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Recently dispersion relations have been applied to hard exclusive processes such as deeply virtual

Compton scattering, and a holographic principle was proposed that maps out the generalized parton

distributions entering the soft matrix elements for the processes from their values on a given kinematical

ridge. We examine possible pitfalls associated with the implicit, direct identification in this approach of

the physical hadronic states with colored partons, and suggest an improved treatment of this assumption.
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A number of studies have recently advocated using
dispersion relations (DRs) both to facilitate the extraction
from deeply virtual exclusive experiments, such as deeply
virtual Compton scattering (DVCS), of the soft matrix
elements for hard exclusive processes, the generalized
parton distributions (GPDs), and to determine their model
parameters [1–3]. In this paper we are going to show that
there are important limitations to the use of DRs for
processes described by GPDs.

DRs have a long history in hadronic physics. For a
general exclusive, two body hadronic reaction, invariant
amplitudes can be written in terms of energy and angle
variables, such as the Mandelstam variables s and t, or � ¼
ðs� uÞ=4M and t. When the energy variable is continued
into the complex plane, the amplitudes become holomor-
phic functions, i.e. analytic functions over regions of the
complex plane. Unitarity of the amplitudes determines the
physical intermediate states that in turn determine branch
cuts in the complex energy plane. Each physical state has a
kinematic threshold that fixes the branch point.

DRs were derived for inclusive deep inelastic scattering
(DIS) as well, when viewed as forward virtual Compton
scattering [4]. � in this case translates into the virtual
photon’s energy in the laboratory system (� � �Lab), in
turn connected to the variable ! ¼ 1=xBj, where xBj ¼
Q2=2M�. DIS can be considered as a special case of elastic
scattering where unitarity relates the imaginary part of the
forward amplitude to the total cross section, the inclusive
sum over all physical final states allowed by the energy. As
discussed thus far, DRs do not necessarily include the
partonic structure of the target. Partonic degrees of free-
dom are integrated over. In fact, all remaining kinematical
variables, including xBj, can be considered to be fixed by

the kinematic conditions ‘‘external’’ to any partonic loop
or QCD elaboration.

A connection with the partonic structure, through the
operator product expansion (OPE), therefore QCD, can be

established e.g. by following the derivation in Ref. [4],
where the important assumption is made that the support
for both the integrals defining the Mellin moments of the
operators and the final amplitude is xBj 2 ½�1; 1�, in the

asymptotic limit, Q2 ! 1. It is also assumed that the
intermediate states that are summed over in a factorized
amplitude are physical. This leads to the identification of
the (twist two) quark distribution, HðxBjÞ [4] with the

measured structure function, F2ðxBjÞ, or the imaginary

part of the forward amplitude. More specifically, two steps
are taken in establishing DRs for DIS: (i) the identification
of the physical threshold for the scattering process, �th,
with the continuum threshold, �C ¼ Mþm�, or xC ¼ 1,
appearing in the integral definition of the scattering ampli-
tude; and (ii) the identification of xBj with the partonic

variable present in the factorized amplitude. The question
of the applicability of dispersion relations to processes
interpreted through the parton and QCD description is a
long-standing theoretical concern. For example, it has been
noted that difficulties arise in treating the pion form factor
dispersion relation in terms of partons in the medium Q2

region where data are available (see Refs. [5,6] and refer-
ences contained therein to earlier work).
In this paper we argue that these assumptions cannot be

carried straightforwardly to the off-forward case described
e.g. in DVCS. In fact, as explained later, one has a mis-
match between the supports for the scattering amplitude
and for the corresponding DR, namely, �C � �th. This
mismatch is a straightforward consequence of
t-dependent physical thresholds, not present in the DIS
forward/elastic case, that are long known to hinder the
useful and practical applications of DRs. The mismatch
exists for both � and � . This point does not touch upon the
partonic aspects of the process. However, in the factorized
form of DVCS, described by a handbag picture, xBj in (ii)

is replaced by two longitudinal fractions, X and � , where
X � ðkqÞ=ðPqÞ and the external variable, the skewness,
� ¼ ðq�Þ=ðqPÞ � Q2=ð2M�LabÞ, with � being the mo-
mentum transfer for the two body scattering process, �2 ¼
t [we will use either the set ðX; �; tÞ or the alternative
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variables, (x ¼ X��=2
1��=2 , � ¼ �

2�� , t) throughout the paper—

see Refs. [7,8] for reviews on DVCS]. The expression for
the DVCS amplitude at leading order in QCD factorization
is

T��ð�;Q2; tÞ ¼ � 1

2
g
��
T �uðp0Þn̂uðpÞ X

flavors

e2fH fð�; tÞ; (1)

where the analog of the Compton form factor is

H þ
f ð�; tÞ ¼

Z þ1

�1
dx

Hþ
f ðx; �; tÞ

x� �þ i�
: (2)

The GPD Hðx; �; tÞ is convoluted with the hard part,
1=ðx� �þ i�Þ, and integrated over x in the range
½�1; 1�. Crossing symmetry is implemented by

Hð�Þ
f ðx; �; tÞ ¼ Hfðx; �; tÞ �Hfð�x; �; tÞ; (3)

recalling that for parton distribution functions, qð�xÞ ¼
� �qðxÞ relates negative x to positive x antiquark probability.

It follows straightforwardly from Eq. (2) that
ImH ð�; tÞ ¼ Hð�; �; tÞ. To relate this to the discontinuity
across the physical branch cut of a holomorphic function,
unitarity is invoked through the insertion of a complete set
of intermediate states,

ImH ð�; tÞ ¼
Z

dX½�ðX� �Þ þ �ðXÞ�
�X

N

hP0 j �cþðk0Þ j NihN j cþðkÞ j Pi

� ð2�Þ�ðXPþ þ pþ
N � PþÞ: (4)

The resulting analytic structure allows the DR to be written

ReH ð�Þð�; tÞ ¼ 1

�

�
P:V:

Z �th

�1
dx

Hð�Þðx; x; tÞ
x� �

þ
Z þ1

�th

dx
Hð�Þ

unphysðx; x; tÞ
x� �

�
; (5)

where the subscript ‘‘unphys’’ emphasizes that the integra-
tion should be over the whole range, but because the
integration variable is now interpreted as the skewness,
external to the quark loop, a threshold mismatch ensues
due to the inelasticity of the two body process for nonzero

t. In fact �th ¼ ½�tþ ðt2 � 4M2tÞ1=2�=2M for Q2 � t, the
physical threshold for the two body, �	p ! �p0 scattering
process, originates from the limiting values for the angles
defining the invariant t ¼ ðq� q0Þ2. One obtains in the
limit Q2 � t, tmin ¼ Q4=4s� ðqCM � q0CMÞ2 ¼
�M2�2=ð1� �Þ. Notice that for DIS, the physical and
continuum thresholds coincide because the final photon
has the sameQ2 as the initial one, tmin ¼ 0 and �th ¼ xth ¼
1 ¼ �C.

In DVCS the region x 2 ½�th; 1� is unphysical and the
second term in Eq. (5) cannot be obtained from experi-
ment. The physical meaning of this discrepancy is illus-

trated in Fig. 1 where both the continuum and physical
thresholds for several variables describing DVCS, s, �, and
� , are plotted as a function of t. For s, asQ2 increases, only
higher and higher invariant mass states are sampled. Under
s ! u crossing, there are corresponding branch cuts for
negative �. So it is not clear how the dispersion integral can
be written in the partonic variables. Although the mismatch
between physical and continuum thresholds addresses the
issue of the physical interpretation of GPDs, it was a well-
known problem for two body scattering processes [9],
where it was dealt with by either constructing models for
the analytic continuation, or developing some other pre-
scription. The threshold mismatch seen in these fixed tDRs
in � could be reduced by introducing new variables, a
method used in hadronic processes. We will show the
consequences of introducing a jet mass in the factorized
picture [10].
To illustrate the different physics involved in forward

and off-forward processes, respectively, we discuss the
proof of the DR given in Ref. [1]. This was obtained
similarly to the DIS case (see [4], for example). The
hadronic tensor related to the forward Compton amplitude
T��ðx;Q2Þ can be given a partonic interpretation when the
operators are expressed via interacting quark fields and
subjected to the OPE. The coefficients of the leading twist
terms in that expansion are the Mellin moments of the
quark distribution functionsHðxÞ. Summing this geometric
series (for jxj> 1) leads to the form of the DR for
T��ðx;Q2Þ with integrand Hð	Þ=ðx� 	Þ. Because the

FIG. 1 (color online). Thresholds for the variables � , �, and s
plotted vs t. The dashed lines are the continuum thresholds
whereas the full lines represent the physical thresholds (see text).
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Compton form factor is known to satisfy analyticity as a
forward elastic amplitude, that analyticity allows the con-
tinuation of the integration to the complex x plane and the
DR follows. In Ref. [1] the GPD, Hðx; �; tÞ, enters observ-
ables through integration over x as in Eq. (2). The denomi-
nator in the integrand, which arises from the light cone
limit of the struck quark’s propagator, can be written as a
geometric series in x

� . Because the GPD must satisfy poly-

nomiality in � (the x moments are polynomials in � with
t-dependent coefficients), based on the underlying covari-
ance, the resulting series must converge for large j�j> 1.
So in the complex � plane theH fð�; tÞwill be analytic for
the unphysical j�j> 1.

Then, by analogy with the hadronic DR, it is assumed
that there is a physical branch cut from �1 to þ1 on the
real � axis and no other poles or cuts. For this interpretation
however, the intermediate states, the ŝ-channel cuts, have
to be determined, given nonzero t and Q2. But for these
kinematic constraints the support is limited, as Eq. (5)
indicates. A separate consideration is that intermediate
states carry bare color, so there is no analog of unitarity
for factorized DVCS. In DIS this distinction is irrelevant,
but here however, the absence of intermediate hadronic
states means that the GPD cannot have the proper physical
branch cuts. Figure 1 shows that the gap remains even at
high Q2.

The suggestion [2] that experimental analyses provide
information only on the kinematical domain on a ridge at
x ¼ � and fixed t andQ2 therefore depends on whether one
can disregard or treat otherwise the unphysical term in
Eq. (5) (note that in next-to-leading order analyses the
domain is smeared beyond the ridge [2]). It is this point
about the sufficiency of the ‘‘ridge’’ that we are examining
with care, by assuming DRs are satisfied in various model
GPDs.

To illustrate these crucial questions we consider two
examples of models that should satisfy DRs, namely, an
asymptotic Regge model and a covariant spectator model.
The Regge pole model contributes to the scattering ampli-
tude amplitude Tð�; t; Q2Þ for a single Regge trajectory
	ðtÞ in the simple form

TRð�;Q2; tÞ ¼ 
ðt; Q2Þð1� ei�	ðtÞÞ
�
�

�0

�
	ðtÞ

: (6)

So the DR should be

ReTRð�;Q2; tÞ ¼ 2�

�

Z 1

�th

d�0 ImTRð�0; Q2; tÞ
�02 � �2

; (7)

providing that the integral converges. For a low lying
trajectory or large enough t so that 	ðtÞ< 0, this will
converge. But this relation is exact only for �th ¼ 0. The
actual threshold for Q2 ¼ 0 is at �t=4M and further for
nonzeroQ2. So the DR is satisfied asymptotically, for � �
�th. This is illustrated for several cases in Fig. 2(a) where
the real and imaginary parts are plotted against � and

against � . The directly calculated real part and the disper-
sion relation result for the real part in this unsubtracted
dispersion relation are quite separated for low � or high � .
Note that for current typical JLab kinematics (Hall B)
Q2 
 4:5 GeV2, jtj< 2:0 GeV2, and 0:09< xBj < 0:6,

so the nonasymptotic values of Q2 and t are quite relevant.
We next consider a quark-diquark model with spinless

partons (for simplicity, as in Ref. [3]). Because this is a
covariant model it satisfies the polynomiality condition
thus allowing the GPD to be continued into the large �
or small x=� region in which the analyticity requirements
apply [1]. The subtraction, �ð�; tÞ, the difference between
the evaluation of Eqs. (2) and (5) for the symmetric case, is
presented in Fig. 2(b), which clearly displays non-
negligible � and t variations of �ð�; tÞ, thus demonstrating
that �ð�; tÞ cannot be identified with a dispersion subtrac-
tion constant. In this case, since all x, �, and t dependences
are part of the model in a nontrivial way, the threshold �max

is necessarily the physical one. Given that our subtraction
‘‘constant’’ �ð�; tÞ is actually a function of � , due to the
threshold dependence, we cannot see a direct relation to
either the so-called D-term [1] or the J ¼ 0 fixed pole [11],
although at high jtj and Q2, there is a flattening out. We
have not addressed the nature of the states yet. For GPDs
some kind of a duality model needs to be introduced that
makes the colored quark and remnant jets look like hadrons
(see the recent study on this subject [12]), in addition to
providing a prescription for analytically continuing to the
appropriate threshold. The prescription we suggest as an
alternative to analytic continuation aims at reducing the
kinematical threshold mismatch by replacing the variables

(a) (b)

FIG. 2 (color online). Threshold induced violations of disper-
sion relations for both the Regge model (a), and the covariant
quark-diquark model (b), described in the text. For the Regge
model we show the gap between the calculated real parts using
the physical threshold at t ¼ 0:3 GeV2 and different values of
Q2, and the analytic continuation labeled as �th ¼ 0. The same
gap is plotted vs � in the lower panel of (a). For the quark-
diquark model calculation the direct (dotted lines), the dispersion
relation (dashed lines), and their difference (solid lines) are
plotted vs � for different t values.
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used in Figs. 1 and 2 with variables including a mass, mJ,
for the hard partonic jet. Our prescription is in line with
Ref. [10], where it was exactly pointed out that kinematical
threshold mismatches might arise in the collinear factori-
zation approach if the mass of the hard partonic jet is
disregarded. Although considering jets with mass is not
equivalent to hadronization, it might get us closer to what a
hadronic intermediate state is. Following [10,13] we re-
place the hard propagators for the struck quark in the hard
part of the handbag with a variable jet mass

1

� � Xþ i�
with

1

�ð1þ m2
J

Q2Þ � Xþ i�
: (8)

The dispersion relation becomes

ReH ¼ PV
Z

dX
Z

dm2
J�ðm2

JÞ
HðX; ð1þ m2

J

Q2ÞX; tÞ
� � X

; (9)

where �ðm2
JÞ is a jet mass distribution. The results shown in

Fig. 3 demonstrate that the gap obtained as a result of
having two different thresholds in the massless calculation
(Fig. 2) is softened, due to the new set of variables that
better account for the correct range of integration over the
partons’ virtuality and transverse momentum (see also
discussion in [10]).

In conclusion, we have shown the limitations of apply-
ing DRs to deeply virtual exclusive processes, and have
given insight into the partonic nature of GPDs by examin-
ing the role of variables external and internal, respectively,
to the quark loop that appears in the leading order factori-
zation formulation. In particular, we show that it could lead

to misleading results to base global parametrizations on
DRs as recently done in [14]. To pin down GPDs we
advocate comprehensive measurements of both the real
and imaginary components through various asymmetries
and cross section components in a wide range of all kine-
matical variables � , t, and Q2.
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FIG. 3 (color online). The difference between the dispersion
relation and direct calculation in a scalar quark-diquark model
including the hard jet hadronic mass as from Eqs. (8) and (9).
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