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Characterizing the propagation of particles in an external non-Abelian field only in terms of invariants

constructed from its field tensor is not always sufficient, especially, in many analytically tractable and

phenomenologically interesting cases.

DOI: 10.1103/PhysRevD.80.067701 PACS numbers: 11.15.Kc, 11.15.Tk, 12.38.�t, 12.38.Lg

The concept of external fields has many uses, from
theoretical tools to phenomenological motivations. In the
latter case, the motivations range from computational fea-
sibility to the fact that the vacuum without external field is
not the correct expansion point [1]. The investigation of
quantum electrodynamics in external fields leads, e.g., to
the seminal and as yet untested prediction of particle
creation in (originally constant electric) external fields
[2]. This and other effects are about to be tested, e.g.,
with ultrastrong light sources [3]. The generalization to
quantum chromodynamics is of interest in the context of
high energy collisions. A concept that is inseparably linked
to external fields is that of effective actions [2,4]. For a
covariantly constant background [see Eq. (8)], the corre-
sponding computations proceed in close analogy to the
Abelian case [5].

Observables in gauge field theories are by definition
gauge invariant. In the presence of backgrounds this means
that the results may only depend on said background in a
gauge invariant way. A way to make the gauge invariance
manifest is to identify gauge invariant combinations of the
background field tensor [6] and express the observables in
terms of these. Backgrounds allowing for analytically trac-
table calculations, due to technical limitations, have typi-
cally only a small number of nonzero Lorentz and color
components. Therefore, they are subject to the Wu-Yang
ambiguity [7]. It states that in non-Abelian field theories
there exist field tensors that have realizations in terms of
different gauge field configurations that are not gauge
equivalent. To see that these different gauge fields do
indeed lead to different physics consider the constant
non-Abelian field tensor,

Ea
3 ¼ Fa

03 ¼ @0A
a
3 � @3A

a
0 þ fabcAb

0A
c
3; (1)

and all other components equal to zero. fabc stands for the
antisymmetric structure constant of the gauge group G.
This field tensor can be realized by the gauge field,

Aa
3 ¼ þEa

3x
0; (2)

and zero otherwise. The gauge transformation U ¼
e�iE3x

3x0 , where E3 ¼ Ea
3T

a and Ta represent the genera-

tors of G, turns it into Aa
0 ¼ �Ea

3x
3, while leaving the field

tensor invariant. Now regard,

Aa
0 ¼ aa0 ; and Aa

3 ¼ aa3 ; (3)

where aa0 and aa3 are constant such that fabcab0a
c
3 ¼ Ea

3 .

(All of the above field configurations satisfy Lorenz as well
as Coulomb gauge.) The gauge transformation that re-

moves aa3 reads U ¼ e�ia3x
3
: It turns a0 into

Ua0U
y ¼ e�ia3x

3
a0e

þia3x
3 ¼ a0e

þ2ia3x
3
� a0; (4)

where we assumed fa0; a3g ¼ 0 for simplicity. This gauge
transformation also does not leave the field tensor invari-
ant: Assuming fa3; E3g ¼ 0,

UE3U
y ¼ E3e

þ2ia3x
3
: (5)

Another way of seeing that this last configuration is not
gauge equivalent to the first is computing gauge invariant
Wilson loops. Take the rectangular path C ðx0; x3Þ: ð0; 0Þ !
ðy0; 0Þ ! ðy0; y3Þ ! ð0; y3Þ ! ð0; 0Þ. For configurations
(2) and (3) this yields

W ¼ trei
H

C
dx�A ¼ treiE3y

0y3 ; (6)

and

W ¼ tre�ia3y
3
e�ia0y

0
eia3y

3
eia0y

0
; (7)

respectively, which do not coincide.
In 4 dimensions, a necessary condition for the presence

of this ambiguity is detF ¼ 0, where Fab�� ¼
1
2 �����F

c��fabc [8]. (Accordingly, such a determinant

also appears as part of the Jacobian when translating path
integrals from the gauge field to a field tensor formulation
[9].) F is in the adjoint representation. Therefore, each
submatrix of a single Lorentz component has zero eigen-
values. The corresponding eigenvectors of different sub-
matrices must be misaligned to have detF � 0.
Further, configuration (2) is covariantly constant (a

gauge invariant statement),

D�F�� ¼ 0 8 �;�; �; (8)

as there D�F�� ¼ @�F�� ¼ 0 8 �;�; �: For configura-

tion (3) we have @�F�� ¼ 0 8 �;�; �; and thus,

Dcd
� Fd

�� ¼ fabcAa
�F

b
�� � 0 for �, �, and � 2 f0; 3g.

Thus, hereD�F�� are the gauge covariant quantities that

allow one to distinguish between the gauge-inequivalent
settings. They cannot be expressed in terms of Fa

�� alone.
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They can serve to construct gauge invariant quantities,
which can also be contracted into Lorentz scalars. In
particular, the current in the Yang-Mills equation,
Dab

� Fb�� ¼ Ja�, can be used in Ja�J
a�. After all, covariant

conservation is a sufficient albeit not necessary condition
for a vanishing current. Hence, for covariantly constant
fields all the invariants involving Ja� are zero. A related

invariant is ðDab
� Fb

��ÞðDac�Fc��Þ [10].
In fact, the covariant derivative and not the field tensor is

the elementary building block for invariants, in the sense
that it carries more information than the latter. Odd powers
of the covariant derivative cannot be contracted into
Lorentz scalars. Order 2 does not have nontrivial contribu-
tions. Order 4 has F��F

�� and F��
~F��. Order 6 contains

the aforementioned Ja�J
a�.

A rescaling a0 ! a0c, a3 ! a3=c leaves the field tensor
invariant [10]. This rescaling cannot be generated by a
unitary global gauge transformation and hence, the pa-
rameter c characterizes a continuous class of gauge-
inequivalent gauge field configuration belonging to the
same field tensor. (There are no additional classes of
gauge-inequivalent representations, for a constant field
tensor; covariantly constant and static configurations ex-
haust all possibilities [10].) Fixing as reference Ja�J

a� ¼ 0

for c ¼ 1, we obtain Ja�J
a� ¼ ðc�2 � c2ÞjE3j3. The c ¼ 1

case can be told apart from Ja� ¼ 0 by means of

Ja�J
b�Ja�J

b� ¼ ðc�4 þ c4ÞjE3j6, where for simplicity we

assumed Ja0J
a
3 ¼ 0. After inclusion of a third gauge field

component, such that all components are noncommuting,
which leads to 3 nonzero components for the field tensor,
this continuous scaling symmetry breaks down to a simul-
taneous overall sign change. The Wilson loop (7) is also c
dependent. In comparison, Klein-Gordon and Dirac propa-
gators have additional structure [11]. To illustrate more
how much the situations with equal field tensor, but differ-
ent gauge-inequivalent gauge fields differ, we study these
propagators in the presence of the 2 different configura-
tions (2) and (3).

A more general nonstatic configuration E3 ¼ E3ðx0Þ ¼
½Q;Eðx0Þ�, whereQ ¼ QaTa ¼ const, can also be realized
either as a derivative of

A3 ¼ A3ðx0Þ ¼ ½Q;
Z

dx0Eðx0Þ�; (9)

or as a commutator of a constant

A3 ¼ QC with A0 ¼ Eðx0Þ=C; (10)

where C also accounts for the correct mass dimension of
the vector potential. Clearly, detF ¼ 0. These field con-
figurations still satisfy Coulomb, but not always Lorenz
gauge because of A0 ¼ A0ðx0Þ, which, however, could be
rotated away. For a covariantly constant electric field, the
first realization leads only to J3 � 0, while the second has
also J0 � 0, i.e., a net charge density. For the second
configuration, the field tensor can again not distinguish
between gauge fields rescaled by a constant c as described

above, which here is equivalent to dividing C by c. When it
comes to gauge transformations, A3 ¼ QC can be removed

by U ¼ e�iQCx3 . This leads to A0C ! e�iQCx3EeiQCx3 ,
which is x3 dependent. Choosing x0 ¼ 0 as the lower
integration bound in the expression for A3, we find for
the Wilson loops the 2 different results,

W ¼ trei½Q;
R

y0

0
dtEðtÞ�y3

and

W ¼ tre�iQCy3ei
R

y0

0
dtEðtÞ=CeiQCy3ei

R
y0

0
dtEðtÞ=C:

In mixed representation, in a purely time-dependent
background, the equation of motion for the Klein-Gordon

propagator ~S ¼ ~Sðx0; y0; ~pÞ reads
ð@20 � i _A0 � 2iA0@

0 þ 2Ajp
j �A �Aþ!2Þ~S¼ �ð1Þ; (11)

where �ð1Þ ¼ �ðx0 � y0Þ, j 2 f1; 2; 3g, and !2 ¼
j ~pj2 þm2. For configuration (2) this becomes

½@20 þ ðp3 � E3x
0Þ2 þm2

?�~S ¼ �ð1Þ; (12)

where m2
? ¼ j ~p?j2 þm2. A decomposition into eigenvec-

tors of E3 leads to

½@20 þ ðp3 � enx
0Þ2 þm2

?�~Sn ¼ Pn�
ð1Þ; (13)

where E3jni ¼ enjni, hnjmi ¼ �nm, Pn ¼ jnihnj, and
~Sn ¼ Pn

~S. The homogeneous solutions to this differential
equation are

Mlðx0Þ ¼ t�1=2M�im2
?=ð4enÞ;�ð�1Þl=4ðient2Þ; (14)

where l 2 f1; 2g, t ¼ x0 � p3=en, and M�;�ðzÞ is a

Whittaker function. [See Eqs. (13.1.31) and (13.1.32) in

[12].] With the boundary conditions ~S ¼ 0 and _~S ¼ 1 at
x0 ¼ y0, we find for the retarded solution,

~S ¼ X
n

Pn

M1ðx0ÞM2ðy0Þ � ð1 $ 2Þ
_M1ðy0ÞM2ðy0Þ � ð1 $ 2Þ �

ð1Þ; (15)

where �ð1Þ ¼ �ðx0 � y0Þ stands for the Heaviside step
function. The denominator contains a known Wronskian
and evaluates to i. [See Eqs. (13.1.34), (13.1.32), (13.1.33),
and (13.1.22) in [12].] In the limit of large t, Eq. (14)
becomes [see Eqs. (13.1.32) and (13.5.1) in [12]]

Ml ! icl=2�ðclÞe��m2
?=ð8enÞt�1=2

�
�ðent2Þ�im2

?=ð4enÞe�ði=2Þent2icl=2

�ðcl2 �
im2

?
4en

Þ
þ c:c:

�
; (16)

where c1 ¼ 3=2 and c2 ¼ 1=2. In the previous expression,
we can already see the typical exponential m? behavior of
the pair production rate.
For configuration (3), Eq. (11) becomes

½@20 � 2ia0@
0 � ða0Þ2 þ ðp3 � a3Þ2 þm2

?�~S ¼ �ð1Þ:
(17)

Let us continue with SUð2Þ [at least an SUð2Þ subgroup],
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the generalization to higher gauge groups being straight-
forward. Define

½@20 þ 2ia0@
0 � ða0Þ2 þ ðp3 þ a3Þ2 þm2

?�~s ¼ ~S:

Then, from Eq. (17), assuming fa0; a3g ¼ 0,

f½@20 � ða0Þ2 þ ða3Þ2 þ!2�2
þ 4ða0Þ2@20 � 4ðp3Þ2ða3Þ2g~s ¼ �ð1Þ: (18)

The exponential ansatz ~s� e�x
0
yields the 4 values,

�2� ¼ �½!2 þ ða0Þ2 þ ða3Þ2�

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða0Þ2ða3Þ2 þ ða0Þ2!2 þ ðp3Þ2ða3Þ2

q
:

For ½!2 � ða0Þ2 þ ða3Þ2�2 < 4ðp3Þ2ða3Þ2, this corresponds
to 2 oscillatory, 1 exponentially decaying, and 1 exponen-
tially growing mode; otherwise, the behavior is purely
oscillatory. For comparison, repeating the same steps for
a magnetic field Fa

12 ¼ fabcab1a
c
2 yields

�2� ¼ �½ða1Þ2 þ ða2Þ2 þ!2�

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1Þ2ðp1Þ2 þ ða2Þ2ðp2Þ2

q
;

implying always purely oscillatory solutions.
In mixed representation the Dirac equation is given by

ði	0@0 � 	jpj þ A6 �mÞ ~G ¼ �ð1Þ; (19)

where ~G ¼ ~Gðx0; y0; ~pÞ. With the help of

� ði	0@0 � 	jpj þ A6 þmÞ~g ¼ ~G; (20)

we obtain the squared Dirac equation,

½@20� 2iA0@0þ 2pjA
j� i	0 _6A�A6 A6 þ!2�~g¼ �ð1Þ: (21)

For configuration (2) this becomes

½@20 þ ðp3 � E3x
0Þ2 þm2

? � i	0	3E3�~g ¼ �ð1Þ: (22)

We continue by carrying out a decomposition with the
projectors P� ¼ ð1� 	0	3Þ=2 and Pn,

½@20 þ ðp3 � enx
0Þ2 þm2

? � ien�~gn� ¼ PnP��ð1Þ; (23)

where ~gn� ¼ PnP�~g. Up to the substitutions m2
? ! m2

? �
ien, ~g

n� are the same as Eq. (15),

i~g ¼ X
n;�

P�Pn½M�
1 ðx0ÞM�

2 ðy0Þ � ð1 $ 2Þ��ð1Þ: (24)

In the limit of large t, M�
l become [see Eqs. (13.1.32) and

(13.5.1) in [12]],

M�
l ! icl=2�1=4�ðclÞe��m2

?=ð8enÞðent2Þ�1=4

�
�ðent2Þ�1=4�im2

?=ð4enÞe�ði=2Þent2 icl=2

�ðcl2 � 1
4 �

im2
?

4en
Þ

þ c:c:&
� $ �

� ��
: (25)

At the end, the Dirac propagator is obtained by putting

Eq. (24) into Eq. (20). At late times, the Dirac operator in
Eq. (20) is dominated by the gauge field term, which grows
linearly and the derivative term, which, when acting on the
Gaussian in time in the previous equation also generates an

extra factor of time. Hence, the dominant components of ~G
are growing approximately like the square root of time. If

we use ~G to construct the fermion current �c	�c this
factor appears twice and the current grows linearly in
time. Therefore, one talks of a constant pair production
rate in this field configuration.
For configuration (3), Eq. (21) becomes

½@20 � 2ia0@0 � ða0Þ2 þ ðp3 � a3Þ2
þm2

? � i	0	3E3�~g ¼ �ð1Þ: (26)

We carry out the same decomposition with the projectors
P� as before for Eq. (22),

½@20 � 2ia0@0 � ða0Þ2 þ ðp3 � a3Þ2
þm2

? � iE3�~g� ¼ P��ð1Þ; (27)

where ~g� ¼ P�~g. Define

½@20 þ 2ia0@0 � ða0Þ2 þ ðp3 þ a3Þ2
þm2

? � iE3�~�� ¼ ~g�: (28)

Then, with pairwise anticommuting a0, a3, and E3,

f½@20 � ða0Þ2 þ ða3Þ2 þ!2�2 þ 4ða0Þ2@20
� 4ðp3Þ2ða3Þ2 þ ðE3Þ2g~�� ¼ P��ð1Þ: (29)

From the exponential ansatz ~�� � e�x0 we get

�2� ¼ �½!2 þ ða0Þ2 þ ða3Þ2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4½ða0Þ2ða3Þ2 þ ða0Þ2!2 þ ðp3Þ2ða3Þ2� � ðE3Þ2

q
;

which leads to a purely oscillatory behavior, as does the
analogous result for a magnetic B3 field,

�2� ¼ �½ða1Þ2 þ ða2Þ2 þ!2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4½ða1Þ2ðp1Þ2 þ ða2Þ2ðp2Þ2� þ ðB3Þ2

q
: (30)

In conclusion, there exist non-Abelian field tensors that
can be realized by different gauge field configurations that
are not linked by gauge transformations, i.e., that are not
gauge equivalent. Under these circumstances the covariant
derivative carries more information than its commutator,
the field tensor. In most of the gauge-inequivalent configu-
rations leading to the same field tensor there exist observ-
ables (gauge invariant quantities) that cannot be expressed
exclusively in terms of the field tensor. Here, we have
demonstrated this explicitly for various field tensors that
allow for gauge-inequivalent gauge field realizations. As
examples we have picked static field tensors, electric or
magnetic, and purely time-dependent configurations.
Concretely, we showed that a direct gauge transformation
of different gauge field configurations into each other
cannot be found despite the fact that they yield the same
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field tensor; further, that for these different configurations
the corresponding Wilson loops and Yang-Mills currents
differ, as do the Klein-Gordon and Dirac propagators. For
example, while the induced fermion current in the Abelian-
like realization for a static electric field exhibits asymptoti-
cally linear growth with time, which leads to the rate
interpretation of the result, the propagators in the genuinely
non-Abelian realization possess only purely oscillatory
modes. In the latter realization, the scalar propagator can
also feature exponentially growing and decaying modes in
the presence of an electric field. A particular quantity that
cannot be expressed in terms of a Wu-Yang ambiguous
field tensor is the Yang-Mills current. It is exactly the
covariantly constant case, where this current vanishes,
which explains why the effective actions for scalars or
fermions in this configuration can be expressed in terms
of the field tensor alone. For detF � 0 there is no Wu-Yang
ambiguity and Aa

� can be expressed in terms of Fa
�� and

therefore, all invariants and observables.

In the worldline approach [13] to effective actions all
these differences discussed above reflect in the precession
of the color as described by Wong’s equation [14].
The above facts may have consequences for the flux-

tube picture [15] for ultrarelativistic collisions, which fea-
tures static chromoelectric fields. Depending on how the
latter is realized, by configurations (2) or (3) [or if, e.g., a
decaying field is assumed by configurations (9) or (10)],
the particle yields differ. J0 can serve to distinguish be-
tween the realizations.
As mentioned in [16], also Coulomb fields have detF ¼

0. Boosted onto the light cone, i.e., as Weizsäcker-
Williams fields, they are used in the color glass condensate
framework [17] to model the initial conditions of ultrarela-
tivistic collisions.
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