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We extend the Kazama-Suzuki construction of models with N ¼ ð2; 2Þ world-sheet supersymmetry to

cosets S=K of supergroups. Among the admissible target spaces that allow for an extension to N ¼ 2

superconformal algebras are some simple Lie supergroups, including PSLðNjNÞ. Our general analysis is
illustrated at the example of the N ¼ 1 Wess-Zumino-Novikov-Witten model on GLð1j1Þ. After

constructing its N ¼ 2 superconformal algebra we determine the (anti-)chiral ring of the theory. It

exhibits an interesting interplay between world-sheet and target space supersymmetry.
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I. INTRODUCTION

Sigma models with target superspaces have appeared in
a large variety of physics problems, ranging from N ¼ 4
super Yang-Mills theory to disordered electron systems. In
this article we are particularly interested in theories for
which an explicit N ¼ 1 superconformal symmetry on
the world sheet gets enhanced to N ¼ 2. A few basic
examples have been discussed in the literature. These
include the supersymmetric sigma model on the so-called

twistorial Calabi-Yau CP3j4 that featured in Witten’s work
[1] on twistor string theory (see e.g. [2–7]). Sigma models
on Calabi-Yau superspaces were also conjectured to de-
scribe the mirror partner of string theory on rigid Calabi-
Yau manifolds [8,9]. This makes it seem worthwhile to
look for more general constructions of such models.

Quantum field theories with N ¼ 2 superconformal
symmetry possess an intimate and well known relation
with topological field theories. In N ¼ ð2; 2Þ supercon-
formal models, the chiral Virasoro field T is part of a
multiplet involving two fermionic fields G� with confor-
mal weight hG ¼ 3=2 and a bosonic U(1) current U with
relations

GþðzÞG�ðwÞ � c=3

ðz� wÞ3 þ
UðwÞ

ðz� wÞ2 þ
ðT þ 1

2@UÞðwÞ
ðz� wÞ

UðzÞG�ðwÞ � �G�ðwÞ
ðz� wÞ ; UðzÞUðwÞ � c=3

ðz� wÞ2 :

The same algebra is satisfied by the antichiral partners �T,
�G�, and �U. Given this structure, one may go through a
process of twisting. It results in two different topological
conformal field theories that are known as the A- and
B-model, respectively.

In [10] (see also [11] for earlier related work), Kazama
and Suzuki described a simple construction providing
many key examples of world-sheet theories with N ¼ 2
superconformal symmetry. They started from an N ¼ 1
Wess-Zumino-Novikov-Witten (WZNW) model for the
coset space S=K and investigated under which conditions
the N ¼ 1 symmetry could be extended to an N ¼ 2
superconformal algebra. Within the list of cases they
worked out are theN ¼ 2minimal models. These feature
as building blocks for Gepner’s construction of string
theory on Calabi-Yau manifolds. Our aim here is to gen-
eralize the analysis of Kazama and Suzuki to the case of
coset superspaces S=K where both S and K can be Lie
supergroups. Following [12,13], we shall describe the
N ¼ 2 superconformal algebras in terms of supersym-
metric Manin triples. Among the resulting N ¼ ð2; 2Þ
theories, we find one family of particular interest: It is
shown that the N ¼ 1 WZNW models on the simple
supergroups S ¼ PSLðNjNÞ (with trivial denominatorK ¼
feg) possess an N ¼ 2 superconformal symmetry. A re-
lated observation for an N ¼ ð1; 1Þ model on the bosonic
base of PSLð2j2Þ was made and studied by several authors
[14–16].
Let us briefly describe the content of this paper. In the

next section we shall outline the construction of K-gauged
N ¼ 1 WZNW models on a supergroup S. As in the case
of bosonic targets, the S=K coset model can be realized
within the WZNW model on the product supergroup G ¼
S� K. We continue by introducing the notion of a Manin
triple for supergroupsG and provide a few examples of this
algebraic structure. From the data of a Manin triple we
shall construct the fields G� and U of the N ¼ 2 super-
conformal algebra in section IV. There we also discuss
possible deformations of the N ¼ 2 superconformal al-
gebra. In section V we consider S ¼ GLð1j1Þ and K ¼ feg
as a simple example in which we can easily determine the
chiral ring. The latter is shown to consist of fields in
atypical multiplets of the target space supersymmetry
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glð1j1Þ. Finally, we discuss a few extensions and open
problems.

II. GAUGED N ¼ 1 WZNW MODELS

WZNW models on coset superspaces with N ¼ 1
world-sheet supersymmetry possess a manifestly super-
symmetric formulation in terms of superfields of the form

G ¼ expði��Þg expð�i �� ��Þ: (1)

Here, g ¼ gðz; �zÞ is a field that takes values in the super-
group S and � ¼ �ata is a Lie superalgebra valued field.
The components �a are fermionic for even generators ta,
i.e. when jaj ¼ 0, and they are bosonic otherwise. The
multiplets �a and ��a each transform in the adjoint of the
Lie superalgebra s of S. One may now use the superfieldG
along with the covariant derivatives on the world-sheet
given by

D ¼ �i
@

@�
� 2�@ and �D ¼ �i

@

@ ��
� 2 �� �@ (2)

to build the usual action of the WZNW model on the
supergroup. Writing down the action also requires fixing
some nondegenerate invariant bilinear form ð�; �Þ on the Lie
superalgebra s. When written in components, the action
becomes

SN¼1
WZNW½G� ¼ S0WZNW½g� þ

1

2�

Z
d2zð�; �@�Þ þ ð ��; @ ��Þ:

(3)

In our notation, the level k of the model is absorbed into the
definition of the bilinear form ð�; �Þ. The formula for the
WZNW action on the S-valued field g has the usual form,
but with the bilinear form ð�; �Þ shifted by half the Killing
form h�; �i, i.e. ð�; �Þ0 ¼ ð�; �Þ þ 1

2 h�; �i. The Killing form is

constructed and normalized in the standard fashion. In case
the Killing form is proportional to ð�; �Þ, the shift of the
bilinear form simply amounts to shifting the level by the
dual Coxeter number. The global target supersymmetry of
the N ¼ ð1; 1Þ theory gives rise to holomorphic currents
Ja and �Ja which satisfy the usual supersymmetric current
algebra at level k. These currents include terms that are
constructed out of the fields �a and ��a. For a simple Lie
superalgebra s, the total central charge of the model is

c ¼ ðk� h_s Þ sdims

k
þ 1

2
sdims ¼

�
3

2
� h_s

k

�
sdims:

The second term is the contribution from the fields �a.
Note that all these fields possess conformal weight h� ¼
1=2 so that each fermionic component of � contributes
�c ¼ 1=2 to the central charge while each bosonic com-
ponent subtracts the same amount.

The gauged WZNW model of Lie groups has been
described in e.g. [17–23]. The formulation extends imme-
diately to Lie supergroups. Let A ¼ Aðz; �z; �; ��Þ and �A ¼

�Aðz; �z; �; ��Þ be a set of gauge fields that take values in some
Lie subsuperalgebra k of the Lie superalgebra s. Then the
gauged N ¼ 1 WZNW action is

S½G;A; �A� ¼ SN¼1
WZNW½G� þ 1

�

Z
d2zd2�ððA;G�1 �DGÞ

� ðDGG�1; �AÞ þ ðA; �AÞ � ðG�1AG; �AÞÞ:
This action is invariant under the following gauge trans-
formation

G ! HGH�1; A ! AdðHÞA�H�1DH;

�A ! AdðHÞ �A�H�1 �DH
(4)

forH 2 K. Thus the above action describes anN ¼ ð1; 1Þ
world-sheet supersymmetric S=K supercoset. It is conve-
nient to gauge fix this symmetry such that

A ¼ DHH�1; �A ¼ �D �H �H�1: (5)

Thereby, we can embed our coset model into the N ¼ 1
WZNW model on the product supergroup S� K,

Z
DGDAD �Ae�S½G;A; �A� ¼ J

Z
DGDHe�S½G�þS½H�

for some constant J as explained in [23]. The gauge fixing
procedure requires to introduce additional ghost fields.

They come in four different kinds. There are dimk
�0 fermi-

onic ghosts and dimk
�1 bosonic ones, each contributing a

central charge c ¼ �2 and c ¼ þ2, respectively. These all

have N ¼ 1 superpartners, i.e. there are dimk
�0 bosonic

ghosts with central charge c ¼ �1 and dimk
�1 fermionic

ones with central charge c ¼ 1. Taking all these into
account, the ghost sector contributes cghosts ¼ �3 sdimk

so that the total central charge is

cðS=KÞ ¼
�
3

2
� h_s

k

�
sdimsþ

�
3

2
þ h_

k

k

�
sdimk� 3 sdimk

¼
�
3

2
� h_s

k

�
sdims�

�
3

2
� h_

k

k

�
sdimk:

The total Virasoro field Ttotal ¼ Ts�k þ Tghost possesses an

N ¼ 1 superpartner Gtotal. Both these fields descend to
the state space of the coset model. The latter is obtained by
computing the cohomology of the BRST operator Q. One
may show that Ttotal and Gtotal are in the same cohomology
class as the Virasoro element TS=K and its superpartner

GS=K in the coset conformal field theory. Details on how

this works in N ¼ 1 WZNW cosets S=K of bosonic
groups can be found in [24,25]. The generalization of these
constructions to supergroups is entirely straightforward. In
the case of Lie groups, Kazama and Suzuki used the
current symmetry to show that some of the N ¼ 1
WZNW cosets admit an N ¼ 2 superconformal algebra
[10]. Their construction may also be embedded into the
product theory. In fact, it suffices to show that the N ¼ 1
superconformal algebra of the WZNW model on S� K
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admits an extension to N ¼ 2. The corresponding fields
of the N ¼ 2 superconformal algebra receive additional
contributions from the ghost sector to form a total N ¼ 2
algebra whose basic G�

total and Utotal reside in the same

cohomology class as the associated fields in the coset
model. Our goal is to extend the analysis of Kazama and
Suzuki to the case in which S and K are Lie supergroups.
According to the remarks we have just made, all we need to
do is to exhibit an N ¼ 2 superconformal algebra in the
N ¼ 1 WZNW model on the product S� K.

III. SUPER MANIN TRIPLES

Throughout this paper, g denotes a (not necessarily
simple) Lie superalgebra with a nondegenerate supersym-
metric invariant bilinear form ð�; �Þ. In our application to
the WZNW coset S=K, the Lie superalgebra g is given by
g ¼ s � k. The form on g is determined by the form ð�; �Þs
on s that we use to construct the action. On g ¼ s � k it is
given by

ððX1; Y1Þ; ðX2; Y2ÞÞ ¼ ðX1; X2Þs � ðY1; Y2Þs
for all Xi 2 s and Yi 2 k � s. As we shall show below,
possibleN ¼ 2 extensions of theN ¼ 1 superconformal
algebra in the S=K WZNWmodel are classified by special
triples ðg; aþ; a�Þ. Here, a� denote two Lie subalgebras
such that

g ¼ aþ � a�: (6)

We call such a triple ðg; aþ; a�Þ a super Manin triple if the
Lie subsuperalgebras a� are isotropic, i.e.

ða�; a�Þ ¼ 0: (7)

For later use we also introduce the subspace a0 of the Lie
superalgebra g by

a 0 :¼ fx 2 gjðx; yÞ ¼ 0 8 y 2 ½aþ; aþ� [ ½a�; a��g:
(8)

Super Manin triples contain all the structure constants we
shall employ later to define the fields that generate the
N ¼ 2 super Virasoro algebra. Before we extract the
required constants, let us discuss one series of such super
Manin triples that will become particularly important
below.

Example: The most important super Manin triples we
shall exploit arise from Lie superalgebras g ¼ s, i.e. K ¼
feg. Let us suppose that the even part g�0 of g splits into two

bosonic subalgebras g
�0 ¼ g

�0
a � g

�0
b of equal rank. This

condition applies to the Lie superalgebras g ¼ glðnjnÞ,
pslðnjnÞ, slðnjn� 1Þ and g ¼ ospð2nþ 1j2nÞ,
ospð2nj2nÞ. In all these examples, the bilinear form of
the Cartan subalgebra of one of these subalgebras is posi-
tive definite while the other one is negative definite (with a
proper choice of real form). Consequently, we can perform
an isotropic decomposition of the Cartan subalgebra

h ¼ hþ � h�: (9)

In order to extend the decomposition of h to an isotropic
decomposition of g we recall that any Lie superalgebra
admits a triangular decomposition into the Cartan subal-
gebra h, the subalgebra of the positive root spaces nþ and
the subalgebra of negative root spaces n�:

g ¼ n� � h � nþ: (10)

Hence the triple (g, aþ ¼ hþ � nþ, a� ¼ h� � n�) is a
super Manin triple, i.e. it satisfies the condition (7). We also
note that the derived subalgebras ½a�; a�� of a� are con-
tained in n� and consequently,

a 0 	 h: (11)

There exist many other super Manin triples, in particular,
when the Lie superalgebra g is not simple.
Before we can turn to the N ¼ 2 superconformal alge-

bra we need to extract a few structure constants that
characterize the super Manin triple. Let us pick some basis
xi of the Lie superalgebra aþ. With the help of our bilinear
form ð:; :Þ we can then fix a dual basis xi of a� such that

ðxi; xjÞ ¼ �j
i . Our choice of basis implies that the Lie

bracket takes the following form

½xi; xj� ¼ cij
kxk ½xi; xj� ¼ fijkx

k

½xi; xj� ¼ cki
jxk þ fjkixk:

(12)

Here, the first two equations involve the structure constants
cij

k and fijk of aþ and a�, respectively. The last equation
follows from the first two. Let us also introduce the pro-
jection operators��: g ! a� from the Lie superalgebra g
to the two summands a�.
In addition to the structure constants c and f, our con-

struction of the N ¼ 2 algebra will involve a special
element ~� 2 g that is defined through

~� :¼ �½xi; xi� ¼ ð�1Þifikixk þ ð�1Þickiixk: (13)

The Jacobi identities for the two Lie subsuperalgebras a�
as well as for the full Lie superalgebra g imply that

~� 2 a0 and ½~�þ; ~��� ¼ 0; (14)

where ~�� ¼ �� ~� 2 a� is the image of ~� under the
projection map��. The element ~� determines a mapD ¼
��þ½~�; :�: aþ ! aþ. When acting on the basis elements
xi it reads

Dxi :¼ ��þ½~�; xi� ¼ Dl
ixl

where Dl
i
:¼ ð�1Þmncmn

lfmn
i:

(15)

The supertrace of the map D is related to the length of ~�
through

str ðDÞ ¼ �ð~�; ~�Þ: (16)

Any Lie superalgebra admits a canonical (often degener-
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ate) graded symmetric invariant bilinear Killing form.
Since it also appears in the structure constants of the
current algebra, we shall briefly evaluate the Killing form
through the structure constants c and f. For any given
choice of the basis, the Killing form reads

hXa; Xbi ¼ �ð�1ÞnCna
mC

mb
n: (17)

When both Xa, Xb are in the same Lie subsuperalgebra a�,
the Killing form on g reduces to twice the Killing form of
a�,

hxi; xji ¼ �2ð�1Þncnimcmj
n ¼ �ij (18)

hxi; xji ¼ �2ð�1Þnfnimfmj
n ¼ �ij: (19)

When the two elements Xa and Xb are taken from different
subsuperalgebras a�, the Killing form reads

hxi; xji ¼ �i
j ¼ 2Aj

i þDj
i

where Aj
i ¼ ð�1Þmncni

mfnjm:
(20)

The matrix D was defined in Eq. (15). This terminates our
preparations.

IV. N ¼ 2 SUPERCONFORMAL ALGEBRA

Let us begin by introducing the basic fields and their
operator product expansions. If we denote by JiðzÞ and
JiðzÞ the chiral affine currents corresponding to the gen-
erators xi and xi, their operator products are [26]

JiðzÞJjðwÞ �
1
2�ij

ðz� wÞ2 þ
cij

kJkðwÞ
ðz� wÞ

JiðzÞJjðwÞ �
�i

j þ 1
2�

j
i

ðz� wÞ2 þ fjkiJkðwÞ þ cki
jJkðwÞ

ðz� wÞ

JiðzÞJjðwÞ �
1
2�

ij

ðz� wÞ2 þ
fijkJkðwÞ
ðz� wÞ

(21)

where hxi; xji ¼ �ij etc. are the entries of the Killing form

we determined at the end of the previous section. The terms
involving � arise because we had to shift the metric by the
Killing form in Eq. (3). Operator product expansions of the
fields �i and �i take the form

�iðzÞ�jðwÞ � 0 �iðzÞ�jðwÞ � �i
j

ðz� wÞ
�iðzÞ�jðwÞ � 0:

(22)

All these fields have conformal weight hð�iÞ ¼ 1=2 ¼
hð�iÞ. The pair �i and �i form a bosonic �� system with
c ¼ �1 when jij ¼ 1 and they generate a fermionic bc
system of central charge c ¼ 1 when jij ¼ 0.

Let ðg; aþ; a�Þ be a super Manin triple of a Lie super-
algebra g such that the condition (7) holds. We now want to
build a U(1) current U, the Virasoro field T, and two
fermionic currents G� of weight h ¼ 3=2 such that they

obey the algebra of an N ¼ 2 superconformal symmetry.
We begin with the current U,

UðzÞ ¼ :�i�i:þ ~�kJk þ ~�kJ
k þDi

j:�
j�i:: (23)

Here, we have extracted the numbers ~�i and ~�i from our
element ~� 2 g through

~� k :¼ ð~�; xkÞ ¼ ð�1Þickii ~�k :¼ ð~�; xkÞ ¼ ð�1Þifiki:
The Virasoro tensor T takes the usual form

TðzÞ ¼ 1
2ð:JiJi:þ ð�1Þi:JiJi:þ :@�i�i:� :�i@�i:Þ (24)

as a sum of the Sugawara tensor of the affine superalgebra
at level kþ h_ and the Virasoro tensor of the free fields �i

and �i. Finally, we introduce the two supercurrents by [27]

GþðzÞ ¼ Ji�
i � 1

2ð�1Þiþijcij
k:�i�j�k:

G�ðzÞ ¼ Ji�i � 1
2ð�1Þjþijfijk:�i�j�

k::
(25)

We claim that ðU;T;G�Þ form anN ¼ 2 superconformal
algebra of central charge

c ¼ 3
2 sdimgþ 3 strD: (26)

For simple Lie supergroups g, strD ¼ �h_ sdimg=3k so
that the value of the central charge agrees with what we had
spelled out in section II. The fields T,G�, andU extend the
N ¼ 1 superconformal symmetry of the S� K WZNW
model. In fact, the Virasoro field T ¼ Ts�k and itsN ¼ 1
superpartner G ¼ Gþ þG� ¼ Gs�k agree with the N ¼
1 superconformal structure of the WZNW on the product
S� K. As we explained at the end of Sec. II, all fields must
be augmented by the standard contributions from the ghost
sector before they descend to the desired N ¼ 2 super-
conformal algebra of the coset model.
In order to prove the claim that the four currents T, U,

and G� form an N ¼ 2 superconformal algebra one has
to compute their operator products. This has been done
carefully in [29]. After inserting the operator products (21)
and (22) of the constituent fields JðzÞ and �ðzÞ, the result-
ing expressions can be simplified with the help of the
Jacobi identity, as in the case of bosonic groups G.
For the key example of a super Manin triple that we

described in the previous section, strD ¼ 0 and hence the
central charge of the associated N ¼ 2 superconformal
algebra is given by c ¼ 3

2 sdimg. Some of the supercosets

that admit a super Manin triple are listed in Table I, along
with the central charge.
There exist more N ¼ 2 superconformal algebras,

which are obtained from the previous ones through a
deformation by an element 	 in a0. Consider an element
	 ¼ pixi þ qix

i 2 a0 where pi, qi are Grassmann ele-
ments of grade jij. It follows from the very definition of
a0 that the components pi and qi must satisfy

cij
kqk ¼ fijkp

k ¼ 0: (27)

We employ the element 	 to deform the fields of the
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N ¼ 2 superconformal algebra as follows

U	ðzÞ ¼ UðzÞ þ piIiðzÞ � ð�1ÞiqiIiðzÞ
T	ðzÞ ¼ TðzÞ þ 1

2ðpi@IiðzÞ þ ð�1Þiqi@IiðzÞÞ
(28)

where we used the following set of level k Lie superalgebra
currents

Ii ¼ Ji � ð�1Þiþijcij
k:�j�k:� 1

2ð�1Þikfjki:�j�k:

Ii ¼ Ji � ð�1Þjþijfijk:�j�
k:� 1

2ð�1Þijcjki:�j�k::

The expressions for the deformed supercurrents G� are a
bit simpler

Gþ
	 ¼ Gþ þ qi@�

i G�
	 ¼ G� þ pi@�i: (29)

Since we want G� to remain fermionic under the deforma-
tion, we required 	 to be bosonic. The central charge of the
deformed algebra is

c	 ¼ c� 6ð�1Þiqipi:

The deformed N ¼ 2 structure extends a deformation of
the originalN ¼ 1 superconformal algebra. It is relevant,
in particular, for the discussion of models that are obtained
from the WZNW model by Hamiltonian reduction.

V. THE N ¼ 1 WZNW MODELS ON GLð1j1Þ
In the following section we would like to illustrate our

constructions in the simplest model, the N ¼ 1 WZNW
model on the supergroup GLð1j1Þ. The GLð1j1Þ WZNW
model has been discussed in [30–35]. The Lie superalgebra
glð1j1Þ is generated by elements E, N, c� such that

½N; c�� ¼ �c�; ½cþ; c�� ¼ E

and E commutes with all other generators. It comes
equipped with an invariant bilinear form ð:; :Þ whose non-
vanishing entries are

ðE;NÞ ¼ k; ðcþ; c�Þ ¼ k:

Written in terms of the various component fields, the action
of the N ¼ 1GLð1j1Þ WZNW model is

S ¼ 1

2�

Z
d2zðk@X �@Y þ k@Y �@X þ @Y �@Y þ 2eY@cþ �@c�

þ �N �@�E þ �E �@�N þ �þ �@�� � �� �@�þ þ ��N@ ��E

þ ��E@ ��N þ ��þ@ ��� � ���@ ��þÞ: (30)

Note the additional term @Y �@Y which is not present in the
usualN ¼ 0WZNWmodel on GLð1j1Þ. This term is due
to the shift of the bilinear form by the Killing form (see our
comment in Sec. II). The Lie supergroup GLð1j1Þ is not
simple but solvable and its superalgebra has a degenerate
but nonzero Killing form with the only nonvanishing entry
being

hN;Ni ¼ 2:

The model (30) has a glð1j1Þ current algebra symmetry
generated by four currents JE, JN , J�. Their N ¼ 1
superpartners will be denoted by �E, �N , ��. We note
that the Cartan algebra of glð1j1Þ has two generators E and
N which are isotropic. Hence, we can introduce a super
Manin triple ðglð1j1Þ; aþ; a�Þ through

aþ :¼ spanðE; cþÞ; a� :¼ spanðN; c�Þ: (31)

It follows that the subspace a0 is spanned by E, N and c�.
We shall work with the basis x1 ¼ E=

ffiffiffi
k

p
, x2 ¼ cþ=

ffiffiffi
k

p
,

and x1 ¼ N=
ffiffiffi
k

p
, x2 ¼ c�=

ffiffiffi
k

p
such that the only nonvan-

ishing structure constants are

f122 ¼ � ffiffiffi
1

p
k ¼ �f212 :

Consequently, the element ~� takes the form ~� ¼ �E=k
and hence D ¼ 0. According to our general formulas, the
U(1)-current U and the two supercurrents G� are given by

U ¼ �N�E þ ���þ � JEffiffiffi
k

p Gþ ¼ JE�N þ Jþ��

G� ¼ JN�E þ J��þ � 1ffiffiffi
k

p �E�þ��: (32)

One can construct another antiholomorphicN ¼ 2 super-
conformal algebra out of the antiholomorphic currents,
exactly in the same way as we did in the holomorphic case.
As we have briefly reviewed in the introduction, the

N ¼ 2 superconformal algebra determines two topologi-
cal conformal field theories that are obtained through A-
and B-twist. The physical states of the B-twisted model
form the so-called ðc; cÞ ring while those of the A-twisted
model are in the ðc; aÞ ring. We would like to determine
these two state spaces for the example at hand. Let us recall
that any representative 
 of a ðc; cÞ or ðc; aÞ state must
obey

2�ð
Þ þ �uð
Þ ¼ 2 ��ð
Þ þ ��0 �uð
Þ ¼ 0 (33)

where �ð
Þ, ��ð
Þ, uð
Þ, and �uð
Þ are the conformal
dimensions and U(1)-charges of the field 
. States in the

TABLE I. Incomplete list of N ¼ 2 superconformal super-
cosets S=K with central charge cðS=KÞ. In all cases we assume
that n > m 
 0.

S K cðS=KÞ
GLðnjnÞ GLðn�mjn�mÞ 0

GLðnjnÞ SLðn�mjn�m� 1Þ 0

PSLðnjnÞ PSLðn�mjn�mÞ 0

PSLðnjnÞ SLðn�mjn�m� 1Þ �3
SLð~njnÞ~n > n SLð~n�mjn�mÞ 0
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ðc; cÞ ring correspond to � ¼ 1 ¼ �0 while those in the
ðc; aÞ ring are associated with � ¼ 1 ¼ ��0.

All representatives of the ðc; cÞ and ðc; aÞ ring are based
on the components of the fields

�nþ1 ¼ einY ic�einY
icþeinY c�cþeinY

� �
for n 2 R: (34)

These correspond to harmonic functions on the supergroup
GLð1j1Þ, i.e. to functions that are annihilated by (some
power of) the Laplacian. Only the first column is in the
kernel of QB ¼ Gþ

0 and �QB ¼ �Gþ
0 . The complete ðc; cÞ

ring is then spanned by products of the form

ðeinY; icþeinYÞ � ð1; �N; ��N; �N ��NÞ:
Let us note that operators involving the bosonic fields ��
and ��� contribute to the kernel of QB and �QB, but not to
the cohomology since they are exact. For the ðc; aÞ ring, a
similar analysis can be performed. In this case, the kernel
of QA ¼ Gþ

0 and �QA ¼ �G�
0 in the space of atypical fields

(34) contains the constant function only. The ðc; aÞ ring is
then represented by the following four fields

ð1; �N; ��E; �N ��EÞ:
It is not difficult to verify (see e.g. [32]) that neither the
ðc; cÞ nor the ðc; aÞ ring depend on the level k. We also note
that many states satisfying Eqs. (33) are not part of the
chiral ring of the model. This is in sharp contrast to the
situation in unitary models [36].

VI. CONCLUSIONS AND OPEN PROBLEMS

In this work we exhibitedN ¼ 2 superconformal sym-
metries for a large class of N ¼ 1 WZNW models. Our
constructions generalize previous studies of bosonic mod-
els [10,11] to the case of target superspaces. One of the
main new features is the existence of N ¼ 2 supercon-
formal symmetry in N ¼ 1 WZNW models of simple
supergroups such as PSLðNjNÞ or OSPð2Nþ 1j2NÞ. As a
concrete example, we analyzed theN ¼ 1WZNWmodel
on GLð1j1Þ and computed its (anti-)chiral ring. The con-
tributions to the (anti-)chiral ring were all associated with

states in atypical representations of the target space super-
symmetry. This feature is expected to extend to higher
supergroup target spaces.
The case of PSLðNjNÞ is particularly interesting. Since

PSLðNjNÞ possess vanishing dual Coxeter number, the
corresponding WZNW model can be deformed away
from the WZ point while preserving conformal symmetry
[37,38]. In other words, the WZNW models on PSLðNjNÞ
are special points in a one-parameter family of conformal
field theories with unbroken global symmetry. The same
holds for the N ¼ 1 version of these models. Given that
those deformed models still possess chiral Virasoro fields,
one may wonder about the fate of the N ¼ 2 supercon-
formal symmetry. We believe that the fields G� andU also
remain chiral under the deformation. The issue will be
addressed in forthcoming work.
Among the coset theories with nontrivial denominator,

the superspace generalization of N ¼ 2 minimal models
are of particular interest. The compact and noncompact
versions are given by the two cosets PSLð1; 1j2Þ=SLð1j2Þ
and PSLð1; 1j2Þ=SLð1; 1j1Þ. Both theories possess central
charge c ¼ �3, regardless of their level.
There are a number of other extensions of the present

work that deserve a closer investigation. One of them is to
incorporate world-sheets with boundary. The N ¼ 1
WZNW models on the supergroups PSLðNjNÞ, GLðNjNÞ
and SLðN-1jNÞ, for example, are all known to possess two
families of maximally symmetric boundary conditions
[39]. In [29], one of them was shown to descend to the
A-twisted model while the other is consistent with the
B-twist. Cosets with a nontrivial denominator possess a
richer structure. Finally, one might also wonder whether
some of the N ¼ ð2; 2Þ theories we discussed here allow
for N ¼ ð4; 4Þ superconformal symmetry. The answer
turns out to be positive. We shall describe the exact con-
ditions and consequences in a forthcoming paper.
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