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Current constraints on the dark energy equation of state parameter, w, are expected to be improved by

more than 1 order of magnitude in the next decade. If jw� 1j * 0:01 around the present time, but the dark

energy dynamics is sufficiently slow, it is possible that future constraints will rule out a cosmological

constant while being consistent with a time-independent equation of state parameter. In this paper, we

show that although models with such behavior can be constructed, they do require significant fine-tuning.

Therefore, if the observed acceleration of the Universe is induced by a dark energy component, then

finding w � �1 would, on its own, constitute very strong evidence for a dynamical dark energy equation

of state.
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I. INTRODUCTION

The observational evidence for an acceleration of the
expansion of the Universe in the recent past is now over-
whelming (see for example [1] for a review), but the
precise cause of this phenomenon is still unknown. The
most popular scenario assumes that such acceleration is the
result of the existence, in the Universe, of a nearly homo-
geneous dark energy component violating the strong en-
ergy condition, described by a minimally coupled scalar
field. If the scalar field is static then it will give rise to a
nonzero vacuum energy density, also known as a cosmo-
logical constant. However, given the enormous discrep-
ancy between the observationally inferred vacuum energy
density and theoretical expectations, a dynamical scalar
field is expected to be a more plausible explanation.

The dark energy density does not need to be homoge-
neous. In fact, a number of inhomogeneous dark energy
models have been proposed in the literature. For example,
domain wall networks have been proposed as an alternative
explanation to the present acceleration of the Universe [2]
although recent results seem to exclude this possibility
[3,4]. Another example is provided by unified dark energy
models where dark matter and dark energy are strongly
coupled to each other and behave as a single fluid (see for
example [5]). Other possibilities include modifications to
General relativity [6,7], like those associated with extra
dimensions or modifications to the coupling to spatial
curvature, an example being fðRÞ theories.

Current observations already provide some interesting
limits on the equation of state of the dark energy, usually
parametrized by w, but its dynamics is still poorly con-
strained [8,9]. This situation is expected to change in the
next decade [10–12]. However, it is possible that the con-
straints may then still be found to be compatible with a
time-independent w. In this case, it would be important to

know to what extent it would be worthwhile to try to
tighten further the constraints on w in order to identify
possible variations with time. It is this question that we
address in the following sections. Throughout this paper
we use units in which c ¼ @ ¼ 8�G ¼ 1.

II. GENERIC SCALAR FIELD MODELS

In this section we shall consider a broad class of dark
energy models described by a single real scalar field with
action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
L; (1)

where Lð�;XÞ is the scalar field Lagrangian, X ¼
�;��

;�=2, and a comma is used to represent a partial

derivative.
The energy-momentum tensor of the scalar field may be

written in a perfect fluid form

T�� ¼ ð�þ pÞu�u� � pg��; (2)

by means of the following identifications [13]:

u� ¼ �;�ffiffiffiffiffiffi
2X

p ; � ¼ 2XL;X �L; p ¼ LðX;�Þ:
(3)

In Eq. (2), u� is the 4-velocity field describing the motion
of the fluid (for timelike �;�), while � and p are its proper

energy density and pressure, respectively. The dark energy
equation of state parameter w is

w � p

�
¼ L

2XL;X �L
; (4)

and the sound speed squared is given by
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c2s � p;X

�;X

¼ L;X

L;X þ 2XL;XX

; (5)

as long as L;X � 0.
We can rewrite Eq. (4) as

w�1 ¼ �1þ 2XL;X=L: (6)

Further assuming that w is always constant, independently
of the value of � and X, then leads to

L ¼ fð�ÞXð1þw�1Þ=2; (7)

where fð�Þ is an arbitrary function of�. Models withL ¼
fð�ÞXn and constant n yield c2s ¼ 1=ð2n� 1Þ. In particu-
lar, if n ¼ 1 then c2s ¼ 1, corresponding to a massless
scalar field, if n ¼ 2 then c2s ¼ 1=3, corresponding to
background radiation, and in the n ! 1 limit one has
c2s ! 0, corresponding to pressureless nonrelativistic mat-
ter. However, if n ¼ ð1þ w�1Þ=2� 0 then Eq. (5) implies
that c2s � w��1. These models have a negative sound
speed squared, which would necessarily lead to the devel-
opment of very large inhomogeneities in the spatial distri-
bution of the dark energy density, strongly disfavored by
the observational data. Therefore, the only realistic way in
which w can be a constant, irrespective of the value of �
and X, is to be exactly equal to �1.

III. HOMOGENEOUS DARK ENERGY

Consider, for example, quintessence dark energy models
described by a real scalar field with Lagrangian

L ¼ X � Vð�Þ: (8)

Generically, the equation describing the dynamics of a
scalar field may be obtained by varying the action with
respect to �

1ffiffiffiffiffiffiffi�g
p ð ffiffiffiffiffiffiffi�g

p
L;X�

;�Þ;� ¼ L;�: (9)

Assuming a flat Friedmann-Robertson-Walker metric and a
(nearly) spatially homogenous dark energy component, the
scalar field equation of motion is approximately given by

@

@t

�
L;X

@�

@t

�
þ 3HL;X

@�

@t
¼ L;�; (10)

which, by introduction of the proposed Lagrangian, re-
duces to

€�þ 3H _� ¼ �V;�; (11)

where a dot represents a derivative with respect to the
physical time, t. The dark energy equation of state parame-
ter w is given by

w � p

�
¼

_�2=2� Vð�Þ
_�2=2þ Vð�Þ ; (12)

and the sound speed squared is c2s ¼ 1. The fact that the

sound speed is equal to the speed of light prevents the
generation of large spatial fluctuations in the dark energy
density. If we require w to be a constant then Eq. (12)
implies

€� ¼ V;�

1þ w

1� w
; (13)

and

_� ¼ �
�
2V

1þ w

1� w

�
1=2

: (14)

Note that if w��1 then j €�j � jV;�j. In the following

we shall drop the � sign. It will be sufficient to realize for

each solution with _�> 0 and V;� < 0 there will be another

one with _�< 0 and V;� > 0. From now on we shall only

consider the solutions with _�> 0.
Substituting Eqs. (13) and (14) into Eq. (11) one obtains

ðV;�Þ2=V ¼ 9ð1� w2ÞH2=2: (15)

Multiplying Eq. (15) by _�2 and using Eq. (14) it is simple
to show that

V ¼ V0a
�3ð1þwÞ; (16)

where the subscript 0 refers to the present time (we are
taking a0 ¼ 1). However, the evolution of� with the scale
factor a is, in general, very different in the matter and dark
energy dominated eras. In fact, assuming a flat universe,
one has

H2 ¼ H2
0ð�m0a

�3 þ�e0a
�3ðwþ1ÞÞ; (17)

so that, using Eq. (14), one obtains

d�

da
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�e0ð1þ wÞ

q
ð�m0a

3wþ2 þ�e0a
2Þ�1=2; (18)

which has the solution

� ¼ Aþ B lnða3w=ð1þ ð�m0a
3w=�e0 þ 1Þ1=2Þ2Þ; (19)

where B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞp

=ð3wÞ, A is an arbitrary integration
constant, �m0 ¼ �m0=ð3H2

0Þ, and �e0 ¼ �0=ð3H2
0Þ (note

that � is the dark energy density). In this paper we take
�m0 ¼ 0:27 and �e0 ¼ 0:73 as favored by the five-year
WMAP results [8].
At very late times (a � 1) the dark energy will com-

pletely dominate the energy density of the Universe, and
the evolution of � with the scale factor will be given by

� ¼ Ce þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞp

lna; (20)

where Ce is an arbitrary constant. Using Eq. (16) one
obtains the following solution:

V ¼ Ve expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞ

p
ð���eÞÞ; (21)

valid at an arbitrary time te well into the dark energy
dominated era (to which the subscript e refers to).
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On the other hand, at early times (a � 1) deep into the
matter era one has

� ¼ Cm � 2

3w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞ�e0

�m0

s
a�3w=2; (22)

where Cm is an arbitrary integration constant. Using
Eq. (16) one obtains the following solution:

V / ð�� CmÞ2ðwþ1Þ=w; (23)

valid deep into the matter era.
In the left panel of Fig. 1 we plot the solution for Vð�Þ

assuming that w0 ¼ �0:97 at all times (solid line), as well
as the analytical solutions, computed using Eqs. (23) or
(21), valid deep into the matter and dark energy eras
(dashed and dot-dashed lines, respectively). The initial
conditions for the w ¼ constant solution were chosen so
that �0 ¼ 0 and the constants Cm and Ce were determined
by requiring that the analytical solutions computed using
Eqs. (23) or (21) fitted the constant w results obtained deep
into the matter and dark energy dominated eras, respec-
tively. In order that w ¼ constant, the shape of the poten-
tial must be fine-tuned around � ¼ �0. Otherwise, the
equation of state parameter would change rapidly around
the present time. This can be seen in the right panel of
Fig. 1, where we plot the evolution of the equation of state
parameter with the potentials given by Eqs. (23) or (21)
(dashed and dot-dashed lines, respectively). These poten-
tials, designed to produce a constant w deep into the matter
and dark energy dominated eras, respectively, give rise to a
rapidly changing w in the transition between them, with
jw0 � wðz ¼ 1Þj=jw0 þ 1j * 1 (here z ¼ 1=a� 1 is the
redshift).

If the scalar field is in slow-roll then Eq. (10) is reduced
to

3HL;Xð2XÞ1=2 ¼ L;�; (24)

with X ¼ _�2=2 and

H2 ¼ ð�m0a
�3 þ w�1LÞ=3: (25)

Hence, deep into the dark energy era, one has

�
X

jLj
�
1=2ðlnjLjÞ;� ¼

ffiffiffi
3

2

s
jwj�1=2ð1þ w�1Þ; (26)

assuming a constantw. Thus, given�e, Xe,Lð�e; XeÞ, and
w one is able to construct Lð�;XÞ using Eqs. (6) and (26)
deep into the dark energy dominated era. Of course, the
extension of this solution to the matter dominated era or to
the transition between matter and dark energy dominated
eras would necessary imply a varying equation of state
parameter. This happens because, in order to describe the
dark energy, the evolution ofLwith the scale factor around
the present time must be much slower than that of the
matter density.

IV. INHOMOGENEOUS MODELS

A. Topological defects

Cosmic defect networks can usually be characterized by
two very different characteristic scales. One is the defect
thickness, �, which is determined by the particle physics
model. In general, it remains constant in physical coordi-
nates, in which case it is insensitive to the large scale
dynamics of the Universe. The other characteristic scale,
L, is associated with the large scale properties of the net-
work. This scale is affected by the cosmology and is
proportional to the scale factor, a, for frozen defects.
This is in fact the most interesting solution from a dark
energy point of view since it corresponds to the case where
the evolution of the average defect density with redshift is
slower. In this case, the (average) defect energy density is
given by � / a�N , where N is the defect’s spatial dimen-
sion (N ¼ 0; 1; 2, respectively, for point masses, strings, or
domain walls). If the defects are minimally coupled to all
other fields then energy-momentum conservation implies
an (average) equation of state parameter equal to w ¼
�N=3. However, if the defects have a nonzero root mean
square velocity, v, then the (average) equation of state
parameter is given by w ¼ �N=3þ CðNÞv2, where
CðNÞ ¼ ðN þ 1Þ=3 so that w ! 1=3 for v ! 1. In order
to accelerate the expansion of the Universe it is necessary
that w<�ð1þ�m0=�e0Þ=3 and consequently only a
frustrated domain wall network could in principle do the
job. However, a combination of analytical and numerical
results have provided very strong evidence that no frus-
trated domain wall network, with v� 0 and L / a �
H�1, is ever expected to arise from realistic initial con-
ditions, invalidating domain walls as a viable dark energy
candidate [3,4]. Furthermore, current observational con-
straints on the equation of state parameter of dark energy
already strongly disfavor w ¼ �2=3 [8].
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FIG. 1. The left panel represents the solution for Vð�Þ assum-
ing that w0 ¼ �0:97 at all times (solid line), as well as the
analytical solutions for the scalar field potential, valid deep into
the matter era (dashed line) and dark energy era (dot-dashed
line), respectively. The right panel represents the evolution of the
equation of state parameter computed with the potentials given
in Eqs. (23) or (21) (dashed and dot-dashed lines, respectively).
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B. Unified dark energy models

Although dark matter and dark energy are usually
treated as separate components minimally coupled to
each other, this does not need to be the case (see for
example [14]). In particular, if a strong coupling between
dark matter and dark energy exists then they may behave as
a single fluid. The best known example is provided by the
(generalized) Chaplygin gas [15,16] where dark matter and
dark energy are described by a single perfect fluid with
equation of state parameter w ¼ �A=�1þ�, where �> 0
is a constant, and a sound speed squared c2s ¼ ��w.

If � ¼ 0 the Chaplygin gas model is exactly equivalent
to a�CDMmodel [17] but for other choices of 0<� � 1
it gives rise to a background evolution identical to that of a
quintessence model with a variable equation of state pa-
rameter. However, there are other possibilities for the
equation of state parameter of unified dark energy, and
we can in fact design it so that it mimics the background
evolution of a quintessence dark energy model with con-
stant w. This can be done by carefully designing the
equation of state of the unified dark energy component
with density �u and pressure pu so that

�u ¼ pu=wþ �m0ðpu=ðw�0ÞÞ1=ð1þwÞ; (27)

where �m and � are the matter and quintessence dark
energy densities, respectively. However, it is simple to
show that, if w>�1, this gives rise to a negative sound
speed squared making the model unstable to linear pertur-
bations [18,19].

Furthermore, it has been shown that nonlinear effects
can significantly modify the evolution of the Universe
compared to the linear expectations [19,20]. The negative
sound speed associated with Eq. (27) will make (almost)
empty regions even emptier with pu ! 0. Consequently,
the transition from the decelerating to the accelerating
phase may never happen in this case.
On the other hand, in the case of the (generalized)

Chaplygin gas (c2s > 0) it has been shown that nonlinear
effects may anticipate the transition from the dark-matter
to the dark energy dominated eras leading to a background
evolution very similar to the �CDM model, even for � �
0. Either way, the coupling between dark matter and dark
energy is not expected to alleviate the fine-tuning associ-
ated with a constant w.

V. CONCLUSIONS

We have shown that in order for the dark energy equa-
tion of state parameter, w, to be constant in time and close
to, albeit different from, �1, a significant amount of fine-
tuning would be required in the wide range of models
considered. This is essentially the result of the existence
of a transition era between matter and dark energy domi-
nation in the recent past. Therefore, any future evidence
which excludes w ¼ �1, even if it is consistent with a
time-independent value for w, should be interpreted as
indicative of a dynamical dark energy equation of state.
Clearly, in that situation, a further tightening of the con-
straints on the time variation of w should be actively
sought.
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