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We have developed an efficient simulation algorithm for strongly interacting relativistic fermions in

two-dimensional field theories based on a formulation as a loop gas. It essentially eliminates critical

slowing down by sampling two-point correlation functions and allows simulations directly in the massless

limit at the critical point. It generates loop configurations with fluctuating topological boundary conditions

enabling one to simulate fermions with arbitrary periodic or antiperiodic boundary conditions. As

illustrative examples, the algorithm is applied to the Gross-Neveu model and to the Schwinger model

in the strong coupling limit.
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Simulating strongly interacting fermions, like in quan-
tum chromodynamics (QCD) or in Nambu-Jona–Lasinio
models, is considered to be rather difficult and continues to
be a challenge due to the nonlocality of the determinant
obtained upon integrating out the fermionic fields.
Moreover, simulations of fermions are usually hampered
by critical slowing down towards the chiral limit where the
fermions become massless and the correlation length of the
fermionic two-point function diverges. The established
standard method to perform such calculations on the lattice
is to use the hybrid Monte Carlo algorithm [1] which deals
with the nonlocality of the determinant by rewriting it as an
integral over bosonic ‘‘pseudofermion’’ fields. The algo-
rithm then requires one to deal with the inverse of the
fermion Dirac operator, however, the operator becomes
ill-conditioned towards the massless limit and the simula-
tions slow down dramatically. In this paper we propose a
novel approach which circumvents the above mentioned
problems. It is based on a (high-temperature) expansion of
the fermion actions which reformulates the fermionic sys-
tems as q-state vertex models, i.e., statistical closed loop
models. In particular, the method is directly applicable to
the Gross-Neveu (GN) model and to the Schwinger model
in the strong coupling limit. These models can be shown to
be equivalent to specific vertex models [2–5] and our
simulation method, based on a proposal by Prokof’ev
and Svistunov [6], is effectively a very efficient updating
algorithm for generic vertex models (in arbitrary dimen-
sions). In fact, the algorithm essentially eliminates critical
slowing down and is able to simulate the fermionic systems
at the critical point and directly in the massless limit.

We start with illustrating the reformulation in terms of
closed loops in the GN model. The model is most naturally
formulated by employing Majorana fermions [7,8]. Here
we are using Wilson’s Euclidean lattice discretization for
which the action density of the model is

L GN ¼ 1
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where � is a real, two component Grassmann field describ-

ing a Majorana fermion with mass m, C ¼ �CT is the
charge conjugation matrix, and @, @�, ~@ denote the forward,
backward and symmetric lattice derivative, respectively.
The Wilson term 1

2@
�@, responsible for removing the fer-

mion doublers, explicitly breaks the discrete chiral sym-
metry � ! �5�, �

TC ! �TC�5 and requires a fine-tuning
of m ! mc towards the continuum limit in order to restore
the symmetry. A pair �1, �2 of Majorana fermions may be
considered as one Dirac fermion using the identification
c ¼ 1ffiffi

2
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2 ÞC and the corre-

sponding GN model with N Dirac fermions has an
Oð2NÞ flavor symmetry. At g ¼ 0, integrating out the
Grassmann variables yields the partition function in terms
of the Pfaffian

ZGN ¼ Pf
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For g � 0 one usually performs a Hubbard-Stratonovich
transformation and introduces a scalar field � conjugate to
�TC� together with an additional Gaussian Boltzmann
factor expf�1=ð2g2ÞPx�ðxÞ2g for the scalar field.
In order to reformulate the model in terms of closed

loops (or equivalently dimers and monomers) we follow
the recent derivation of Wolff [8] (see [4,5] for alternative,
but more complicated derivations). One simply expands
the Boltzmann factor for the fermionic fields and makes
use of the nil-potency of the Grassmann variables upon
integration. Introducing ’ðxÞ ¼ 2þmþ �ðxÞ and the
projectors Pð��Þ ¼ ð1� ��Þ=2 we can write the fermi-

onic part of the GN path integral (up to an overall sign) as

Z
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Y
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ð�TðxÞCPð�Þ�ðxþ �̂ÞÞb�ðxÞ (3)

where mðxÞ ¼ 0; 1 and b�ðxÞ ¼ 0; 1 are the monomer and

bond (or dimer) occupation numbers, respectively.
Integration over the fermion fields yields the constraint
that at each site mðxÞ þ 1

2

P
�b�ðxÞ ¼ 1. Here the sum
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runs over positive and negative directions and b��ðxÞ ¼
b�ðx� �̂Þ. The constraint ensures that only closed and

nonintersecting loops of occupied bonds contribute to the
partition function and also accounts for the fact that the
loops are nonbacktracking, a consequence of the orthogo-
nal projectors Pð��Þ. The weight !ð‘Þ of each loop ‘ can
be calculated analytically [9] and yields j!ð‘Þj ¼ 2�nc=2

where nc is the number of corners along the loop. The sign
of ! will generically depend on the geometrical shape of
the loop [9] prohibiting a straightforward probabilistic
interpretation of the loop weights in dimensions d > 2.

In two dimensions, however, the sign of the loop only
depends on the topology of the loop and is determined by
the fermionic boundary conditions (BC). This has been
well known for a long time [10] but has recently been
clarified by Wolff [8] in the context of the GN model. It is
therefore useful to classify all loop configurations into the
four equivalence classes L00, L10, L01, L11 where the
index denotes the total winding (modulo two) of the loops
in the two directions. The weights of all configurations in
L10 andL11 for example will pick up an overall minus sign
if we change the fermionic boundary condition in the first
direction from periodic to antiperiodic, while the weights
of the configurations inL00 andL01 remain unaffected. As
a consequence, if we sum over all the topological equiva-
lence classes with positive weights, i.e., Z � ZL00

þ
ZL10

þ ZL01
þ ZL11

we effectively describe a system

with unspecified fermionic boundary conditions.
Vice versa, the partition function Z10

� � ZL00
þ ZL10

�
ZL01

þ ZL11
, e.g., describes a system with fermionic BC

antiperiodic in the first and periodic in the second
direction.

It is useful to point out the equivalence of the loop gas
formulation to the 8-vertex model [11,12] which is formu-
lated in terms of the eight vertex configurations shown in
the top row of Fig. 1 with weights !i; i ¼ 1; . . . ; 8. The
partition function is defined as the sum over all possible
tilings of the square lattice with the eight vertices such that
only closed (but possibly intersecting) paths occur. To be
precise, one has

Z8-vertex ¼
X
CP

Y
x

!iðxÞ; (4)

where the sum is over all closed path configurations (CP)
and the weight of each configuration is given by the

product of all vertex weights in the configuration. For the
GN model we have the following weights

!1 ¼ ’ðxÞ; !2 ¼ 0; !3 ¼ !4 ¼ 1;

!5 ¼ !6 ¼ !7 ¼ !8 ¼ 1ffiffiffi
2

p ;
(5)

i.e. each corner contributes a factor 1=
ffiffiffi
2

p
, while crossings

of two lines are forbidden (!2 ¼ 0) and each empty site
carries the monomer weight !1 ¼ ’ðxÞ.
The GN model with a single Majorana fermion is effec-

tively a free fermion system and we use it as a benchmark
to compare the results of our algorithm with analytic
results. Instances of the 8-vertex model for which no
analytic solutions are known include the Ising model
with additional next-to-nearest-neighbor and quartic inter-
actions [13]. The one-flavor Schwinger model with Wilson
fermions in the strong coupling limit is an 8-vertex model
with a fermionic interpretation [2,14]. The vertex weights
are given by

!1 ¼ ðmþ 2Þ2; !2 ¼ 0; !3 ¼ !4 ¼ 1;

!5 ¼ !6 ¼ !7 ¼ !8 ¼ 1

2
;

(6)

where the monomer weight and the corner weights are
squared due to the fact that we are dealing with a pair of
Majorana fermions glued together [15].
Let us now turn to the description of the new method to

efficiently simulate any vertex model in arbitrary dimen-
sions with generic (positive) weights !i, including the
fermionic models discussed above. For illustrative purpose
we restrict the discussion to the 8-vertex model. The
method is an extension of the so-called worm algorithm
by Prokof’ev and Svistunov [6]. The configuration space of
closed loops is enlarged to also contain open strings. For
the GN model such an open string with ends at x and y
corresponds to the insertion of two Majorana fields at
positions x and y which is simply the Majorana fermion
propagator

Gðx; yÞ ¼
Z

D�e�SGN�ðxÞ�ðyÞTC: (7)

Similar interpretations of the open string can be obtained
for other vertex models. The open string is now the basis
for a Monte Carlo algorithm which samples directly the
space of 2-point correlation functions instead of the stan-
dard configuration space. This is the reason why the algo-
rithm is capable of beating critical slowing down as
demonstrated below: at a critical point where the correla-
tion length grows large, the configurations are updated
equally well on all length scales up to a scale of the order
of the correlation length.
In the vertex language the insertions correspond to the

new vertex configurations depicted in the bottom row of
FIG. 1. The vertex configurations and weights of the eight-
vertex model (top row) and the extended model (bottom row).
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Fig. 1. A configuration containing a single open string
corresponds to a loop configuration with two instances of
vertex 9–16 which are connected by a string. Note that
vertices 13–16, while present in the generic extended
vertex model, do not have a physical interpretation in terms
of fermionic fields since they are explicitly forbidden by
Pauli’s exclusion principle (fermionic lines are not allowed
to intersect). Nevertheless they can also be included in the
fermionic models, simply for algorithmic efficiency, and
we do so in our implementation.

The algorithm now proceeds by locally updating the
ends of the open string using a simple Metropolis or heat
bath step according to the weights of the corresponding 2-
point function. When one end is shifted from, say, x to one
of its neighboring points y, a dimer on the corresponding
bond is destroyed or created depending on whether the
bond is occupied or not. In the process, the two vertices at x
and y are changed from vx; vy to v0

x; v
0
y and the move is

accepted with probability

Pðx ! yÞ ¼ min

�
1;
!v0

x

!vx

!v0
y

!vy

�
(8)

in order to satisfy detailed balance. So a global update
results from a sequence of local moves, and in this sense it
is similar in spirit to the loop cluster update [16], the
directed loop algorithm [17] or the directed path algorithm
for constrained monomer-dimer systems [18].

Whenever the two ends of the open string meet, a new
closed loop is formed and the new configuration contrib-
utes to the original partition function Z in one of the classes
L00,L10,L01,L11. In this way the overall normalization is
ensured, and expectation values can be calculated as usual.
The algorithm switches between the topological sectors
with ease: as the string evolves it can grow or shrink in
any direction and wrap around the torus. Effectively, the
algorithm simulates a system with fluctuating topological
boundary conditions.

In principle, the weight of the open string can be chosen
arbitrarily, but the physical interpretation in Eq. (7) sug-
gests to choose the weights !9 to !16 such that the open
string configurations sample directly the 2-point correla-
tion function, hence providing an improved estimator.
During the simulation one simply updates a table for
Gðx; yÞ as the string end points move around and the
expectation value is obtained by forming hGðx; yÞiZ ¼
Gðx; yÞ=Z.

For the fermionic models we also need to keep track of
the Dirac structure associated with Gðx; yÞ. This is most
easily done by adding the product of the Dirac projectors
along the string ‘, i.e.

Q
�2‘Pð�Þ, as a contribution at each

step. Care has to be taken when the open string winds an
odd times around a boundary on which we want to impose
antiperiodic boundary conditions for the fermions. In that
case we need to account for an additional minus sign in the

contribution to Gðx; yÞ. For the fermionic models where
vertices 13–16 have no physical meaning, the weights !13

to !16 can be tuned for algorithmic efficiency and do not
follow any physically inspired rule. A good choice is to use
the geometric mean of the weights !i of those vertices that

can be reached in one further update step, e.g. !13 ¼
ð!4!6!7Þ1=3. Finally, let us emphasize again that the
algorithm described here is applicable to any vertex model,
also in higher dimensions, as long as the weights are
positive definite in well-defined configuration classes.
We have performed extensive tests of our algorithm by

comparing to exact results known from Pfaffians (for the
Majorana GN model) or from explicit calculations on
small lattices. Simple observables are linear combinations
of partition functions and ratios thereof, e.g. ZLij

=Z with

i; j ¼ 0; 1. In Fig. 2 we show the results for the ratios
ZLij

=Z in the Majorana GN model on a 1282 lattice as a

function of the bare mass m. Dashed lines are the exact
results calculated from the Pfaffians. Note that all partition
function ratios are obtained in the same simulation. In the
inset we also show the ratio Z00

� =Z where Z00
� � ZL00

�
ZL01

� ZL10
� ZL11

is the partition function with fermionic

BC periodic in space and time direction. In that situation
the Majorana Dirac operator has a zero mode at m ¼ 0
(and at m ¼ �2) and the system is critical. The inset in
Fig. 2 illustrates that the algorithm can reproduce this zero
mode without problems and that we can in fact simulate
directly at the critical point. Conversely, we can use
Z00
� =Z ¼ 0 as a definition of the critical point m ¼ mc.

In Fig. 3 we show our results for Z00
� =Z as a function of the

bare massm in the Schwinger model in the strong coupling
limit for various volumes. The critical point can be deter-
mined accurately with very little computational effort and
we obtain mc ¼ �0:686 506ð27Þ (cf. inset in Fig. 3) from
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FIG. 2 (color online). Results for the ratios ZLij
=Z for the

Majorana GN model on a 1282 lattice as a function of the bare
mass m. Dashed lines are the exact results. The inset shows
Z00
� =Z and illustrates how the zero mode at m ¼ 0 is reproduced.
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our simulations on the largest lattice with L ¼ 512. Further
improvement could be achieved by employing standard
reweighting techniques as done in [19] where they ob-
tained mc ¼ �0:6859ð4Þ. These calculations indicated a
second order phase transition in the universality class of
the Ising model (with critical exponent � ’ 1). Our results
in Fig. 3 now confirm this by demonstrating that the
partition function ratios Z00

� =Z as a function of the rescaled

mass ðm�mcÞL� with � ¼ 1 beautifully collapse onto a
universal scaling curve.

The efficiency of the algorithm and the fact that critical
slowing down is essentially absent is demonstrated in
Fig. 4 where we show the integrated autocorrelation time
�A of the energy as a function of the linear system size L at
the critical point m ¼ mc. (Similar plots can be obtained
for the Majorana GN model.) The functional dependence
on L can be well fitted (�2=d:o:f: ¼ 1:28Þ by �A / Lz all
the way down to our smallest system size L ¼ 8. We obtain
z ¼ 0:25ð2Þ which is consistent with just using the largest
two system sizes. It is an amazing result that our local
Metropolis-type update appears to have a dynamical criti-
cal exponent close to zero. The autocorrelation time may

also depend logarithmically on L and a fit to L � 64 yields
�13:8ð1:9Þ þ 6:6ð4Þ lnðLÞ with �2=d:o:f: ¼ 1:00.
In conclusion, we have presented a new type of algo-

rithm for generic vertex models. It relies on sampling
directly 2-point correlation functions and essentially elim-
inates critical slowing down. We have successfully tested
our algorithm on the Majorana GN model and on the
Schwinger model in the strong coupling limit and found
remarkably small dynamical critical exponents. The algo-
rithm definitely opens the way to simulate efficiently ge-
neric vertex models (with positive weights) in arbitrary
dimensions, in particular the GN model with any number
of flavors, the Thirring model, the Schwinger model and
QED3 in the strong coupling limit, as well as fermionic
models with Yukawa-type scalar interactions, all with
Wilson fermions.

I would like to thank Philippe de Forcrand and Michael
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Note added.—The technical details of our proposal have

also been worked out independently in [20] which ap-
peared while we finalized this paper.
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