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The exclusive reaction �p ! p�þ�� was studied in the photon energy range 3.0–3.8 GeV and the

momentum transfer range 0:4<�t < 1:0 GeV2. Data were collected with the CLAS detector at the

Thomas Jefferson National Accelerator Facility. In this kinematic range, the integrated luminosity was

about 20 pb�1. The reaction was isolated by detecting the �þ and proton in CLAS, and reconstructing the

�� via the missing-mass technique. Moments of the di-pion decay angular distributions were derived

from the experimental data. Differential cross sections for the S, P, and D-waves, in the M�þ�� mass

range 0.4–1.4 GeV, were derived performing a partial wave expansion of the extracted moments. Beside

the dominant contribution of the �ð770Þ meson in the P-wave, evidence for the f0ð980Þ and the f2ð1270Þ
mesons was found in the S and D-waves, respectively. The differential production cross sections d�=dt

for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first

time the f0ð980Þ has been measured in a photoproduction experiment.

DOI: 10.1103/PhysRevD.80.072005 PACS numbers: 13.60.Le, 14.40.Cs, 11.80.Et

I. INTRODUCTION

The two-pion channel offers the possibility of investi-
gating various aspects of the meson resonance spectrum. It
couples to the scalar-isoscalar channel that contains the �,
f0ð980Þ, and possibly a few more resonances with masses
below 2 GeV. It is the main decay mode of the lowest
isoscalar-tensor f2ð1270Þ resonance and it is the only
decay mode of the isovector-vector resonance, the
�ð770Þ. Among all these, the � meson is, by far, the
most prominent and most extensively studied, both from
the point of view of its production mechanisms and its
internal properties. Nowadays, the other resonances too are
subjects of extensive theoretical and experimental inves-
tigation. The � meson is now established with pole mass
and width determined with good accuracy [1–3]. However,

its microscopic structure seems to be quite different from
that of the � and it is the subject of theoretical debate [4].
The f0ð980Þ is even a more enigmatic state: its experimen-
tal determination is complicated by its proximity to theK �K
threshold, and its QCD nature still awaits an explanation
[5]. Finally, the f2ð1270Þ has been represented so far as a
Breit-Wigner resonance [2] and appears to fit well into the
quark-model spectrum [6].
In this paper, we focus on the scalar sector, using the �

meson as a benchmark for the analysis procedure. The K �K
channel from the same data set is currently being analyzed
and, in the near future, a coupled-channels analysis will
provide further constraints on the extraction of the meson
properties.
For a long time, most of our knowledge on the scalar-

meson spectrum was obtained from hadron-induced reac-
tions, �� collisions, and studying the decays of various
mesons, e.g. �, J=�, D, and B. Very few studies were
attempted with electromagnetic probes and, in particular,
with real photons since their production cross sections are
relatively small compared to the dominant production of
vector mesons. On one hand, through vector meson domi-
nance, the photon can be effectively described as a virtual
vector meson. On the other hand, quark-hadron duality and
the pointlike-nature of the photon coupling make it pos-
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sible to describe photo-hadron interactions at the QCD
level. Recently, high-intensity and high-quality tagged-
photon beams, as the one available at JLab, have opened
a new window into this field.

In photoproduction processes, information about the
S-wave strength can be extracted by performing a partial
wave analysis. Angular distributions of photoproduced
mesons and related observables, such as the moments of
the angular distributions and the density matrix elements,
are the most effective tools to look for interference pat-
terns. An interference between the S-wave and the domi-
nant P-wave was discovered in the moment analysis of
KþK� photoproduction on hydrogen, analyzing the data
collected in the experiments performed at DESY [7] and
Daresbury [8]. In two-pion production experiments, such
as reported in Refs. [9–11], moments and density matrix
elements were used to analyze the properties of helicity
amplitudes describing the photoproduction process.
Unfortunately, only the dominant spin-1 partial wave of
the �þ�� pair was taken into account. No attempt to
obtain information about the S-wave amplitude was
made. More recently, the HERMES experiment at DESY
[12] investigated the interference of the P-wave in the
�þ�� system with the S and D-waves in the �þ��
electroproduction process, and showed that such interfer-
ence effects are measurable. The large photon virtuality
Q2 > 3 GeV2 is, however, a crucial factor that distin-
guishes this analysis from the photoproduction analysis
[9,10].

Theoretical models for �þ�� photoproduction have
been investigated in a series of articles. A very successful
approach is the one by Söding [13] and its numerous
modifications [14–17]. These models were able to describe
the shift of the maximum of the �þ�� effective-mass
distribution with respect to the nominal � mass and the
asymmetric shape observed in SLAC [9,10] and DESY
[11,18] data. These properties are attributed to the inter-
ference of the dominant diffractive �-meson production,
with its subsequent decay into �þ��, with the amplitudes
corresponding to Drell-type diagrams in which the photon
dissociates into �þ and ��, and one of the pions is
elastically scattered off the proton. More recently, Gómez
Tejedor and Oset [19] applied an effective Lagrangian to
construct the photoproduction amplitudes. Their approach
is limited to photon energies below 800 MeVand effective
massesM�� smaller than 1 GeV. A two-stage approach for
the �þ�� S-wave photoproduction was proposed in the
model of Ref. [20]. First, a set of Born amplitudes, corre-
sponding to photoproduction of �þ��, �0�0, KþK�, and
K0 �K0 pairs is calculated. Then the photoproduced meson
pairs are subject to final-state interactions resulting in the
�þ�� system [21–24]. The coupled-channels calculations
were separately performed for all isospin I components of
the transition matrix. Thus the S-wave amplitudes in that
model account for the existence of the isoscalar�, f0ð980Þ,

and f0ð1500Þ, and the isovector a0ð980Þ and a0ð1450Þ
resonances. The coupling of the K �K isovector channel
with the �� amplitude is described in Ref. [25].
All theoretical approaches described above do not con-

sider explicitly the s-channel production of baryon reso-
nances contributing to the p�� final state. Data from
Refs. [9,11,18], as well as from more recent experimental
studies [26], indicate that the contribution of baryon reso-
nances, such as �þþ and �0, dominate at lower incident
photon energies (below 2 GeV). Furthermore, data ob-
tained with the SAPHIR detector at ELSA for photon
energies between 0.5 GeV and 2.6 GeV show that the
contribution of baryonic resonances to the �þp and
��p mass distributions gradually decreases with photon
energy.
In this paper, we review the results of the analysis of

�þ�� photoproduction in the photon energy range 3.0–
3.8 GeV and momentum transfer squared �t range be-
tween 0:4 GeV2 and 1 GeV2, where the di-pion effective
mass M�� varies from 0.4 GeV to 1.4 GeV. The main
results were previously reported in Ref. [27]. We are not
aware of any previous evidence of scalar mesons, in par-
ticular, of the f0ð980Þ in photoproduction of pion pairs.
This effective-mass region is dominated by the production
of the �ð770Þ resonance in the P-wave. From other experi-
ments, such as pion-nucleon collisions ��p ! �þ��n
[28,29] or nucleon-antinucleon annihilation [30], there is
some evidence that resonant states are formed in the
S-wave. These resonances have been neglected in previous
experimental analyses of �þ�� photoproduction and, to
our knowledge, the current analysis is the first one that
explicitly takes into account the possibility that the S-wave
is produced in the �þ�� system.
In the following, some details are given on the experi-

ment and data analysis (Sec. II), on the extraction of the
angular moments of the di-pion system (Sec. III), and the
fit of the moments using a dispersion relation (Sec. IV).
Results of the partial wave analysis (differential cross
section for each partial wave and the spin density matrix
elements) and the physics interpretation are reported in
Sec. V.

II. EXPERIMENTAL PROCEDURES AND DATA
ANALYSIS

A. The photon beam and the target

The measurement was performed using the CLAS de-
tector [31] in Hall B at Jefferson Lab with a
bremsstrahlung-photon beam produced by a continuous
60 nA electron beam of energy E0 ¼ 4:02 GeV impinging
on a gold foil of thickness 8� 10�5 radiation lengths. A
bremsstrahlung-tagging system [32] with a photon energy
resolution of 0.1% E0 was used to tag photons in the energy
range from 1.6 GeV to a maximum energy of 3.8 GeV. In
this analysis, only the high-energy part of the photon
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spectrum, ranging from 3.0 to 3.8 GeV, was used. eþe�
pairs produced by the interaction of the photon beam on a
thin gold foil were used to monitor continuously the photon
flux during the experiment. Absolute normalization was
obtained by comparing the eþe� pair rate with the photon
flux measured by a total absorption lead-glass counter in
dedicated low-intensity runs. The energy calibration of the
Hall-B tagger system was performed both by a direct
measurement of the eþe� pairs produced by the incoming
photons [33] and by applying an over-constrained kine-
matic fit to the reaction �p ! p�þ��, where all particles
in the final state were detected in CLAS [34]. The quality
of the calibrations was checked by looking at the mass of
known particles as well as their dependence on other kine-
matic variables (photon energy, detected particle momenta,
and angles).

The target cell, a Mylar cylinder 4 cm in diameter and
40-cm long, was filled by liquid hydrogen at 20.4 K. The
luminosity was obtained as the product of the target den-
sity, target length, and the incoming photon flux, corrected
for data-acquisition deadtime. The overall systematic un-
certainty on the run luminosity was estimated to be in the
range of 10%, dominated by the uncertainties on the pho-
ton flux.

B. The CLAS detector

Outgoing hadrons were detected in the CLAS spec-
trometer. Momentum information for charged particles
was obtained via tracking through three regions of multi-
wire drift chambers [35] within a toroidal magnetic field
(� 0:5 T) generated by six superconducting coils. The
polarity of the field was set to bend the positive particles
away from the beam line into the acceptance of the detec-
tor. Time-of-flight scintillators (TOF) were used for
charged-hadron identification [36]. The interaction time
between the incoming photon and the target was measured
by the start counter (ST) [37]. This is made of 24 strips of
2.2 mm thick plastic scintillator surrounding the hydrogen
cell with a single-ended, photomultiplier-based readout. A
time resolution of �300 ps was achieved.

The CLAS momentum resolution �p=p ranges from 0.5

to 1%, depending on the kinematics. The detector geomet-
rical acceptance for each positive particle in the relevant
kinematic region is about 40%. It is somewhat less for low-
energy negative hadrons, which can be lost at forward
angles because their paths are bent toward the beam line
and out of the acceptance by the toroidal field.
Coincidences between the photon tagger and the CLAS
detector triggered the recording of the events. The trigger
in CLAS required a coincidence between the time of
flight and the start counter in at least two sectors, in
order to select reactions with at least two charged particles
in the final state. An integrated luminosity of 70 pb�1

(� 20 pb�1 in the range 3:0< E� < 3:8 GeV) was accu-

mulated in 50 days of running in 2004.

C. Data analysis and reaction identification

The raw data were passed through the standard CLAS
reconstruction software to determine the four-momenta of
detected particles. In this phase of the analysis, corrections
were applied to account for the energy loss of charged
particles in the target and surrounding materials, misalign-
ments of the drift chamber’s positions, and uncertainties in
the value of the toroidal magnetic field.
The reaction �p ! p�þ�� was isolated detecting the

proton and the�þ in the CLAS spectrometer, while the��
was reconstructed from the four-momenta of the detected
particles by using the missing-mass technique. In this way,
the exclusivity of the reaction is ensured, keeping the
contamination from the multipion background to a mini-
mum. Figure 1 shows the �� missing mass squared. The
background below the missing pion peak appears as a
smooth contribution in the �� invariant mass without
creating narrow structures.
To avoid edge regions in the detector acceptance, only

events within a fiducial volume were retained in this analy-
sis. In the laboratory reference system, cuts were defined
for the minimum hadron momentum (pproton > 0:32 GeV

and p�þ > 0:125 GeV), and the minimum and maximum
azimuthal angles (�proton;�þ > 10� and ��þ < 120�). The
fiducial cuts were defined comparing in detail the experi-
mental data distributions with the results of the detector
simulation. The minimum momentum cuts were tuned for
different hadrons to take into account the energy loss by
ionization of the particles.
After all cuts, 41M events were identified as produced in

the exclusive reaction �p ! p�þ��. The other event
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FIG. 1 (color online). Missing mass squared for the reaction
�p ! p�þX and the �� peak. The shaded area indicates the
retained events.
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topologies, with at least two hadrons in the final state
(p��, �þ��, p�þ��), were not used since in the kine-
matics of interest for this analysis (� t < 1 GeV2), the
collected data are about 1 order of magnitude less due to
the detector acceptance. Figures 2 and 3 show the invariant
mass spectra of the different combinations of particles in

the final state. The �ð770Þ dominates the �� spectrum and
the �ð1232Þþþ peak is clearly visible in the p�þ invariant
mass. Figure 2 shows a small overlap between the
�ð1232Þþþ and the �� spectrum. Baryonic resonances
in the p�� invariant mass spectrum are less pronounced.
It has to be noted that the projection of the baryon reso-
nance peaks in the �� spectrum results in a smooth con-
tribution and cannot create narrow structures. The effect of
this background was extensively studied as discussed in
Sec. VC.

III. MOMENTS OF THE DI-PION ANGULAR
DISTRIBUTION

In this section, we consider the analysis of the moments
of the di-pion angular distribution defined as

hYLMiðE�; t;M��Þ ¼
ffiffiffiffiffiffiffi
4�

p Z
d��

d�

dtdM��d��

YLMð��Þ;
(1)

where d� is the differential cross section (in momentum
transfer t and di-pion invariant mass M��), YLM are
spherical-harmonic functions of degree L and order M,
and �� ¼ ð��;��Þ are the polar and azimuthal angles of
the�þ flight direction in the�þ�� helicity rest frame. For
the definition of the angles in the di-pion system, we
follow the convention of Ref. [9]. It follows from Eq. (1)
that, for a given E�, t, and di-pion mass M��, hY00i
corresponds to the di-pion production differential cross
section d�=dtdM��.
There are many advantages in defining and analyzing

moments rather than proceeding via a direct partial wave fit
of the angular distributions. Moments can be expressed as
bilinear in terms of the partial waves and, depending on the
particular combination of L and M, show specific sensi-
tivity to a particular subset of them. In addition, they can be
directly and unambiguously derived from the data, allow-
ing for a quantitative comparison to the same observables
calculated in specific theoretical models.
Extraction of the moments requires that the measured

angular distribution is corrected by the detector accep-
tance. We studied three methods for implementing accep-
tance corrections. In the first two methods, the moments
were expanded in a model-independent way in a set of
basis functions and, after weighting with Monte Carlo
events, they were compared to the data by maximizing a
likelihood function. The first of these two parametrizes the
theory in terms of simplified amplitudes, while the second
directly uses the moments as defined above. The approx-
imations in these methods have to do with the choice of the
basis and depend on the number of basis functions used.
The systematic effect of such truncations was studied and
the main results are reported below. In the last method, the
data and the Monte Carlo simulations were binned in all
kinematical variables. The data were then corrected by the
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acceptance defined as the ratio of reconstructed over gen-
erated Monte Carlo events in that bin. Since it was found
not to be reliable in bins where the acceptance was small or
vanishing, this method was only used as a check of the
others and was not included in the final determination of
the experimental moments.

A. Detector efficiency

The CLAS detection efficiency for the reaction �p !
p�þ�� was obtained by means of detailed Monte Carlo
studies, which included knowledge of the full detector
geometry and a realistic response to traversing particles.
Events were generated according to three-particle phase
space with a bremsstrahlung-photon energy spectrum. A
total of 4� 109 events were generated in the energy range
3:0 GeV<E� < 3:8 GeV and covered the allowed

kinematic range in �t and M��. About 700 M events
were reconstructed in the M�� and �t ranges of
interest (0:4 GeV<M�� < 1:4 GeV, 0:1 GeV2 <�t <
1:0 GeV2). This corresponds to more than 15 times the
statistics collected in the experiment, thereby introducing a
negligible statistical uncertainty with respect to the statis-
tical uncertainty of the data.

B. Extraction of the moments via likelihood fit
of experimental data

The moments were derived from the data using detector
efficiency-corrected fitting functions. As mentioned above,
the expected theoretical yield was parametrized in terms of
appropriate physics functions: production amplitudes in
one case and moments of the cross section in the other.
The theoretical expectation, after correction for accep-
tance, was compared to the experimental yield. The pa-
rameters were extracted by maximizing a likelihood
function defined as

L ��n
a¼1

�
�ð�aÞIð�aÞR
d��ð�ÞIð�Þ

�
: (2)

Here, a represents a data event, n ¼ �N is the number of
data events in a given ðE�;�t;M��Þ bin (i.e. the fit is done
independently in each bin), �a represents the set of kine-
matical variables of the ath event, �ð�aÞ is the correspond-
ing acceptance derived by Monte Carlo simulations, and
Ið�aÞ is the theoretical function representing the expected
event distribution. The measure d� includes the phase-
space factor and the likelihood function is normalized to
the expected number of events in the bin

�n ¼
Z

d��ð�ÞIð�Þ: (3)

The advantage of this approach lies in avoiding binning of
the data and the large uncertainties related to the correc-
tions in regions of CLAS with vanishing efficiencies.
Comparison of the results of the two different parametri-

zations allows one to estimate the systematic uncertainty
related to the procedure. In the following, we describe the
two approaches in more detail.

1. Parametrization with amplitudes

The expected theoretical yield in each bin is described as

Ið�aÞ ¼ 4�

��������
XLmax

L¼0

XL
M¼�L

aLMðE�;�t;M��ÞYLMð��Þ
��������

2

:

(4)

This parametrization has the benefit that the intensity
function Ið�aÞ is, by construction, positive. However, it
can lead to ambiguous results since it has more parameters
than can be determined from the data. In addition, for
practical reasons, the parametrization involves a cutoff
Lmax in the maximum number of amplitudes. For a specific
choice of Lmax, the number of fit parameters is given by
2ðLmax þ 1Þ2. We also note that these amplitudes are not
the same as the partial wave amplitudes in the usual sense
of a di-pion photoproduction amplitude since the latter
depends on the nucleon and photon spins.
After removing the irrelevant constants, the fit is per-

formed minimizing the function

� lnL ¼ � X�N
a¼1

ln�ð�aÞIð�aÞ

þ�N ln
X

L0M0;LM
~a�L0M0 ~aLM�L0M0;L;M; (5)

where we have introduced the rescaled amplitudes
~aLMðE�;�t;M��Þ defined by

~a LM ¼ ffiffiffiffi
�

p
aLM; (6)

and the acceptance matrix �ðE�;�t;M��Þ was computed

using Monte Carlo events as

��L0M0;LM ¼ 4�

�NGen

X�NRec

a¼1

Y�
L0M0 ð��ÞYLMð��Þ; (7)

where �NGen and �NRec are the number of generated and
reconstructed events, respectively.
Fits were done using MINUIT with the analytical expres-

sion for the gradient, and using the SIMPLEX procedure
followed by MIGRAD [38]. After each fit, the covariance
matrix was checked and if it was not positive definite, the
fit was restarted with random input parameters. At the end,
the uncertainties were computed from the full covariance
matrix.

2. Parametrization with moments

The expected theoretical yield in each ðE�;�t;M��Þ bin
is described as
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Ið�aÞ ¼
ffiffiffiffiffiffiffi
4�

p XLmax

L¼0

XL
M¼0

h ~YLMiReYLMð��Þ: (8)

The parametrization in terms of the moments directly gives
the quantities we are interested in (moments h ~YLMi).
However, the fit has to be restricted to make sure the
intensity is positive. As in the amplitude parametrization,
a cutoff Lmax in the maximum number of moments has to
be used. The number of fit parameters is given by ðLmax þ
1ÞðLmax þ 2Þ=2. As Lmax increases, moments with L close
to Lmax show a significant variation, while moments with
the lowest L remain unchanged.

The expected (acceptance-corrected) distribution is then
given by

Ið�aÞ ¼
ffiffiffiffiffiffiffi
4�

p X
L;M

½�LM ReYLMð��Þ�h ~YLMi: (9)

The function to be minimized with respect to h ~YLMi (L >
0) is then given by

� 2 lnL ¼ �2
X�N
a¼1

lnIð�aÞ; (10)

with the coefficients �LMðE�;�t;M��Þ computed using

Monte Carlo events

�LM ¼
ffiffiffiffiffiffiffi
4�

p
�NGen

X�NRec

i

ReYLMð�iÞ
	L

; (11)

where 	L ¼ 1 for L ¼ 0 and 1=2 for all other ðLMÞ. For
Lmax � 4, the results are similar to what was obtained with
the previous method, showing the same stability against
Lmax truncation and a similar goodness of the fit. To check
the sensitivity of the likelihood fit to the parameter initial-
ization, the moments were extracted in three different
ways: (1) using a random initialization for all parameters;
(2) fixing the parameters up to L ¼ 2 to the ones obtained
from a fit with Lmax ¼ 2, and randomly initializing the
others; (3) starting with the parameters obtained in (2) and
then releasing all parameters. The three different methods
gave consistent results and the difference of the moments
obtained using the different procedures was used to evalu-
ate the systematic uncertainty related to the fit procedure.

3. Methods comparison and final results

The moments derived by the different procedures agreed
qualitatively. The most stable results were obtained by
using the first parametrization, although we do find occa-
sionally large bin-to-bin fluctuations. However, there are
no a priori reasons to prefer one of the two methods and we
consider the discrepancies between the fit results as a good
estimate of the systematic uncertainty associated with the
moments extraction. The final results are given as the
average of the first method (parametrization with ampli-
tudes) and the second method (parametrization with mo-

ments) with the three fit initializations

Yfinal ¼ 1

4

X
i¼1;4 Methods

Yi; (12)

where Y stands for hYLMiðE�; t;M��Þ.
The total uncertainty on the final moments was eval-

uated adding in quadrature the statistical uncertainty,

YMINUIT as given by MINUIT, and the two systematic
uncertainty contributions 
Ysyst fit, related to the moment

extraction procedure, and 
Ysyst norm, the systematic uncer-

tainty associated with the photon-flux normalization (see
Sec. II).


Yfinal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y2

MINUIT þ 
Y2
syst fit þ 
Y2

syst norm

q
; (13)

with
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FIG. 4 (color online). Moments of the di-pion angular distri-
bution in 3:2<E� < 3:4 GeV and �t ¼ 0:45� 0:05 GeV2

(black dots), �t ¼ 0:65� 0:05 GeV2 (red squares) and �t ¼
0:95� 0:05 GeV2 (blue trianges). The error bars include both
the statistical and systematic uncertainties as explained in the
text.
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Ysyst fit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1;4Methods

ðYi � YfinalÞ2
4� 1

vuut ; (14)


Ysyst norm ¼ 10% 	 Yfinal: (15)

For most of the data points, the systematic uncertainties
dominate over the statistical uncertainties. Samples of the
final experimental moments are shown in Figs. 4–7. The
whole set of moments resulting from this analysis is avail-
able at the Jefferson Lab [39] and the Durham [40]
databases.

As a check of the whole procedure, the differential cross
section d�=dt for the �p ! p�ð770Þ reaction has been
extracted by fitting the hY00imoment in each�t bin with a
Breit-Wigner plus a first-order polynomial background.
The agreement within the quoted uncertainties with a
previous CLAS measurement [41], as well as the world
data [11], gives us confidence in the analysis procedure.

IV. PARTIALWAVE ANALYSIS

In the previous section, we discussed how the moments
of the angular distribution of the�þ�� system hYLMiwere
extracted from the data in each bin in photon energy,
momentum transfer, and di-pion mass. In this section, we
describe how the partial waves were parametrized and
extracted by fitting the experimental moments.
The moments can be expressed as bilinear in terms of

the amplitudes alm ¼ almð�; �0; ��; E�; t;M��Þ with angu-
lar momentum l and z-projection m (in the chosen refer-
ence system m coincides with the helicity of the di-pion
system) as

hYLMi ¼
X

l0m0;lm;�;�0
Cðl0m0; lm; LMÞ � alma

�
l0m0 ; (16)

where the C terms are Wigner’s 3jm coefficients, �� is the

helicity of the photon, and � and �0 are the initial and final
nucleon helicity, respectively. The explicit forms of the

Mππ (GeV)

<Y
30

> 
(µ

b/
G

eV
3 )

-1

0

1

2

3

0.4 0.6 0.8 1 1.2 1.4

Mππ (GeV)

<Y
31

> 
(µ

b/
G

eV
3 )

-1.5

-1

-0.5

0

0.5

1

0.4 0.6 0.8 1 1.2 1.4

Mππ (GeV)

<Y
32

> 
(µ

b/
G

eV
3 )

-1

-0.5

0

0.5

1

0.4 0.6 0.8 1 1.2 1.4

FIG. 6 (color online). Moments of the di-pion angular distri-
bution in 3:2<E� < 3:4 GeV and �t ¼ 0:45� 0:05 GeV2

(black dots), �t ¼ 0:65� 0:05 GeV2 (red squares) and �t ¼
0:95� 0:05 GeV2 (blue triangles). The error bars include both
the statistical and systematic uncertainties as explained in the
text.
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text.
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moments with L � 4 in terms of the amplitudes with l ¼ 0
(S-wave), l ¼ 1 (P-wave), l ¼ 2 (D-wave), and l ¼ 3
(F-wave) are given in Appendix A.

A. Helicities, isospin, and coupled-channels dependence

The photon helicity was restricted to �� ¼ þ1 since the

other amplitudes are related by parity conservation. In
addition, some approximations in the parametrization of
the partial waves were adopted to reduce the number of
free parameters in the fit and are discussed below.

(i) The number of waves was reduced, restricting the
analysis to jmj � 1 since m ¼ 2 is only possible for
l 
 2 (D and F-waves), which are expected to be
small in the mass range considered [9,10]. In the
chosen reference system, m coincides with the he-
licity of the di-pion system and since we used as a
reference the wave with �� ¼ þ1, the three values

of m have a simple interpretation in terms of helicity
transfer from the photon to the ��-system: m ¼ þ1
corresponds to the nonhelicity-flip amplitude
(s-channel helicity conserving) that is expected to
be dominant [10], while m ¼ 0, �1 correspond to
one and two units of the helicity flip, respectively. In
the case of the S-wave (l ¼ m ¼ 0), only one am-
plitude is considered.

(ii) The dependence on the nucleon helicity was sim-
plified as follows. For a given l, m, E�, t set, there

are four independent partial wave amplitudes cor-
responding to the four combinations of initial and
final nucleon helicity, � and �0. It is expected that
the dominant amplitudes require no nucleon helicity
flip [10]. Without nucleon polarization information
it is not possible to extract all four amplitudes. Thus
our strategy in the analysis is to consider only the
dominant ones or to exploit possible relations
among them. For example, in the Regge � and !
exchange model, the following relations are satis-
fied by the S-wave amplitudes: ð��0Þ ¼ ðþþÞ ¼
ð��Þ and ðþ�Þ ¼ �ð�þÞ, where � corresponds
to helicity �1=2. More generally, by examining the
experimental moments, we observe that the inter-
ference between the dominant P-wave, seen in the
hY21i moment in the � region, indicates that the
Pm¼þ1 and the Pm¼0 amplitudes are out of phase.
For a single nucleon-helicity amplitude, this would
imply a difference between the hY11i and hY10i mo-
ments, arising primarily from the interference be-
tween the S-wave and the Pm¼þ1 and Pm¼0 waves,
respectively, in the � region where the S amplitude
does not vary substantially. The data suggests, how-
ever, that both hY11i and hY10i peak near the position
of the �. A possible explanation for the behavior of
the data is the following: the dominant Pm¼þ1 am-
plitude may originate from the helicity-nonflip dif-
fractive process and the Pm¼0 amplitude from a
nucleon-helicity-flip vector exchange, which is
also expected to contribute to the S-wave produc-
tion. This would also explain why the hY11i and
hY10i moments have comparable magnitudes. To
accommodate such behavior, at least two nucleon-
helicity amplitudes are required. In addition, since
strong interactions conserve isospin, it is convenient
to write the �� amplitudes in the isospin basis.
Each amplitude was then expressed as a linear
combination of �� amplitudes of fixed isospin I
(with I ¼ 0, 1, 2).

(iii) The coupling of the �� system to other channels
was taken into account introducing a multidimen-
sional channel space: for a given isospin I in the
partial wave l, the amplitudes depend also on an
index � that runs over different di-meson systems.
For example, � ¼ 1 corresponds to ��, � ¼ 2 to
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FIG. 7 (color online). Moments of the di-pion angular distri-
bution in 3:2<E� < 3:4 GeV and �t ¼ 0:45� 0:05 GeV2

(black dots), �t ¼ 0:65� 0:05 GeV2 (red squares) and �t ¼
0:95� 0:05 GeV2 (blue triangles). The error bars include both
the statistical and systematic uncertainties as explained in the
text.
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K �K, � ¼ 3 to ��, etc. In the subsequent analysis,
we will restrict the channel space to include the��
and K �K channels, which are the only channels
relevant in the energy range considered.

According to these considerations, the moments were
fitted to a set of amplitudes given by

aI;�lm;iðE�; t;M��Þ (17)

for each l, m, jmj � 1, with i ¼ 1, 2 corresponding to
nucleon-helicity nonflip and helicity flip of one unit, iso-
spin I ¼ 0, 1, 2, and channel �.

B. Amplitude parametrization

For each helicity state of the target �, recoil nucleon �0,
and �� system m, in a given E� and t bin, the correspond-

ing helicity amplitude almðs ¼ M2
��Þ was expressed using

a dispersion relation [42–48] as follows:

alm;IðsÞ ¼ 1

2
½I þ Slm;IðsÞ�~alm;IðsÞ

� 1

�
D�1

lm;IðsÞPV
Z
sth

ds0
Nlm;Iðs0Þ�ðs0Þ~alm;Iðs0Þ

s0 � s
;

(18)

where PV represents the principal value of the integral and
� corresponds to the phase-space term. In this expression, I
and Slm;I are matrices in the multichannel space (��, KK),
as mentioned above.Nlm;I andDlm;I can be written in terms

of the scattering matrix of �� scattering, chosen to repro-
duce the known phase shifts, inelasticities [49,50], and the
isoscalar (l ¼ S, D), isovector (l ¼ P, F), and isotensor
(l ¼ S, D) amplitudes in the range 0:4 GeV<

ffiffiffi
s

p
<

1:4 GeV. Finally, the amplitude ~alm;I represents our igno-

rance about the production process.
As a function of s ¼ M2

��, alm;I have cuts for s > 4m2
�

(right-hand cut) and for s < m2
� (left-hand cut). The left-

hand cut reflects the nature of particle exchanges determin-
ing the �� photoproduction amplitude, while the right-
hand cut accounts for the final-state interactions of the
produced pions. In Eq. (18), these discontinuities are taken
into account by the functionsNlm;I andDlm;I, while ~alm;IðsÞ
does not have singularities for s > 4m2

� and can be ex-
panded in a Taylor series:

~a lm;I ¼ ½AþBsþ Cs2 þ 	 	 	�½k�; (19)

with A;B; . . . being matrices of numerical coefficients to
be determined by the simultaneous fit of the angular mo-
ments defined in Eq. (16) and ½k� ¼ kl�
�; used to take

into account the threshold behavior in the l-th partial wave.
All amplitudes but the scalar-isoscalar are saturated by the
�� state. For the scalar-isoscalar amplitude, the K �K chan-
nel was also included. In addition, to reduce sensitivity to
the large energy behavior of the (��, K �K) amplitudes, the

real part of the integral was subtracted and replaced by a
polynomial in s, whose coefficients were also fitted.

V. RESULTS

A. Fit of the moments

Using the parametrization of the partial waves described
in the previous section, we fitted all moments hYLMi with
L � 4 and M � 2 using amplitudes with l � 3 (up to
F-waves). In Figs. 8–11, we present a sample of the fit
results for E� ¼ 3:3� 0:1 GeV and 0:5< jtj< 0:6 GeV2.

To take properly into account the statistical and system-
atic uncertainty contributions to the experimental moments
described in Sec. III, the four sets of moments, resulting
from the different fit procedures, were individually fitted
and the results were averaged, obtaining the central value
shown by the black line in the figures. The error band,
shown as a gray area, was calculated following the same
procedure adopted for the experimental moments. The
final uncertainty was computed as the sum in quadrature
of the statistical uncertainty of the fit and the two system-
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FIG. 8 (color online). Fit result (black line) of the final experi-
mental moments (red dots) for 3:2<E� < 3:4 GeV and 0:5<

�t < 0:6 GeV2. The systematic uncertainty and fit uncertainty
are added in quadrature and are shown by the gray band.
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atic uncertainty contributions. The first is related to the
moment extraction procedure and is evaluated as the vari-
ance of the four fit results. The latter is associated with the
photon-flux normalization and is estimated to be 10%. The
central values and uncertainties for all the observables of
interest discussed in the following sections were derived
from the fit results with the same procedure.

The moment hY00i, corresponding to the differential
production cross section d�=dtdM, shows the dominant
�ð770Þ meson peak. In the hY10i and hY11i moments, the
contribution of the S-wave is maximum and enters via
interference with the P-wave. In particular, the structure
at M�� � 0:77 GeV in hY11i is due to the interference of
the S-wave with the dominant, helicity-nonflip wave
Pm¼þ1. In the hY10i moment, the same structure is due to
the interference with the Pm¼0 wave, which corresponds to
one unit of helicity flip. A second dip near M�� ¼ 1 GeV
is clearly visible and corresponds to the production of a
resonance that we interpret as the f0ð980Þ.

B. Partial wave amplitudes

The square of the magnitude of the S-, P-, D- and
F-waves resulting from the fit, summed over the nucleon
spin projections, is given by

Ilm ¼ X
i¼1;2

jalm;iðE�; t;M��Þj2: (20)

When summed over the di-pion helicity, this can be written
as

Il ¼
X
m

X
i¼1;2

jalm;iðE�; t;M��Þj2; (21)

where the sum is limited to m ¼ �1, 0, 1 for l > 0 and to
m ¼ 0 for l ¼ 0.
The resulting partial wave cross sections are shown in

Figs. 12–15, for a selected photon energy and �t bin. The
whole set of partial wave amplitudes, resulting from this
analysis, is available at the Jefferson Lab [39] and the
Durham [40] databases.
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FIG. 9 (color online). Fit result (black line) of the final experi-
mental moments (red dots) for 3:2<E� < 3:4 GeV and 0:5<

�t < 0:6 GeV2. The systematic uncertainty and fit uncertainty
are added in quadrature and are shown by the gray band.
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As expected, the dominant contribution from the �
meson is clearly visible in the P-wave, whose contribution
is about 1 order of magnitude larger than the other waves.
In particular, the main contribution comes from Ilm¼1;þ1,

corresponding to a nonhelicity-flip (s-channel helicity con-

serving) transition. In the S-wave, a strong interference
pattern shows up around M�� ¼ 980 MeV, which reveals
contributions from f0ð980Þ production. The contribution
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FIG. 11 (color online). Fit result (black line) of the final
experimental moments (red dots) for 3:2<E� < 3:4 GeV and

0:5<�t < 0:6 GeV2. The systematic uncertainty and fit uncer-
tainty are added in quadrature and are shown by the gray band.
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FIG. 14. As Fig. 13 for D-wave.
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from the f2ð1270Þ tensor meson is apparent in theD-wave,
while no clear structures are seen in the F-wave.

C. Systematic studies

The error bands plotted in Figs. 12–15 include the
systematic uncertainties related to the moment extraction
and the photon-flux normalization as discussed in
Sec. III B 3. In addition, for the S-wave, where the
f0ð980Þ contribution is strongly affected by interference,
detailed systematic studies using both Monte Carlo and
data were performed.

In order to test the approximation introduced by the
truncation to Lmax ¼ 4 in the moment extraction, we first
verified the fit was able to reproduce the experimental
distributions in the kinematic range of interest. Figure 16
shows the comparison between the data and the fit results
for the decay angles in the helicity system with M�� in
the f0ð980Þ mass region (M�� ¼ 0:985� 0:01 GeV).
Figure 17 shows the same comparison for the invariant
mass Mp�þ when three different regions of M�� (M�� ¼
0:475� 0:01 GeV, M�� ¼ 0:775� 0:01 GeV, M�� ¼
1:295� 0:01 GeV) were selected. The good agreement
proves the accuracy of the approximation.

As a second check, we applied the fit to pseudodata
obtained with a realistic event generator, processed with
the CLAS GEANT-based simulation package and analyzed
with the same procedure used for the data. Since the event
generator was tuned to previous two-pion photoproduction
measurements, it does not include any explicit limitation
on the number of waves. The reconstructed moments
showed that, with the chosen Lmax, all fits were capable

of reproducing the generated moments up to M�� �
1:1 GeV. Finally, we derived a quantitative estimate of
the truncation effect on the S-wave squared amplitude as
follows. The results of a Lmax ¼ 8 fit of the moments was
used as input for a new Monte Carlo event generator. After
being processed in the same way as discussed above,
pseudodata were fitted with Lmax ¼ 4 and the S-wave
amplitude was extracted. The difference between the gen-
erated and the reconstructed partial wave cross section was
found to be of the order of 25% that, added in quadrature to
the other systematic uncertainties, was included in the gray
band of Fig. 12.
We also demonstrated that no structures similar to the

narrow interference pattern, we are interpreting as the
evidence of the f0ð980Þ, were created by distortions in-
duced by the CLAS acceptance. This check was performed
generating events after removing the f0ð980Þ contribution,
and verifying that no spurious structures appeared in
the spectra after the full GEANT simulation and
reconstruction.
In addition, the effects of baryon resonance contribu-

tions to the di-pion mass spectrumwere studied performing
the fit of the moments with the inclusion of an incoherent
background. In fact, the background in the di-pion mass
spectrum introduced by the reflection of the baryon reso-
nances is expected to be smooth and structureless, contrib-
uting to all waves. Therefore this was parametrized as a
second-order polynomial in M�� that was summed to the
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parametrization of the moments in terms of the partial
waves used in the standard fits. From this study, we con-
cluded that the background contribution is small, smooth,
and does not affect the quality of the fit. The comparison of
the fit results with and without the inclusion of this addi-
tional background indicates that the P-wave and the
S-wave in the f0ð980Þ region are only slightly affected,
as shown in Fig. 18. On the contrary, the low-mass S-wave,
corresponding to the �ð600Þ region, and the D-wave,
corresponding to the f2ð1270Þ region, show a significant
variation and therefore a more complete analysis should be
performed to extract reliable information in these mass
ranges. A similar conclusion was drawn by comparing
the analysis results excluding the �ð1232Þ, the dominant
baryon resonance contribution for this final state, with the
cut Mðp�þÞ> 1:4 GeV. A negligible effect was found on
the rapid motion around the narrow f0ð980Þmeson, while a

larger variation was observed at higher values of the
Mð��Þ mass.
To verify the stability of the fit of the moments in the

region of the f0ð980Þ, the whole analysis was repeated
reducing the M�� bin size from 10 to 5 MeV. The results
obtained in the two cases were found to be consistent.
As a final check, the sensitivity to the specific choice of

the number of terms used in the Taylor expansion of the
amplitudes ~aL (see Eq. (19)) was tested performing the
partial wave analysis fits both with a second- and fourth-
order polynomial. The effect was found to be negligible
compared to the other systematic uncertainties.

D. The spin density matrix elements

From the production amplitudes derived by the fit, we
calculated the spin density matrix elements [51] for the
P-wave and the interference between the S- and P-waves.
Some selected results are shown in Figs. 19–21. Since
these observables do not depend on the photon-flux nor-
malization, the error bands do not include the 10% uncer-
tainty mentioned above. The whole set of spin density
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matrix elements resulting from this analysis is available at
the Jefferson Lab [39] and the Durham [40] databases.

Comparisons of our measurements at 3:0< E� <

3:2 GeV and 0:4<�t < 0:5 GeV2 with existing data
from Refs. [9,10] in a similar kinematic domain (E� �
2:8 GeV and 0:02<�t < 0:4 GeV2) are shown in Fig. 19.
As expected, the two matrix elements �10 and �1�1 agree
very well since they have a weak dependence on�t, while
�00 shows a similar behavior, but with different values as it
is more sensitive to the momentum transfer. If one com-
pares the larger �t bins we measured, the differences
increase, showing that extrapolating our data to lower �t
would probably give good agreement with previous
measurements.

As shown in Fig. 21, around M�� ¼ 980 MeV an inter-
ference pattern clearly shows up in the S-P wave interfer-
ence term, corresponding to the contribution from the
f0ð980Þ meson.

E. Differential cross sections

The differential cross sections ½d�=dt�l�wave for indi-
vidual waves and mass resonance regions were obtained
integrating the corresponding amplitudes. The cross sec-
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tions in the mass regions of the f0ð980Þ, �, and f2ð1270Þ
mesons were obtained integrating the S-, P- and D-waves
in the mass ranges 0:98� 0:04 GeV, 0.4–1.2 GeV, and
1:275� 0:185 GeV, respectively. These are shown in
Figs. 22–24 in the photon energy range 3.0–3.8 GeV. The
values of the differential cross sections from this analysis
are available at the Jefferson Lab [39] and the Durham [40]
databases. As mentioned previously, the P-wave is com-
pletely dominated by � meson production, and therefore
the integrated cross section can be directly compared to the
world’s data for the �p ! p� reaction [11,41]. It should
be noticed that the previous cross sections were evaluated
without performing a partial wave analysis but fitting the

mass-dependent cross section with a relativistic Breit-
Wigner plus a smooth polynomial function to separate
the resonance from the background. The good agreement
shown in Fig. 23 gives confidence in the partial wave
analysis. As expected, the S-wave photoproduction is sup-
pressed compared to the P-wave by more than an order of
magnitude, reflecting the different mechanisms that lead to
scalar and vector meson photoproduction: in Regge theory,
the latter is dominated by Pomeron exchange, while the
former is dominated by the exchange of reggeons that
become suppressed as the energy increases. The solid lines
in Figs. 22–24 correspond to an exponential fit of the
differential cross section AeBt. In the works of Ballam
et al. [9,10], the slope parameter B of the ½d�=dt�P�wave

in the � region was determined to be B ¼ ð6:3�
0:4Þ GeV�2 at E� ¼ 2:8 GeV and B ¼ ð6:0�
0:3Þ GeV�2 at E� ¼ 4:7 GeV. It was also found that B

decreases with increasing di-pion mass, varying from B ¼
ð11:1� 3:8Þ GeV�2 for M�� ¼ 0:32 GeV to B ¼ ð3:5�
1:8Þ GeV�2 for M�� ¼ 0:92 GeV at E� ¼ 4:7 GeV.

However, a change in the slope was observed at �t�
0:4 GeV2, the region covered by the present analysis. As
shown in Fig. 23, our results are consistent with the Ballam
data in this high-t range.

VI. SUMMARY

In summary, we have performed a partial wave analysis
of the reaction �p ! p�þ�� in the photon energy range
3.0–3.8 GeV and the momentum transfer range �t ¼
0:4–1:0 GeV2. Moments of the di-pion angular distribu-
tion, defined as bilinear functions of partial wave ampli-
tudes, were fitted to the experimental data with an
unbinned likelihood procedure. Different parametrization
bases were used and detailed systematic checks were per-
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formed to insure the reliability of the analysis procedure.
We extracted moments hYLMiwith L � 4 andM � 2 using
amplitudes with l � 3 (up to F-waves). Using a dispersion
relation, unitarity constraint, and phase shifts and inelas-
ticities of �� scattering, the production amplitudes were
expressed in a simplified form, where the unknown part
was expanded in a Taylor series. The coefficients were
fitted to the experimental moments to extract the S-, P-,
D-, and F-waves in the M�� range 0.4–1.4 GeV.

The moment hY00i is dominated by the �ð770Þ meson
contribution in the P-wave, while the moments hY10i and
hY11i show contributions of the S-wave through interfer-
ence with the P-wave. The clear structure atM�� � 1 GeV
seen in such experimental moments and in the S-wave
amplitude is evidence of a resonance contribution that we
interpret as the f0ð980Þ. This is the first observation of the
f0ð980Þ scalar meson in photoproduction. A contribution
from the f2ð1270Þ tensor meson was observed in the
D-wave, while no resonant structures were seen in the
F-wave. The cross sections of individual partial waves in
the mass range of the �ð770Þ, f0ð980Þ, and f2ð1270Þ were
computed. Finally, the spin density matrix elements for the
P-wave were evaluated, finding good agreement with pre-
vious measurements, and for the first time, the S� P
interference term was extracted.
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APPENDIX

The explicit expressions for the moments, defined in
Eq. (1) in terms of partial waves (given Eq. (4)) truncated
to the L ¼ 3 (F) wave are given by,

hY00i ¼ jSj2 þ jP�j2 þ jP0j2 þ jPþj2 þ jD�j2 þ jD0j2 þ jDþj2 þ jF�j2 þ jF0j2 þ jFþj2
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s
ð�D�D�þ �DþD��Þ þ

ffiffiffiffiffiffiffiffi
10

121

s
ð�F�F�þ � FþF��Þ

It follows from Eq. (1) that the hY00i moment is normalized by the differential cross section via

hY00i ¼
Z

d��

d�

dtdM��d��

: (A1)
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