct
neutrino-producing fusion reactions, but only to the
electron neutrino component of the solar neutrino
flux.

(vi) 
Cl, the measurement of the solar neutrino flux
using inverse  decay in chlorine [30]. This observ-
able is sensitive to neutrinos produced in all distinct
neutrino-producing fusion reactions, except those
involving the pþ p reaction, but only to the elec-
tron neutrino component of the solar neutrino flux.

All flux measurements are defined assuming that the in-
coming neutrinos are all electron neutrinos. For example,


ESðBorexinoÞ ¼ 
7Beð��eePee þ ��aePeaÞ
��ee

¼ 
7Be

�
Pee þ

��ae

��ee

Pea

�
; (3.18)

where 
7Be is the standard solar model expectation for the
7Be solar neutrino flux and ���e is the cross section for

elastic �-type neutrino–electron scattering, � ¼ e, a.
Before presenting the results of a �2 fit to the data

spelled out above, it is illustrative to describe the dominant
aspects of the data that constrain the presence of the extra
mass-squared differences. For 8B neutrinos, the combined

SNO and Super-Kamiokande data not only reveal that
Pee � 0:3 for neutrino energies above a few MeV, but
also reveal that Pea � 0:7. A more detailed analysis, pre-
sented in the Appendix, reveals that for 8B neutrinos,
Pes < 0:37 at the 3� confidence level. As advertised, this
rules out at least � * 10�3 in the 2þ 1 case [see Eq. (3.10)
]. Upon further scrutiny, it is easy to see that, for � * 10�6,
Pes � 0:5 in the 2þ 1 case, which is ruled out by the
current data.
For solar neutrino energies below 1 MeV or so, infor-

mation regarding neutrino oscillations is dominated by
Borexino, the Homestake experiment, and the gallium
experiments. The Borexino experiment measures, with
good precision, mostly for 7Be solar neutrinos (E� ¼
0:862 MeV), Pee ¼ 0:56	 0:10 in the limit Pes ! 0
[31]. For larger values of Pes, Pee is driven towards higher
values in order to compensate for the depletion of the �a

component of the 7Be solar neutrino flux at the earth. This
effect is depicted in more detail in the Appendix. For lower
energy neutrinos, the gallium experiments, taking into
account the data, mostly, from Borexino, SNO, and
Super-Kamiokande, constrain Pee � 0:55 for pp neutri-
nos, and are insensitive to whether those convert into active
or sterile neutrinos.8

Figure 5 depicts ��2 ¼ �2 � �2 (� ¼ 0) as a function
of �, in the case of two active and one sterile neutrino, for
m2 ¼ 7:6� 10�5 eV2 and sin2� ¼ 0:31. �2 is the result of
a �2 fit to the data described above, and we will use it in
order to establish an upper bound on �. More specifically,
we will state that values of � associated to ��2 > 4, 9 are
ruled out at the two, three sigma level. While we quote a
bound for a fixed value ofm2, sin2�, we have verified that a
very similar bound is obtained for different values of these
oscillation parameters (in which case we also include the
measurement ofm2 from the KamLAND experiment in the
�2 function). We note, for example, that there is no good fit
for values of � outside the currently best fit region for
sin2�12 [21], even if one considers significant values of �.
From the figure, we estimate that the largest value of �
allowed at the three sigma level is � < 2:0� 10�7, while at
the two sigma level � < 1:2� 10�7. Furthermore, the
region 2:4� 10�8 < �< 7:1� 10�8 is ruled out at the
two sigma level. In this region Pes is large for solar
neutrino energies around 1 MeV, while Pee is less than
one-half, in contradiction with the Borexino data. For
slightly larger values of �, the peak in Pes moves to solar
neutrino energies larger than 1 MeV but smaller than the
threshold for the SNO and Super-Kamiokande experi-
ments, where there is virtually no experimental informa-

7Borexino is also sensitive to neutrinos produced in the CNO
cycle. These account for around 10% of the neutrinos with
energies around those of the 7Be neutrinos and have been
neglected. The current Borexino data are consistent with a
vanishing CNO neutrino flux [31].

8The bound on Pee depends indirectly on Pes for higher energy
neutrinos as these modify the measurement of Pee for the high-
energy neutrinos and hence the extraction of Pee for pp neu-
trinos from the gallium data. Details are provided in the
Appendix.
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tion. In this case, the fit to the data is just as good as the one
obtained for � ¼ 0.

It is also worthwhile pointing out that, for �� 1� 10�7,
Pee for

8B neutrinos is expected to be mostly constant as a
function of energy, contrary to the standard LMA case,
where a slight decrease of Pee as a function of energy is
expected. This behavior is observed for the appropriate
parameter choices in other ‘‘new physics’’ scenarios in-
cluding nonstandard neutrino interactions [33], mass-
varying neutrinos [34], and the introduction of light sterile
neutrinos that mix very weakly with active ones [35]. Such
a behavior was advertised as solution to the fact that the
7Be electron neutrino flux, extracted using the chlorine
data, was lower than the one predicted by the canonical
LMA solution to the solar neutrino puzzle. This tension in
the data has been significantly relaxed with the introduc-
tion of those from Borexino.

The bounds above translate into 2m2� < ð1:8; 3:0Þ �
10�11 eV2 as the two, three sigma upper bound on the
induced small mass-squared difference and �m <
ð1:0; 1:7Þ � 10�9 eV at the two, three sigma level. Note
that our bounds agree qualitatively with those obtained,
under slightly different circumstances and after some re-
interpretation of the relevant observables, in [20]. The
analysis in [20] did not include results from Borexino,
not available before 2008.

In the 2þ 2 case, we wish to place bounds on both �1
and �2, and discuss which between �m1 ¼ m1�1 and �m2 ¼
m2�2 is more severely constrained. Unlike the 2þ 1 case,
the data (mostly from KamLAND) do not specify m2

1 or

m2
2, but constrain m2

2 �m2
1 ¼ 7:6� 10�5 eV2. As dis-

cussed in the previous subsection, the solar data constrain
m2

1�1 and m2
2�2. Keeping all this in mind, we will first

discuss the bounds of �1 and �2 for fixed m2
1 ¼

1:0� 10�6 eV2 and m2
2 ¼ 7:7� 10�5 eV2 and then dis-

cuss the bounds on �m for various values of m2
1, m

2
2 by

varying these two masses while maintaining m2
2 �m2

1

constant and in agreement with the KamLAND data. As
in the 2þ 1 case, we will discuss bounds for fixed m2

2 �
m2

1 ¼ 7:6� 10�5 eV2 and sin2� ¼ 0:31. We have checked
that a very similar bound is obtained when one allows these
two parameters to vary in the fit.
In more detail, we describe the bounds on �1 in the limit

of very small �2 and vice versa. The reason for doing this is
that �1 � �2 correlated effects are not very large. In the
limit where �1 effects are negligible, �2 bounds are similar
to those on � in the 2þ 1 case. In more detail, 2m2

2�2 <
3:0� 10�11 eV2 at the three sigma level. In the limit
where �2 effects are negligible, we obtain, following a
procedure identical to the one discussed in the 2þ 1 case
above, �1 < 5:3� 10�7 at the two sigma level and �1 <
8:8� 10�7 at the three sigma level for m2

1 ¼ 1:0�
10�6 eV2. This translates into a new mass-squared differ-
ence 2m2

1�1 < ð1:1; 1:8Þ � 10�12 eV2 at the two, three
sigma level.
We are interested in upper bounds for the elements of

�m. From the bounds on the mass-squared differences
above, we obtain, at the three sigma level,

�m1 < 8:8� 10�10 eV

�
10�3 eV

m1

�
; (3.19)

�m2 < 1:7� 10�9 eV

�
8:8� 10�3 eV

m2

�
: (3.20)

These bounds are obtained for sin2� ¼ 0:31 and m2
2 �

m2
1 ¼ 7:6� 10�5 eV2 and are hence correlated. In the

case of an inverted mass hierarchy, for example, if m1 ¼
50:000� 10�3 eV while m2 ¼ 50:076� 10�3 eV, the
three sigma bounds above translate into �m1 < 1:8�
10�11 eV and �m2 < 3:0� 10�10 eV. On the flip side,
while m2

2 > 7:6� 10�5 eV2 is bounded from below, m1

can be arbitrarily small, which indicates that the upper
bound on �m1, while naively stronger than that on �m2,
could be significantly worse.9

Before moving on to current nonsolar and future con-
straints on �m, we would like to emphasize a few relevant
points. We have not considered earth matter effects while
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FIG. 5. �2 � �2 (� ¼ 0) as a function of � for m2 ¼ 7:6�
10�5 eV2, sin2� ¼ 0:31, in the 2þ 1 case.

9Strictly speaking, some of the approximations made in Sec. II
fail when m1 is of order �m1 and hence the bound Eq. (3.19) is
not applicable when m1 & 10�6 eV. In this case however, the
generic upper bound on �m, as discussed in the introduction to
Sec. III is dominated by Eq. (3.20). For even smaller values of
m1 & 10�9 eV we anticipate that there are no relevant effects
due to the fact that our approximations fail. On the contrary, in
this case we expect oscillations due to sterile effects to be
entirely dominated by the 2þ 1 case discussed here.

PSEUDO-DIRAC NEUTRINOS IN THE NEW STANDARD MODEL PHYSICAL REVIEW D 80, 073007 (2009)

073007-11



computing our oscillation probabilities, neither have we
worried about large seasonal variations of the solar neu-
trino flux induced by the very large oscillation length
induced by the new, very small mass-squared differences.
The fact that we can ignore day–night effects is justified a
posteriori. Earth matter effects are most significant when
the matter potential of the earth is of order �m2=2E. For
7Be neutrinos (E ¼ 0:862 MeV) large (more than 1%)
day–night effects are expected for �m2 * 10�8 eV2 (see,
for example, [36]), so we estimate that, for solar neutrino
energies above 100 keV (below the threshold of the gal-
lium experiments), large day–night effects are expected for
�m2 * 10�9 eV2. This is 2 orders of magnitude larger
than the worse upper obtained for jm2

2 �m2
20 j. These esti-

mates are in agreement with more detailed computations
performed in [20]. Seasonal variations, on the other hand,
are expected for E & 1 MeV if the bounds on �m are
saturated. These could be observed in, for example, the
Borexino experiment. For an estimate of how large an
effect one may hope to observe, we point readers to
[20,37].

IV. OTHER CONSEQUENCES AND FUTURE
SENSITIVITY

Whether the neutrinos are Dirac or pseudo-Dirac fermi-
ons is a notoriously difficult issue to resolve, especially in
the limit when the right-handed neutrino mass matrix �m is
tiny. Other than observing the long-wavelength oscillation
driven by the new mass-squared differences between the
quasidegenerate mass-squared states, it seems virtually
impossible to construct observables that will reveal the
pseudo-Dirac nature of the neutrinos.

It is well-known that for pseudo-Dirac neutrinos which
arise from a seesaw Lagrangian [Eq. (1.1)] the neutrino
exchange contribution to neutrinoless double-beta decay
vanishes almost perfectly [17]. One way of understanding
this is to note that the contributions of the different quasi-
degenerate states to neutrinoless double-beta decay are
equal and opposite, and cancel pairwise. Another way of
appreciating this fact is to see that, when all neutrinos are
lighter than tens of MeV, the rate for neutrinoless double-
beta decay is proportional to the ee element of the full
neutrino mass matrix, which, as one can quickly read off
Eq. (2.1), is exactly zero. This ‘‘property’’ is present even
when the neutrinos are not pseudo-Dirac states, and de-
pends only on all right-handed neutrino masses being small
enough [8,9]. For the same reason, ‘‘all’’ (for a long list of
observables see, for example, [38]) potentially observable
lepton-number violating phenomena are also guaranteed to
vanish almost perfectly if the only sources of lepton-
number violation are the Majorana neutrino masses. As
far as kinematical probes of the neutrino masses are con-
cerned—the most stringent laboratory bounds come from
tritium beta-decay experiments [19]—the neutrinos behave
as if they were Dirac fermions, their ‘‘pseudo’’ nature

completely obscured by the very stringent constraints
from oscillation experiments.
One also needs to consider cosmological bounds on the

number of neutrino species since, in the scenarios consid-
ered here, there are five or six light neutrinos compared
with three in the case of, say, a high-scale version of the
seesaw mechanism (M � 100 GeV, where M are the
right-handed neutrino Majorana mass parameters).
Again, the situation here is, in practice, indistinguishable
from the case of Dirac neutrinos. It is well-known that in
the case of light neutrinos, cosmological bounds on the
number of light degrees of freedom cannot distinguish
three light Majorana from three light Dirac neutrinos.
The reason is that neutrino masses are very small and
right-handed neutrinos are gauge singlets, meaning that,
in the early universe, the right-handed neutrino degrees of
freedom, which exist in the case of Dirac neutrinos, are not
populated. In the pseudo-Dirac scenarios we are consider-
ing here, the situation is very similar. For small enough
right-handed neutrino masses, the sterile neutrinos are too
weakly coupled and their states are not significantly popu-
lated in the early universe [20,39,40]. Given the bounds
obtained in the previous case, this is exactly the case, and
we do not expect any observable consequence of the new
light degrees of freedom as far as cosmological observ-
ables are concerned.
In the near future, current solar neutrino experiments are

expected to improve our understanding of very small right-
handed neutrino masses. Borexino will accumulate more
data (and their systematic uncertainties are expected to go
down) and improve on their results published in [31]. As
mentioned above, Borexino is expected to measure the
solar neutrino flux as a function of time, and may be
sensitive to anomalous seasonal variations. The absence
of such effects should help erase the local minimum around
� ¼ 1� 10�7 in the 2þ 1 ��2 function, depicted in
Fig. 5, and improve on the bound on � (�2) in the 2þ 1
(2þ 2) case. It is also expected that SNO and Super-
Kamiokande will be able to access the low-energy end
(E< 5 MeV) of the 8B solar neutrino spectrum and shed
more light on the expected (from the canonical LMA
solution) rise in Pee as the neutrino energy decreases.
Future neutrino experiments are aimed at measuring

with more precision (and in real time) the pp solar neutrino
flux and that of the pep and CNO neutrinos [41]. These
would not only provide a more precise measurement of Pee

for very low-energy solar neutrinos (the pp neutrinos, E &
0:5 MeV) but would also fill the energy ‘‘gap’’ between
7Be neutrinos and 8B neutrinos (the pep and CNO neu-
trinos, E� 1–2 MeV). Indeed, Borexino is currently
working on controlling the cosmogenic 11C background
in order to access the pep and CNO neutrino fluxes. It is
expected that such results, if consistent with the canonical
LMA solution to the solar neutrino puzzle, will improve,
perhaps by an order of magnitude, the bounds on � in the
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2þ 1 case or �1;2 in the 2þ 2 case discussed in the

previous section.
Access to new neutrino oscillation lengths much longer

than the earth–sun distance will only be provided by as-
trophysical neutrinos, which travel galactic and extraga-
lactic distances. In particular, it has been pointed out [42]
that studies of the flavor composition of ultrahigh energy
neutrinos, to which neutrino telescopes are sensitive, are
sensitive to the new mass-squared differences that charac-
terize pseudo-Dirac neutrinos if these are as small as
10�16 eV2 or perhaps 10�18 eV2. Taking these estimates
at face value, one would be sensitive to right-handed
neutrino masses

�m > 1:1� 10�17

�
�m2

10�18 eV2

�
eV; (4.1)

where �m2 is the mass-squared difference which can be
potentially accessed by neutrino telescopes [42]. The sen-
sitivity above is estimated in the limit where m2

3 ¼ 2�
10�3 eV2 (in which case the neutrino mass hierarchy is
normal) and is expected to be more inclusive if all neutrino
masses are larger, as was observed in the 2þ 2 analysis in
the previous section.

V. SUMMARY, CONCLUDING THOUGHTS

The addition of gauge-singlet Weyl fermions to the
standard model Lagrangian is a very simple and effective
way of rendering the neutrinos massive, as required by
experimental observations. The most general renormaliz-
able Lagrangian consistent with this enlarged particle con-
tent, Eq. (1.1), while deceptively simple, provides a
colorful spectrum of different phenomenological conse-
quences, depending on the values of the new parameters
in the �SM.

For any value of the parameters Mij (gauge-singlet

Majorana mass parameters), it is possible to obtain mostly
active neutrino masses in the range highlighted by experi-
ments by properly adjusting the value of the Yukawa
couplings ��i. It is, hence, sufficient to discuss the different
phenomenological opportunities for testing the �SM as a
function of Mij. Further simplifying our discussion, we

will consider that all Mij are of the same order of magni-

tude, and will refer to all of them as M.
The largest allowed value of M is of order 1015 GeV

[43]. This comes from the requirement that Eq. (1.1) is
appropriate to describe physics at energy scales of orderM
(unitarity and perturbativity). At these high energies (and
all the way down to M values of order the weak scale) the
only directly observable consequences of Eq. (1.1) are the
small Majorana masses of the mostly active neutrinos.
More indirectly, lepton-number violating processes involv-
ing gauge-singlet fermions in the early universe may be
responsible for the matter-antimatter asymmetry of the
universe, through the leptogenesis mechanism [44].

For weak-scaleM values (1 MeV & M & 100 GeV) the
theory contains new neutral heavy leptons, which are,
predominantly, gauge-singlet fermions which should be
produced in a variety of weak processes including
charged-lepton and meson decays (see, for example,
[11,12,14]). These neutral heavy leptons should also be
produced in collider experiments, and in principle, their
decays should point to lepton-number violation at colliders
[45]. Indirectly, the presence of neutral heavy leptons is
expected to mediate charged-lepton flavor violating phe-
nomena and the apparent violation of universality of the
weak coupling constant and of unitarity of the neutrino
mixing matrix. Whether any of these phenomena are ob-
servable in practice depends on the amount of mixing
between the active neutrinos �a¼e;�;� and the gauge-singlet

fermions, �s¼s1;s2;.... Figure 6 depicts a naive estimate, as a

function of M, of this mixing angle sin2�as given by
Eq. (1.1). In the limit M � m�,

sin 2�as � m�

M
; (5.1)

where m� are the mostly active neutrino masses (m1, m2,
m3, constrained by oscillation experiments). The figure
depicts sin2�as for three different values of the mostly
active neutrino masses, according to guidance provided
by the current neutrino data. Experiments are sensitive to
neutral heavy leptons if sin2�as*10�4 (best case sce-
nario), which leads one to naively conclude that Eq. (1.1),
if responsible for the observed neutrino masses, cannot be
tested experimentally forM values in this range (1 MeV &
M & 100 GeV). It is, however, important to emphasize
that Eq. (5.1) can be violated and much larger sin2�as
values are consistent with the oscillation data [14,15].
Whether this possibility is realized in nature can only be
established experimentally.
Sub-MeV neutral heavy leptons (1 eV & M & 1 MeV)

can make their presence known in astrophysics, cosmol-
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FIG. 6 (color online). Estimate of the magnitude of the mixing
between active and sterile neutrinos sin2�as as a function of the
right-handed neutrino mass MN , for different values of the
mostly active neutrino masses, m� ¼ 10�1, 10�2, and
10�5 eV. The hatched region qualitatively indicates the values
ofMN that are currently excluded by the world’s particle physics
data.
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ogy, and neutrino oscillation experiments. If M values are
in this range, it also turns out that, while neutrinos are
Majorana fermions, the expected rates for all potentially
observable lepton-number violating phenomena are
strongly suppressed, as the contributions from the mostly
active states cancel those from the mostly sterile ones [8,9].
In this mass range, mostly sterile neutrinos become an
interesting dark matter candidate [13], and at the same
time, part of this mass region is only allowed if one can
bypass cosmological constraints on the number of neutrino
species [9].

In this paper, we were interested in new light neutrinos,
or small values of M (zero � M & 1 eV). In this case,
Eq. (5.1) does not apply at all, and active–sterile neutrino
mixing is naively expected to be large. M values of order
the active neutrino masses m1, m2, m3 are most likely
excluded by failed searches for sterile neutrinos in oscil-
lation experiments. A detailed discussion of this parameter
region is very dependent on the structure of the Yukawa
matrix � and is not the subject of this paper. Instead, we
concentrated in the limit M � m1, m2, m3.

If the gauge-singlet Majorana neutrino masses are much
smaller than the Dirac neutrino massesm�i ¼ ��iv, where
v is the vacuum expectation value of the neutral component
of the Higgs doublet, neutrinos are classified as pseudo-
Dirac neutrinos. When Mij ¼ 0 for all i, j, neutrinos are

Dirac fermions and all experimental data can be accom-
modated perfectly. For Mij � 0 but small enough, this

conclusion remains true. Our goal was to estimate above
what small but nonzero value of Mij is Eq. (1.1) ruled out

by experimental data. We find that the most stringent
constraints come from the current solar neutrino data.
The most conservative upper bound on the best constrained
element of the gauge-singlet Majorana mass matrix, in the
basis defined in Sec. II, isM< 1:7� 10�9 eV at the three
sigma confidence level. This bound is significantly
stronger if the neutrino mass hierarchy is inverted or if
the lightest neutrino mass (m1 in the case of a normal mass
hierarchy) is larger than 10�3 eV.

The hatched region in Fig. 6 indicates the values of M
for which Eq. (1.1) is excluded as an explanation for the
nonzero neutrino masses. It is remarkable that while pro-
viding a good quantitative fit to all particle physics data,
the parameters of Eq. (1.1) are only miserably constrained.
All available neutrino data allow one to ‘‘measure’’ M 2
½0; 10�9
 eV [M 2 ½10�9; 1015
 GeV, while the largest
��i 2 ½2� 10�13; 10
. It is clear that we have only begun
to properly probe the origin of neutrino masses.

If neutrino masses are indeed a consequence of Eq. (1.1)
with M & 10�9 eV, this and the next generation of solar
neutrino experiments, especially those aiming at the pp,
7Be, and pep solar neutrinos, will provide positive evi-
dence for new very light neutrinos and new very small
mass-squared different, as long as the right-handed neu-
trino Majorana mass parameters are not much smaller (say,

an order of magnitude) than the upper bounds discussed
here. The evidence for new neutrino degrees of freedom
would manifest itself via a significant difference between
future experimental observations and expectations from
the standard LMA solution to the solar neutrino puzzle.
By carefully mapping the electron neutrino survival proba-
bility as a function of energy one should be able to deter-
mine some of the elements of the right-handed neutrino
Majorana mass matrix. If the model discussed here is in-
deed realized in nature but M values are too small and
outside the reach of solar neutrino experiments (defined by
the earth–sun distance and the solar neutrino energy spec-
trum), the pseudo-Dirac nature of the neutrinos may still
manifest itself in studies of ultrahigh energy neutrinos of
extragalactic origin, as discussed in Sec. IV.
Finally, if neutrino masses are a consequence of the

existence of new gauge-singlet degrees of freedom N
with very small Majorana masses M [Eq. (1.1) with M �
�v], one will still have to contend with two ‘‘numerolog-
ical’’ puzzles: why are the neutrino Yukawa couplings so
small, and why are the right-handed neutrino Majorana
masses less than, say, 10�9 eV? Several mechanisms have
been proposed in the literature in order to explain very
small neutrino Yukawa couplings, including models with
extra space dimensions (of the flat and the warped vari-
eties) [46] and models with new, spontaneously broken
symmetries (see, for example, [47]). Explaining why the
right-handed neutrino Majorana masses are small is, in
principle, a different kind of question. Since M is the
coefficient of a relevant operator in the Lagrangian, it is
not clear what its natural value should be. It has already
been argued that M is a symmetry breaking parameter
[Eq. (1.1) is invariant under Uð1ÞB�L when all Mij ¼ 0]

and hence any value it happens to have is stable against
quantum corrections and hence technically natural as de-
fined by ’t Hooft. Regardless, there are several mechanisms
identified in the literature that ‘‘explain’’ why right-handed
neutrino masses might be much smaller than the Planck,
grand unified theory, or even the weak scale (see, for
example, [48]).
For concreteness, we provide here a naive toy example

inspired by scenarios discussed in [47,48]. Imagine that the
N fields are charged under a new symmetry such that both
the neutrino Yukawa couplings and the right-handed neu-
trino Majorana masses are forbidden, but introduce a new
scalar field S with quantum numbers such that NS is
invariant under the new symmetry. We also need to postu-
late that Uð1ÞB�L is spontaneously broken by the vacuum
expectation value of some field X (with lepton number 2).
In this case, the following dimension-five nonrenormaliz-
able operators are allowed, after Uð1ÞB�L breaking:

L�SM ¼ Lold � "
f�
2�

ðL�HÞðLHÞ � y�i
�

ðL�HÞðNiSÞ

� "
!ij

2�
ðNiSÞðNjSÞ þ H:c:; (5.2)
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where f, y, ! are dimensionless couplings (say, of order
one), � is the scale of new physics, and " ¼ hXi=�0 (�
need not be the same as �0). In this case, after S and H get
vacuum expectation values s and v, respectively, we are
left with Eq. (2.1) where

m ¼ vs

�
y; �m ¼ �

s2

�
!; 03 ! �

v2

�
f: (5.3)

The scenario discussed in this paper is realized when s �
v (so that 03 can be ignored) and v=s � " so thatm � �m
(pseudo-Dirac condition).

Before concluding, we would like to highlight that in
Sec. II we discussed a very useful basis in which to
describe pseudo-Dirac neutrinos. In the basis of choice,
the relation between the mass-squared splittings of the
different quasidegenerate states is directly related to the
‘‘diagonal’’ elements of Mij, while the ‘‘off-diagonal’’

ones are only responsible, at leading order, for affecting
the neutrino mixing matrix. Bounds on these off-diagonal
elements were not discussed in any detail, but we argued
that these are much weaker than the bounds on the diagonal
elements. It is worthwhile to investigate how such effects
might be probed experimentally.
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APPENDIX: MODEL INDEPENDENT FIT TO
SOLAR NEUTRINO DATA, INCLUDING STERILE

NEUTRINOS

In this Appendix, we discuss a model independent,
simplified fit to the solar neutrino data, along the lines of
analyses performed in the past by Barger, Marfatia, and
Whisnant [49,50]. In a nutshell, we split the oscillation
probabilities of solar neutrinos into three disjoined regions,
qualitatively constrained by different experiments:

(i) PH: this is the oscillation probability of high-energy
solar neutrinos (E> 4 MeV), averaged over the en-
tire energy region. In practice, PH is dominated by
the 8B neutrinos, and is, by far, best constrained by
the real time experiments Super-Kamiokande and
SNO.

(ii) PM: this is the oscillation probability of medium
energy solar neutrinos (0:5<E< 4 MeV). In prac-
tice, constraints on this region are dominated by the
monochromatic 7Be neutrinos (E ¼ 0:863 MeV).
PM is best constrained by the Borexino experiment.

(iii) PL: this is the oscillation probability of the low-
energy solar neutrinos (E< 0:5 MeV). These con-

sist almost exclusively of pp neutrinos and are only
constrained by the gallium experiments.

Our analysis is very similar to that of [49,50], to which we
refer for details, with two exceptions. One is that the
Borexino data were not available when [50] was published
and we discuss their impact here. The other is that we wish
to consider that the electron neutrinos can oscillate into
sterile neutrinos, and discuss how constrained is this
possibility.
Figure 7 depicts the allowed region of the PH

es � PH
ee

parameter space at different confidence levels after com-
bining data from Super-Kamiokande [28] and SNO [27].
From the SNO experiment we learn 
CC ¼ ð1:67	
0:09Þ � 106 cm�2 s�1, 
NC ¼ ð5:54	 0:48Þ �
106 cm�2 s�1, while from Super-Kamiokande we learn

ES ¼ ð2:35	 0:08Þ � 106 cm�2 s�1. For the standard
solar model expectation we assume 
 ¼ ð5:69	 0:91Þ �
106 cm�2 s�1. We picked the theoretical prediction that
leads to the most conservative bound on PH

es and assumed
PH
ee þ PH

es þ PH
ea ¼ 1. After marginalizing over PH

ee val-
ues, we obtain PH

es 2 ½0; 0:37
 at the three sigma level.
Figure 8 depicts the allowed region of the PM

es � PM
ee

parameter space at different confidence levels after com-
bining data from Borexino [31] and the Homestake experi-
ments [30]. While computing the expected flux at
Homestake, we use the value of PH

ee obtained in the analy-
sis depicted in Fig. 7 in order to estimate the contribution
of 8B neutrinos to the neutrino flux measured at
Homestake. For more details regarding how to treat the
chlorine data, we refer readers to [49,50]. For the Borexino
experiment, we learn that 49	 5 counts=day=100 tons are
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FIG. 7 (color online). Allowed region of the PH
es � PH

ee pa-
rameter space after combining data from Super-Kamiokande and
SNO experiments at the 1, 2, 3, and 4 � levels. Confidence levels
are defined as regions of constant ��2 ¼ 2:3, 6.18, 11.83, 17.95.
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observed, while 75	 4 counts=day=100 tons were ex-
pected according to the standard solar model. The con-
straint PM

ee þ PM
es þ PM

ea ¼ 1 ‘‘cuts off’’ the part of the
parameter space where PM

ee þ PM
es > 1. Note that our con-

fidence level curves are defined as constant ��2 �
�2ðPM

ee; P
M
esÞ � �2

min contours. One should hence be careful

when translating what we refer to as an N sigma (N ¼
1; 2; 3; . . . ) bound into a probability that a certain value is
allowed. Marginalizing over PM

ee, we get P
M
es 2 ½0; 0:57
 at

the three sigma confidence level.
It is interesting to note that, similar to the neutral current

measurement at SNO and the elastic scattering result from
Super-Kamiokande, the Borexino result is sensitive to both
electron neutrinos and other active (��;�) neutrino species,

but Borexino data alone cannot rule out PM
ea ¼ 0. In prin-

ciple, the combination of Borexino and Homestake data is
sensitive to whether PM

ea � 0. Alas, this is not the case in
practice, as one can readily see in Fig. 8.

As noted above, all information on low-energy neutrinos
comes from the gallium experiments, and these are only
sensitive to Pee (i.e., the gallium experiments are only
sensitive to electron neutrinos from the sun). On the other
hand, since the gallium experiments are sensitive to neu-
trinos of all energies above the experimental threshold, the

gallium result for PL
ee depends on PM

ee and PH
ee. P

H
ee is well

constrained by the 8B experiments, so we concentrate on
the interplay between PL

ee, P
M
ee and P

M
es (note that there is no

experimental information on PL
es or P

L
ea).Figure 9 depicts

the allowed region of the PL
ee � PM

ee parameter space after
combining data from the Borexino and gallium experi-
ments (the contribution from Homestake data is also in-
cluded. Its effect is very small). In order to illustrate the
effect of sterile neutrinos, the figure depicts the one sigma
allowed region obtained once we marginalize over all
allowed values of PM

es (boundary of the black region in
Fig. 9) and the two, three, and four sigma allowed regions
which are obtained if PM

es is set to zero in the analysis.
Our result is consistent with that shown by the Borexino

Collaboration in the Neutrino 2008 conference [51]. It also
depicts the correlation between PL

ee and PM
ee, courtesy of

the gallium experiments. Finally the presence of sterile
neutrinos in the fit renders the allowed region in the PL

ee �
PM
ee plane larger, but does not qualitatively invalidate the

results obtained assuming that there are no sterile
neutrinos.
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FIG. 8 (color online). Allowed region of the PM
es � PM

ee pa-
rameter space after combining data from Borexino and the
Homestake experiments at the 1, 2, 3, and 4 � levels.
Confidence levels are defined as regions of constant ��2 ¼
2:3, 6.18, 11.83, 17.95.
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FIG. 9 (color online). Allowed region of the PL
ee � PM

ee pa-
rameter space after combining data from Borexino and the
Homestake experiments at the 2, 3, and 4 � levels (lines),
assuming PM

es ¼ 0, and at the 1� confidence level (boundary
of the solid black region) marginalizing over all allowed PM

es

values (see Fig. 8). Confidence levels are defined as regions of
constant ��2 ¼ 2:3, 6.18, 11.83, 17.95.
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[8] A. de Gouvêa, Phys. Rev. D 72, 033005 (2005).
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