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Recently, generalizations of the Ashtekar constraints are derived via the Nieh-Yan topological term. To

be fair, such canonical transformations have been applied before in a gauge framework of gravity.

Moreover, in the case of the teleparallelism equivalent of Einstein’s theory, one can go further and show

that the Chern-Simons solutions of the Gauss-type constraints wind around torsional instantons, thus

establishing an analogue to the � vacua of Yang-Mills theory.
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I. INTRODUCTION: PARITY-VIOLATING
TOPOLOGICAL INVARIANTS IN GRAVITY

In the one-dimensional harmonic oscillator model [1], a
canonical transformation can be induced by a boundary
term derived from the Chern-Simons (CS) type term C ¼
q2=2 as a generating function. After quantization, the
corresponding operator S ¼ expð�CÞ ¼ expð�q2=2Þ in-
duces a well-known renormalization of the Schrödinger
wave function. On the other hand, for diffeomorphism
invariant topological field theories, Horowitz [2] has
shown that � ¼ N expði�RCÞ is, up to an overall factor,

the unique solution of the Hamiltonian constraints.
Let us investigate, whether this carries over to gravity

when the constraint of flat gauge connections is replaced
by teleparallelism: In general, there exist two parity-
violating [3] boundary terms which are exact forms built
from three-forms:

CTT :¼ 1

2‘2
#� ^ T� ¼ �ð�1Þsig

2‘2
�A; (1.1)

CRR :¼ �1
2ð��

� ^ R�
� þ 1

3��
� ^ ��

� ^ ��
�Þ (1.2)

are translational and Lorentz-rotational CS terms, where
A :¼ �ð#� ^ T�Þ ¼ Aidx

i is the axial torsion one-form.
The starting point of Ashtekar’s formulation of gravity

with complex variables is the parity-violating boundary [4]
four-form

dCTT ¼ 1

2‘2
ðT� ^ T� þ R�� ^ #� ^ #�Þ (1.3)

of Nieh and Yan (NY).1 A fundamental length ‘ neces-

sarily enters in order to keep all topological invariants [15]
dimensionless, a point ignored in Ref. [16].
Whereas, the Pontrjagin term

dCRR ¼ �1
2R�

� ^ R�
� (1.4)

is a topological Lagrangian whose variation returns the
second Bianchi identity

DR�� � 0; (1.5)

the less known torsion identity (1.3) is based on the first
Bianchi identity

DT� � R�
� ^ #� (1.6)

in Riemann-Cartan (RC) geometry.
Both are intimately interrelated within a gauge theory

with the linear group SLð5; RÞ as the structure group,
containing the de Sitter groups SOð1; 4Þ or SOð2; 3Þ as
subgroups: Already in 1995, we realized the Chern-
Simons decomposition

Ĉ ¼ CRR � 2CTT (1.7)

into linear and translational terms, after applying aWigner-
Inönü type contraction; see footnote 31 of Ref. [17],
cf. [7,18]. In contrast to the metric-free Pontrjagin form
(1.4), in the NY term (1.3) a metric g�� is needed to rise

and lower the indices, for instance in T� ¼ g��T
�.

II. TOPOLOGICALLYMODIFIED GRAVITYWITH
TORSION

Let consider first the case of the usual Einstein-Cartan
(EC) Lagrangian

LEC ¼ � 1

2�
R�� ^ ��� ¼ � 1

2�
R�� ^ �ð#� ^ #�Þ

(2.1)

amended by topological terms. Here � ¼ 8�G denotes the
gravitational coupling constant. Let us generalize (2.1) by
including, besides the Pointrjagin term, also a dynamical
coupling to the NY term and liberating possible � angles to
scalar fields.
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1As in many branches of physics, the historical progress in

understanding is not always well monitored: The self-dual for-
mulation of gravity was anticipated already in 1977 by Plebanski
[5], whereas Hojman et al., as well as Nelson [6] discussed the
pseudoscalar curvature as a parity-violating Lagrangian for
gravity and noted already in 1980 its relation to a complete
divergence, before Nieh and Yan [4,7]. Then Dolan [8] as well as
the author [9] employed the so-called NY term as a generating
functional in gauge gravity. Several decades later, the role of
pseudoscalar curvature was ‘‘rediscovered’’ by Holst [10] with-
out references to earlier work and is persisting [11,12], although
the NY term had already been instrumental in inducing chiral
supergravity [13]. Gradually, a full turn to its topological origin
can be testified; cf. [14].
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Then, in our rather concise exterior form notation [17],
we will consider the topologically modified gravitational
Lagrangian

L :¼ LEC þ L� þ LDirac (2.2)

where the �-type boundary term

L� ¼ �TdCTT þ �LdCRR (2.3)

is a linear superposition2 of the topological Nieh-Yan term
(1.3) and the Pontrjagin (1.4) four-forms. In order to re-
cover parity or CP invariance [3], the � angles need to be
axionlike pseudoscalars [21].

In the translational field momentum

H� :¼ � @L

@T� ¼ ��T
‘2

T�; (2.4)

there is only one torsion term, whereas the rotational field
momenta

H�� :¼ � @L

@R��
¼ 1

2�
��� � �T

2‘2
#� ^ #� � �LR��

(2.5)

of the EC theory gets amended by two contributions from �
terms.

In gauge gravity, the two nonlinear gauge field equations
[17] are

DH� � E� ¼ ��; (2.6)

DH�� þ #½� ^H�� ¼ ���; (2.7)

where the three-forms of the energy momentum E� ¼
e�cLþ ðe�cT�Þ ^H� þ ðe�cR��Þ ^H�� and of the angu-

lar momentum current #½� ^H�� arise due to the univer-

sality of gravitational interactions.
In the topologically modified gravity, the first gauge

field equation (2.6) reduces to

D�T ^ T� þ �TDT� þ ‘2E� ¼ �‘2��: (2.8)

Using the second Bianchi identity (1.5) for the curvature,
the second gauge field equation (2.7) reduces to

1

2�
T� ^ ���� �D�T

2‘2
^ #� ^ #� þD�L ^ R��

¼ #½� ^	�� ¼ 1

4
#� ^ #� ^ �j5: (2.9)

This a generalization of the Cartan equation

CTT ffi �

4‘2
j5 (2.10)

for constant �‘s.

Note that the angular momentum part #½� ^H�� of the
gauge fields induced by the NY term cancels identically
against one part of DH��. In the case of Dirac fields [22],

the spin-energy potential 	�, a two-form, is related to the
axial current3 three-form j5 ¼ �c ���5c via

	� ¼ 1
4#� ^ �j5: (2.11)

At first sight, it appears that Eq. (2.9) for D�L � 0
provides torsion with a dynamical coupling to RC curva-
ture, as stated in Ref. [23]. However, in view of the first
Bianchi identity (1.6), this is not quite true: By contracting
Eq. (2.9) with the coframe #�, it converts into

T� ^ ��� þ �D�L ^DT� ¼ 0: (2.12)

This is a first order equation only for torsion, even in the
presence of Dirac fields, since the antisymmetric piece of
its spin-energy potential vanishes, i.e., 	� ^ #� ¼ 0, in
view of (2.11).
Equivalently, it can be rewritten as

�D�L ^DT� ¼ �T ^ �� ¼ D��; (2.13)

where the vector torsion one-form T ¼ e�cT� enters as an
intermediate source. Because of the Poincaré lemma
DD� ¼ dd� � 0 for a (pseudo-) scalar field, Eq. (2.13)
has the exact torsion solution

�d�L ^ T� ¼ ��� (2.14)

as a first integral. After a contraction with #�, the dual of
the axial torsion one-form A :¼ �ð#� ^ T�Þ, i.e., the
translational CS term, turns out to be related to the volume
four-form � via

�‘2d�L ^ CTT ¼ 2�: (2.15)

This topological result4 is independent of the RC curva-
ture. There occurs, however, a coupling to a kinetic term
arising from the axion-type field �L rescaling the
Pontrjagin term (1.4).

III. GENERAL RELATIVITYAND ITS
TELEPARALLELISM EQUIVALENT

Besides the familiar Hilbert-Einstein (HE) Lagrangian

LHE ¼ � 1

2�
Rfg
�� ^ �ð#� ^ #�Þ (3.1)

2The translational angle �T ¼ 2=� is at times identified [19]
with the inverse Barbero-Immirzi parameter �. Such � terms and
the canonical transformation induced by the translational Chern-
Simons term dCTT have been considered earlier [20].

3The one-form � :¼ ��#
� is Clifford algebra valued.

4Information on other irreducible torsion components can be
obtained from Eq. (2.8) or from Eq. (2.9) after covariant differ-
entiation with the result that DT� ^ ���� þ �D�T ^ T½� ^
#��=‘2 ¼ 2�ðT½� ^	�� � #½� ^D	��Þ. Second order deriva-
tives of the axionlike field drop out due to the Poincaré lemma
DD� ¼ dd� � 0 and a quadratic torsion term vanishes identi-
cally, i.e., T½� ^ T	�����	 ¼ 0. Again we end up with a first
order equation for torsion, where, however, the spin-energy
potential 	� remains as a source.
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of general relativity (GR), where Rfg
�� denotes the

Riemannian curvature with respect to the Levi-Civita con-

nection �fg
��, the NY term, after a duality rotation, suggests

another option for a viable gravitational Lagrangian: The
torsion-square Lagrangian

Lk :¼ � 1

2�
T� ^ ��ð1ÞT� � 2ð2ÞT� � 1

2
ð3ÞT�

�
; (3.2)

involving a specific combination of irreducible torsion

components. Here Hk
� :¼ �@Lk=@T� ¼ ð1=�Þ����K

��

is dual to the contortion one-form K�� which features in

the decomposition ��� ¼ ���� ¼ �fg
�� � K�� ¼ �fg

�� þ
e�cT� þ ðe�ce�cT�Þ ^ #� of the RC connection.

Because of the geometric identity

Lk � LHE þ 1

2�
R�� ^ �ð#� ^ #�Þ þ 2‘2

�
dCTT� ; (3.3)

where CTT� :¼ #� ^ �T�=2‘
2 is a dual CS term, proper

teleparallelism (GRk) specified by (3.2) is classically

equivalent to GR up to a boundary term, when constrained
by the vanishing of RC curvature, i.e.,

R�� ¼ 0: (3.4)

The NY term is again instrumental [20] for converting
the teleparallel version (3.2) of Einstein’s GR for the
choice �T ¼ �i into a chiral gauge theory of translations:

Lð�Þ
k :¼ Lk � i

2‘2

�
dCTT ¼ LHE � LEC � i

2‘2

�
dCð�Þ

TT :

(3.5)

The deviation of chiral GRk from the Hilbert-Einstein

action turns out to be a boundary term derived from the
chiral CS term

Cð�Þ
TT

:¼ 1

2‘2

�
#� ^ Tð�Þ

�

�
; (3.6)

where Tð�Þ� :¼ 1
2 ðT� � i�T�Þ denotes the self- or anti-

self-dual torsion. The resulting complex field momenta

�ð�Þ
� ¼ �@Lð�Þ=@T� ¼ Hk

� � ði=�ÞT� satisfy an alge-
braic identity [24] such that the complexified Lagrangian
(3.5) becomes quadratic in these new field momenta

Lð�Þ
k ¼ � i

4
��ð�Þ� ^�ð�Þ

� : (3.7)

Then the gravitational field equations

Dð�Þ�ð�Þ
� ¼ 0 (3.8)

are formally those of Yang-Mills for the chiral transla-

tional gauge field momenta�ð�Þ
� ‘‘living’’ on a nondynam-

ical RC background fixed by the teleparallelism constraint
(3.4).

IV. CHERN-SIMONS SOLUTIONSOF THECHIRAL
TELEPARALLELISM CONSTRAINTS

In the canonical analysis of forms [20], the tangential
part of the basis one-forms, i.e., the ‘‘triad densities’’ �#�

and the tangential part of the self- or antiself dual connec-

tionAð�Þ
� :¼ ��ð�Þ

� , the three dual5 of the chiral momenta

�ð�Þ
� , become the generalized coordinates q and momenta

p� of the bosonic sector, similar to Eq. (15a) of Ref. [16].
In the transition to quantum gravity, in contrast to GR

[25], for GRk the Schrödinger representation

q: �#��kð#Þ ¼ �#��kð#Þ; (4.1)

p�: ��ð�Þ
� �kð#Þ ¼ �i‘2





�#�

�kð#Þ; (4.2)

convert [24] the complex field ‘‘momenta’’ ��ð�Þ
� into

differential operators, whereas the triad densities �#� re-
main generalized coordinates q, as in Ref. [16].

In the time gauge # 0̂ ¼ 0, most of the canonical con-
straints are satisfied automatically due to the teleparallel
condition (3.4) of vanishing RC curvature. The remaining
operator form of the Gauss constraint, i.e., the tangential
version of (3.8), can be solved [24] by the state vector

�kð#Þ ¼ exp

�
�
Z

Cð�Þ
TT

�

¼ exp

��1

2‘2

Z �
�#B ^ �Tð�ÞB

��
; (4.3)

where the integration is understood over a spacelike hyper-
surface. When the tangential complexified translational
Chern-Simons term (3.6) is rewritten in terms of the triad
densities �#B with B ¼ 1, 2, 3 and the tangential part of the
self- or anti-self-dual torsion, the chiral version of Eq. (16)
of Ref. [16] for ‘‘large’’ gauge transformations is antici-
pated [24]. Then the momentum operator (4.2) returns the

chiral torsion Tð�ÞB as a factor, which is then annihilated by
the Bianchi identity (1.6) truncated to Dð�ÞTð�ÞB ¼ 0 in
teleparallel space. Similarly, as in topological field theory
[2] with a flat connection, we suspect that (4.3) is the
unique solution in teleparallelism. Consequently, Wilson
type solutions (4.3) of the corresponding quantum Gauss
constraint are dominated by self-dual torsion solutions

satisfying Tð�Þ ¼ 0.
Exact torsion instantons ‘‘live’’ on a conformally com-

pactified Euclidean space R4 [1 ¼ S4 with the spheri-
cally symmetric metric ds2 ¼ h2dr2 þ f2½dc 2þ
sin2c ðd�2 þ sin2�d�2Þ�, where f carries physical dimen-
sion (length). This space is parallelizable such that the RC
curvature is vanishing but is endowed [26] with the non-
trivial spacelike torsion

5In our differential form notation [17], the spatial Hodge dual
is involutive, i.e., ¼ þ��1.
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TA ¼ 1

f
ðdf ^ #A � 2�0A��#� ^ #�Þ ¼ ��TA;

T0̂ ¼ 0;

(4.4)

which is self- or anti-self-dual provided that df ¼ �2hdr.

Working in the zero-connection gauge ���
k ¼� 0, the trans-

lational CS term reduces to

‘2CTT ¼� #� ^ d#� ¼ #A ^ d#A ¼ 3!# 1̂ ^ # 2̂ ^ # 3̂:

(4.5)

Applying Stokes’s theorem and integrating over the
boundary three-sphere at radial infinity r ! 1 yields

nNY :¼
Z
R4
dCTT ¼

Z
S31

CTT ¼ 3VolðS3Þk ¼ 6�2k:

(4.6)

One can deduce [15] that k is winding or instanton
number of Pontrjagin, in compliance with the CS decom-
position (1.7). If torsion is self- or anti-self-dual, i.e.,

Tð�ÞB ¼ 0, the integration over the chiral CS term Cð�Þ
TT

yields the same value or zero, respectively. Interestingly, in

the gauge # 0̂ ¼ 3�d�L ¼ hdr ¼ �df=2, such instantons

are solutions to the topological Eq. (2.15), due to T0̂ ¼ 0.

V. CONCLUSIONS

After reviewing the group-theoretical decent of the two
parity-violating topological terms of Pontrjagin and NY,
the modifications of the gravitational gauge equations by
such � terms are analyzed. Then the topological amend-
ment (2.3) provides an intriguing relation (2.15) for axial
torsion A, independent of RC curvature. This result has
repercussions on teleparallelism constrained by (3.4),
where the path-integral type CS solution (4.3) of the quan-
tum constraints are dominated by torsion instantons.
In classical EC theory, the net axial current production

dj5 seems [11,16,27] to establish a link to the NY term
(1.3) via the Cartan relation (2.10). However, a careful
analysis of the axial and trace anomaly [28,29] in gravity
does not support this, but rather provides a relation to the
scale-invariant Pontrjagin term, including a Uð1Þ type
four-form dA ^ dA involving the axial torsion. Since
torsion instantons are characterized via (4.6) by the instan-
ton number k, ultimately, they would induce a periodic �
vacuum of quantum gravity, similarly as in Yang-Mills
theory; cf. Ref. [21].
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