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This work is based on an earlier proposal [H. Singh, Phys. Lett. B 673, 68 (2009)] that the membrane

BF theory consists of matter fields along with Chern-Simons fields as well as the auxiliary pairs of scalar

and tensor fields. In particular, we discuss the supersymmetry aspects of such a membrane theory. It is

concluded that the theory possesses maximal supersymmetry, and it is related to the L-BLG theory via a

field map. We obtain fuzzy-sphere solution, and corresponding tensor field configuration is given.
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I. INTRODUCTION

Recent advances in three-dimensional matter Chern-
Simons field theories have led to some interesting pro-
posals for the superconformal field theory describing
supermembranes living in 11 spacetime dimensions.
Amongst these, the Bagger-Lambert-Gustavsson (BLG)
theory has N ¼ 8 superconformal invariance but so far
this theory has been constructed explicitly for a compact
SOð4Þ gauge group only [1,2]. While allowing for non-
compact (Lorentzian) tri-Lie-algebras, the BLG frame-
work has been extended further to admit full SUðNÞ
gauge symmetry [3,4]. But these latter ones, also known
as L-BLG theories, have ghost fields in their spectrum.
Once the ghost fields are eliminated through gauging pro-
cedure the theory eventually reduces to the SUðNÞ super
Yang-Mills theory [5]. On the other hand, another interest-
ing class of matter Chern-Simons theories, known as
ABJM theories [6], are based on ordinary Lie-algebras
involving bi-product gauge groups. The ABJM theory
admits N ¼ 6, UðNÞk �UðNÞ�k superconformal sym-
metry, and these are conjectured to be dual to M-theory
compactified on AdS4 � S7=Zk spacetime, with arbitrary
level k > 2. Only when k ¼ 1, 2, the theory supposedly
becomes a maximally supersymmetric theory. The AdS4
geometry arises in the near horizon limit when N M2-
branes are placed at the singularity in an eight-dimensional
orbifold space C4=Zk [6].1 The two theories BLG and
ABJM complement each other, but the theories have very
distinct field theoretic structures. Particularly in the context
of L-BLG theories, it has become imperative to explore the
fundamental importance of trialgebras in a membrane
theory.2 Along this direction there have been works where

the maps between L-BLG and ABJM theories are explored
in detail [9].3 Particularly, our motivation in this paper shall
not be to emphasize the trialgebra aspects, instead we
simply try to work with ordinary Lie-algebra so long as it
is possible.
Following various works [4,11,12] on BF (Chern-

Simons) and L-BLG Lagrangians, in a recent paper [13]
we showed that one can construct membrane BF theories
simply using ordinary Lie-algebra. The crucial difference
had been that unlike in the L-BLG construction, which
relies upon the introduction of a pair of propagating (ghost)
fields ðXþ; X�Þ, our construction instead requires introduc-
tion of pairs of scalar and tensor fields. The tensor fields are
introduced through ‘‘BdGPT’’-like field duality as in the
Romans’ theory; it is discussed in the Appendix.
Interestingly, these dual pairs of scalar and tensor fields
remain nonpropagating in the action just like the Chern-
Simons fields. In the present paper we work within the
axiom that the SUðNÞ membrane theory has fundamental
propagating scalar fields along with auxiliary BF gauge
fields and auxiliary scalar-tensor fields and their super-
partners. Incidentally, eight 2-rank tensor fieldsCI

�� appear

only through their topological coupling with dual scalar
fields �I as

Z
�IdCI

ð2Þ: (1)

The vacuum expectation value h�Ii eventually gets related
to the coupling constant of the 3D super-Yang-Mills the-
ory. Thus the strength of the coupling constant determines
the presence of tensor fields in the membrane BF theory. If
the coupling vanishes in the vacuum so also do the tensor
fields. The presence of CI

ð2Þ perhaps may also be motivated

from the membrane boundary point of view. An open-
membrane is a two-dimensional extended object and its

*h.singh@saha.ac.in
1Specifically, M2-brane solutions on a ‘‘resolved’’ C4=Z4

space and corresponding Chern-Simons level flow in ABJM
theory have been studied in [7]. It is shown that the M2-brane
solutions are smooth when branes are placed on the resolution.

2The primary motivation for studying 3-algebras in membrane
theory context arose from the work [8]

3Also specially see [10] for a divergent study of Jordan
algebras in the BLG framework.
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boundary (taking, for example, the M2-brane ending on the
M5-brane) is essentially an extended stringlike configura-
tion which can inherit a fundamental tensor fieldC��. Such

one-dimensional extended solitonic excitations would of
course live in the world-volume theory of M5-branes. This
is essentially the argument also used by Basu and Harvey
[8] in order to propose trialgebras. We do know there are
solitonic string solutions on M5-branes with self-dual 3-
form tensor fields C��� along its world-volume [14]. So

when M2-branes end on the M5-brane, by gauge symmetry
argument, we should define a gauge invariant field strength
ðC���h�Ii � @½�CI

���Þ on the M5-brane.4 From an M2-

brane point of view the membrane having nontrivial
boundary configuration should correspondingly include a
tensor field CI

�� (nonpropagating) in its world-volume

theory such as the coupling in (1). The above argument
appears similar in spirit to the case when open-strings end
on Dp-branes. The string end points are charged with
gauge (Chan-Paton) fields which give rise to the topologi-
cal (gauge) coupling

gs
Z
@�

Að1Þ (2)

in the open-string world-sheet theory and also give rise to a
dynamical gauge theory on the Dp-brane itself.

Our goal in this paper is to extend our earlier work [13]
and in particular discuss the supersymmetry aspects of the
BF theory with tensor fields. We shall show that the theory
has a maximal supersymmetry. We also discuss supersym-
metric solutions, particularly the fuzzy-sphere solution,
and obtain corresponding nontrivial tensor field respon-
sible for this solution. We also comment on the equivalence
between our ordinary Lie-algebra theory and the tri-Lie-
algebra based L-BLG theories.

The paper is organized as follows. In Sec. II we review
the main aspects and symmetries of the membrane BF
action. In Sec. III we provide a supersymmetric completion
of this theory. We then discuss the equivalence between our
work and the L-BLG framework. Section IV deals with the
supersymmetric fuzzy S2 solution, and we discuss the
hidden aspects of the shift symmetry. The conclusions
are given in Sec. V.

II. REVIEW: STBF THEORY

The bosonic part of the membrane BF action proposed in
[13], or more appropriately called scalar-tensor BF (STBF)
action here, is given by

SSTBF ¼
Z

d3x

�
Tr

�
� 1

2
ðD�XI � �IB�Þ2

þ 1

2
����B�F�� �Uð�;XÞ

�
� 1

2
����CI

��@��
I

�
(3)

where

D�X
I ¼ @�X

I � ½A�; X
I�;

VIJK ¼ �½IXJK�
¼ �IXJK þ cyclic permutations of indices;

U ¼ 1

2:3!
ðVIJKÞ2: (4)

Here XJK ¼ ½XJ; XK� is the Lie bracket. The XI’s (I ¼
1; . . . ; 8) are the scalars while B� and A� are the Chern-

Simons gauge fields. All fields are in the adjoint of UðNÞ
except the scalars �I and the tensors CI

�� which are sin-

glets. Note that tensor fields appear only as Lagrange
multipliers.
Various equations of motion are, namely, the XI equa-

tion

@�ðD�XI � �IB�Þ � ½A�; ðD�XI � �IB�Þ� � @XIU ¼ 0;

(5)

the B� equation (or the dNS-duality relation [16])

1

2!
����F�� ¼ �ðD�XI � �IB�Þ�I; (6)

the CI
�� equation

@��
I ¼ 0; (7)

and the �I equation

Tr

�
ðD�XI ��IB�ÞB� � 1

2
VIJKXJK

�
þ 1

2
����@�C

I
�� ¼ 0:

(8)

Thus �I’s are constants in a given vacuum. Equation (8)
does relate �I with its dual field CI

�� and should be taken as
the Hodge-duality (BdGPT) relation, literally in the same
sense as in Romans’ type IIA supergravity theory (see
Appendix for details). In this way, the fields �I and CI

��

form a dual pair of fields. Note that, in this form of the
action the scalar-tensors and the Chern-Simons ðB�; A�Þ
fields are at the same footing. They all are auxiliary fields.
So it will be more appropriate to call the above
theoryscalar-tensor BF or simply STBF membrane theory.
There are, however, no free parameters in the theory.

4It is not clear whether a formulation of M5-brane theory
exists with this kind of field structure. However, an important
covariant formulation of M5-brane theory with field structure
ðC��� � @½�C���Þ and with an auxiliary scalar field has been
studied in [15].
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The action has an scale invariance

x� ! a�1x�; XI ! a1=2XI;

ðB�; A�Þ ! ðaB�; aA�Þ;
ð�I; CI

��Þ ! ða1=2�I; a3=2CI
��Þ

(9)

where a is an arbitrary scale parameter.
The gauge symmetry of the action is

XI ! U�1XIU; A� ! U�1A�U�U�1@�U;

B� ! U�1B�U;
(10)

where U 2 UðNÞ. Note that the B� field transforms as an

adjoint field–like XI but distinctly as compared to the
gauge field A�. The noncompact shift symmetry under

which XI transforms as XI ! XI þ �IM, where M is
arbitrary [4], is not the symmetry of the action (3) because
�I’s are not constant. However, it remains a symmetry in a
given vacuum, that is when h�Ii become constant. In order
to recover the shift symmetry in the action itself we will
need to add compensating terms, as we discuss next along
with supersymmetry.

Note that, in the vacuum we shall have coupling con-
stants gI which get rotated under SOð8Þ. The identification
of these couplings goes as

gI ¼ h�IðxÞi; gIgI ¼ ðgYMÞ2 (11)

where gYM is the Yang-Mills coupling constant in the D2-
brane gauge theory. The BF action (3) has a new Uð1Þ
invariance under

CI
ð2Þ ! CI

ð2Þ þ d�I
ð1Þ; (12)

where �I
ð1Þ are arbitrary 1-forms.

The dNS relation and the BdGPT relation in Eq. (8) can
be combined to give an identity

Tr

�
1

2!
����F��B� þU

�
¼ 1

2
�I����@�C

I
��: (13)

This is an useful relation. It implies that there can always
be a nontrivial tensor field in the vacuum whenever the
gauge fields are nontrivial or when there is a nontrivial
potential. Particularly, in an Abelian theory U ¼ 0, the
gauge fields have to be present for tensor fields to be
nontrivial. We shall give an example where tensor fields
are nontrivial.

In summary, the BF theory has actually two sets of pair
of fields, the dNS adjoints ðB�; A�Þ and the BdGPT sin-

glets ð�I; CI
��Þ. The introduction of these pairs has helped

in bringing Yang-Mills theory into the BF Lagrangian
form, which has explicit SOð8Þ global invariance and
UðNÞ gauge symmetry. In the work [13], it was left to
determine what is the actual supersymmetry content of this
scalar-tensor BF theory as only the bosonic part of the

Lagrangian was presented there. Here we determine the
full N ¼ 8 supersymmetry content of the theory.

III. SUPERSYMMETRY

A. The Uð1Þ Case
We discuss the Abelian case first as the potential van-

ishes in this case. The Lagrangian for a single membrane
can be obtained from the above STBF action and it is

SUð1Þ ¼
Z

d3x

�
� 1

2
ð@�XI � �IB�Þ2 þ 1

2
����B�F��

� 1

2
����CI

��@��
I � @��

IðB�XIÞ
�
: (14)

Note that an additional term�@��
IðB�XIÞ has been added

to the action (14) so that it now has a shift (Stueckelberg)
symmetry

�1B� ¼ @�f; �1X
I ¼ �If;

�1C
I
�� ¼ ����@

�ðfXIÞ; (15)

in addition to the Abelian gauge invariance under the
variation

�2A� ¼ @��: (16)

With the information about the supersymmetric scalar-
tensor topological action given in the Appendix,

SST ¼ �
Z

d3x

�
1

2
����CI

��@��
I þ i ��A	A

�
; (17)

we find that a supersymmetrized Abelian STBF action is

SUð1Þ ¼
Z

d3x

�
� 1

2
ð@�XI � �IB�

�
2 þ 1

2
����B�F��

� @��
IðB�XIÞ þ i

2
�c @6 c þ i ��B6 c þ SSTÞ (18)

where c A (A ¼ 1; . . . ; 8) is the standard fermionic super-
partner of XI. These are 2-component Majorana spinors
which also transform under an 8s spinor representation of
SOð8Þ while spinors � and 	 make the supersymmetric
partners of �I and CI

ð2Þ respectively. Note that, in this

formulation we have scalar-tensor action and the BF
(Chern-Simons) gauge actions at an equal footing. They
are both topological in nature and only propagating fields
are the matter fields XI’s and c A’s.
With this action, we obtain the following N ¼ 8 su-

persymmetry variations for the fields:5

5In our convention 

�
�� are real and commute with �I

A _A
. The

spinors �� ¼ �T
0, see Appendix for details.
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�XI ¼ i ��~�Ic ;

�c ¼ �ð@6 XI � �IB6 Þ�I�;

�A� ¼ i

2
�I ��
�

~�Ic � i

2
XI ��
�

~�I�;

�B� ¼ 0

��I ¼ i ��~�I�;

�� ¼ �@6 �I�I�;

�CI
�� ¼ i ��~�I
��	;

�	 ¼
�
@6 ðB6 XIÞ þ 1

2
����@�C

I
��

�
�I�

(19)

under which the Uð1Þ action (18) remains invariant. The

supersymmetry parameters �
_A are eight 2-component real

spinors belonging to the 8c representation of SOð8Þ.

B. The triviality of Uð1Þ
It would be useful to verify that the Abelian case pre-

sented above is nothing but the rewriting of the noninter-
acting theory of scalar fields describing the transverse
motion of a membrane. For working this out, we first
integrate out the auxiliary tensor field by using its equation
of motion @��

I ¼ 0. So we substitute �I ¼ gI in the

action. The action becomes

SUð1Þ ¼
Z

d3x

�
� 1

2
ð@�XI � B�gIÞ2 þ 1

2
����B�F��

þ i

2
�c @6 c

�
: (20)

Notice that now we have the Stueckelberg invariance,
namely:

�XI ¼ gIfðxÞ; �B� ¼ @�fðxÞ:
We have two possibilities here: either we integrate out B�

or integrate out A� first.

I) Let us first take the case of integrating out the A� field.

We presume that field strength F�� to be a fundamental

field and impose its Bianchi identity by adding a Lagrange
multiplier term 1

2

R
@��F���

���. Here � is periodic ��
�þ 1. The Abelian action then becomes

SUð1Þ ¼
Z

d3x

�
� 1

2
ð@�XI � gIB�Þ2

þ 1

2
����ðB� þ @��ÞF�� þ i

2
�c @6 c

�
: (21)

We then integrate out the A� which is the auxiliary gauge

field through the equation of motion B� þ @�� ¼ 0.

SUð1Þ ¼
Z

d3x

�
� 1

2
ð@�XI þ gI@��Þ2 þ i

2
�c @6 c

�
: (22)

Since � transforms as � ! �� � under B� ! B� þ @��,

using this freedom we can always gauge fix � ¼ 0. We are
left with

SUð1Þ ¼
Z

d3x

�
� 1

2
ð@�XIÞ2 þ i

2
�c @6 c

�
(23)

which is nothing but the known noninteracting SOð8Þ
theory for a single membrane and accounts for all the
degrees of freedom. The XI’s are the modes describing
the transverse motion of a membrane on R8.
II) The second option could have been that we integrate

out the B� field first by using the dNS equation. In which

case the B� field eats up one of the XI’s through shift

symmetry and it becomes heavy which also breaks SOð8Þ
spontaneously. After substituting the dNS equation we
obtain the gauge action representing a single D2-brane

SUð1Þ ¼
Z

d3x

�
� 1

2

X7
i¼1

ð@�XiÞ2 � 1

4g20
F��F

�� þ i

2
�c @6 c

�
(24)

and it has explicit SOð7Þ invariance. It is obvious that both
of these actions (23) and (24) are equivalent in 3D.

C. UðNÞ Case
Now having studied the simpler Abelian case in the

STBF formulation, we are now set to determine the fermi-
onic content of the non-Abelian action (3). We find that the
fermionic content in the action remains the same as in the
Abelian case except that now c A is in the adjoint of UðNÞ,
while the pair ð�A; 	AÞ remains gauge singlet. But there are
also additional fermionic terms. The full action can be
written as

SUðNÞ ¼
Z

d3x

�
Tr

�
� 1

2
ðD�XI � �IB�Þ2 �Uð�;XÞ

� ðB�XIÞ@��I þ 1

2
����B�F��

�

� 1

2
����CI

��@��
I þ Tr

i

2
�c 6Dc þ iTr ��ðB6 c Þ

� i ��	 � Tr
i

2
�c�IJ�

I½XJ; c �

� Tr
i

2
�c�IJ½XI; XJ��

�
: (25)

All the spinors transform under 8s of the R-symmetry
group SOð8Þ as usual. The covariant fermionic derivative
is given by

D�c ¼ @�c � ½A�; c �: (26)

All bosonic covariant derivatives in the action are usual
gauge covariant derivatives involving A�.

Note that, the action (25) has a shift (gauge) invariance
under which tensor fields also transform
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�1B� ¼ D�f; �1X
I ¼ �If;

�1C
I
�� ¼ ���� Tr@

�ðfXIÞ; �1c ¼ f�;

�1	 ¼ �Tr@6 ðfc Þ:
(27)

One will easily notice that �1U ¼ 0. That is the shifts �1X
I

do not change the potential. In addition there is an usual
UðNÞ gauge symmetry involving A� fields as discussed in

the review section.
Determining the supersymmetric variations for the non-

Abelian case is rather difficult. But we know that our
theory can be mapped into L-BLG, see Sec. III D below,
so the task becomes easier. We take the lead from L-BLG
work [4], and following the map in Sec. III D we determine
that the supersymmetry variations for the non-Abelian
STBF are

�XI ¼ i ��~�Ic ;

�c ¼ �ð 6DXI � �IB6 Þ�I�� 1

3!
VIJK�IJK�;

�A� ¼ i

2
�I ��
�

~�Ic � i

2
XI ��
�

~�I�;

�B� ¼ i ��
�
~�I½XI; c �

��I ¼ i ��~�I�;

�� ¼ �@6 �I�I�;

�CI
�� ¼ i ��~�I
��	;

�	 ¼ Trð@6 ðB6 XIÞ�I � 1

2
ð@6 XIÞXJK�IJKÞ�

þ 1

2
����@�C

I
���

I�:

(28)

One can check that the straightforward reduction of (28) to
the Abelian case gives the supersymmetry (SUSY) varia-
tions determined in the previous section. We note that at no
stage were we required to invoke a trialgebra, as all ex-
pressions in the action, including the expressions like VIJK

or Trð@6 XIÞXJK in the SUSY variations, do involve normal
Lie-brackets.6 As an important next step, wewill now show
that the STBF theory can actually be mapped to the famil-
iar L-BLG theory where 3-algebra structure becomes a
favorable simplifying tool.

D. Generalized dNS relation, gauge fixing: Equivalence
of STBF and BLG theory

There has been an expectation that the STBF theory
constructed via tensor field inclusion method must be

related to L-BLG trialgebra theory somehow.7

Particularly the STBF action has a lot of similarity with
the L-BLG action [4] involving the propagating ghost
fields. Here we try to establish this missing equivalence
between the STBF and the L-BLG. Let us separate the
bosonic STBF Lagrangian in the following manner:

L0ðXI; �I; B�; A�Þ � 1

2
����@��

ICI
�� (29)

where L0 contains all the terms in the STBF Lagrangian
except the tensor fields. Without any loss of the content we

can introduce a new set of gauge fields ÂI
� (having mass

dimension 1
2 and transforming in the 8v) through a total

derivative term

L0ðXI; �I; B�; A�Þ � 1

2
����@��

IðCI
�� � 2@�Â

I
�Þ: (30)

These eight gauge fields are the singlets ofUðNÞ. However,
it is important to notice that these do not modify any of the
equations obtained previously from the STBF Lagrangian,
and actually these fields are just a kind of harmless specta-
tor fields. However, due to these, action (30) has additional
shift symmetry;

�CI
ð2Þ ¼ d�I

ð1Þ; �ÂI
ð1Þ ¼ �I

ð1Þ:

This invariance can be utilized to gauge fix the gauge field

ÂI
� ¼ 0. This is what we have considered throughout in the

paper. The BdGPT relation remains unchanged, and it is

�L0

��I ¼ � 1

2!
@�C

I
���

���: (31)

To recall the dNS-duality relation involving adjoint fields
is

1

2!
����F�� ¼ ð�IB� �D�XIÞ�I þ XI@��I; (32)

which defines the relationship between gauge fields A�,B�

and the scalars XI all in adjoint of the gauge group. But it
does not involve any tensor fields.
We now wish to define a ‘‘generalized’’ dNS (gdNS)

duality relation involving only singlet fields, namely

1

2
����ðCI

�� � F̂��Þ � ðĈI� � @�XI�Þ (33)

where field strength F̂I � dÂI. The only difference in the
gdNS relation and the dNS equation is that the gdNS
equation involves 2-rank tensor fields along with Abelian

gauge fields ĈI
�, Â

I
� and the scalar XI�. The ÂI

� need not

explicitly appear in the action as it can be eaten up by the
tensor field, while its presence only adds to total derivative
terms in the action. Using this generalized duality relation,

6To make it clear that that although by looking at various triple
products one would like to believe that these terms may come
from some hidden trialgebra structure, it is not immediately clear
if this will be true while we are in STBF setup, i.e., having tensor
fields explicitly in the action. In order to realize 3-algebra
explicitly we should first dualize or map STBF back to the L-
BLG.

7I am grateful to Neil Lambert for raising this issue and for
sharing his insight.
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the STBF action (30) can now be written in the L-BLG
form

L0ðXI; �I; B�; A�Þ � @�X
IþðĈI� � @�XI�Þ (34)

where we redefined �I � XIþ for identification. This is the
action constructed in [4,5,12]. Since here both XIþ, XI� are
propagating fields with a lightlike metric, due to this the L-
BLG action has ghost degrees of freedom, which are
eliminated through the gauge fixing as discussed in [4,5].
With SUðNÞ gauge symmetry the BLG theory has been
shown to acquire a Lorentzian tri-Lie-algebra structure [4].

So far that was for mapping the bosonic content on the
two sides. The fermionic content is mapped as follows.

Specifically, if the fields CI
��, Ĉ

I
�, X

I� are chosen to have

their fermionic partners given by 	 , �̂, c respectively then
the fermionic map from STBF to L-BLG is given by

	 ¼ �̂� @c�: (35)

All other fermions remain unchanged under this map. We

note that, we could make a gauge choice ÂI
� ¼ 0, likewise

we can also have a choice where we can set XI� ¼ 0 ¼ c�
in L-BLG (see [5]).

IV. SUPERSYMMETRIC VACUA

The moduli space of vacua in the STBF theory is larger
than the 3D super Yang-Mills theory. Our main aim is to
determine vacua which will have nontrivial tensor
backgrounds.

The first set of solutions are the constant XI configura-
tions where B� and A� fields are vanishing [4,13]. So for

these solutionsD�X
I � �IB� ¼ 0. If we take�I ¼ gI and

CI
�� being constants in the vacuum, we only require

XIJ ¼ ½XI; XJ� ¼ 0: (36)

That means XI’s must be commuting (diagonal) N � N
matrices. It gives the moduli space to be exactly that of N
M2-branes on flat R8. Since for these solutions the VIJK

and ðD�X
I � �IB�Þ are vanishing thus all supersymmetric

fermionic variations altogether vanish. So these make the
maximally supersymmetric solutions of STBF theory.
These STBF vacua are the same as those of L-BLG [4],
and it is consistent with the map discussed in Sec. III D. We
comment that for any finite coupling ðgIÞ2 the theory
actually describes the super Yang-Mills theory of D2-
branes; the membrane theory is obtained only in the strong
coupling limit of it as elaborated in [4].

Noncommuting solutions:
I) An interesting case arises when CI

ð2Þ is taken to be

nontrivial. For this let us take the tensor components to be
dependent on the spatial coordinates

dCI
ð2Þ ¼ mIðxÞdx0 ^ dx1 ^ dx2; (37)

where mIðxÞ is a function which we shall determine next.

We still take A� ¼ 0 and first discuss the case with B� ¼
0. Following from the �I equation of motion, we find XI

and mI will be related via

1

2!
g½I TrðXJK�XJKÞ ¼ mI: (38)

This ought to describe a noncommuting (fuzzy) configura-
tion of membranes. We further simplify to the special case
where (�8 ¼ gYM, �

i ¼ 0) and (m8 ¼ mðxÞ, mi ¼ 0). The
XI equations of motion reduce to

@�X
8 ¼ 0 @�@

�Xi þ ðgYMÞ2½Xij; Xj� ¼ 0; (39)

and following from (38), Xi’s are to satisfy the constraint

1

2
gYM TrðXijXijÞ ¼ mðxÞ: (40)

Thus X8 has to be constant, and the Xi equations are in fact
satisfied by the Nahm equation

@
X
i ¼ 1

2
gYM�

ijk½Xj; Xk� ði ¼ 1; 2; 3Þ (41)

where x2 � 
. The Nahm equation has a simple solution

Xi ¼ 1

gYM

�i (42)

where �i form an SUð2Þ subalgebra, ½�i;�j� ¼ �ijk�k,
and are in the N � N representation. The Xið
Þ are well
defined for 
> 0. The 
 ¼ 0 is the location of the bound-
ary brane. From Eq. (40) we determine (for large N)

mð
Þ / N3

g3YM

4
: (43)

It suggests that the 0–1 component of the tensor field falls
off as

C01 /
�

N

gYM


�
3
: (44)

Thus we have seen that the nontrivial tensor fields can be
present in the STBF theory for a noncommuting fuzzy-
sphere configuration. It can be interpreted as an indication
of the presence of the boundary M5-brane. Actually from
the M5-brane point of view 
 is a transverse coordinate
and 
 ! 0 is like probing the region where boundary
branes are located.
We can express

½Xi; Xj� ¼ 1

gYM

�ijkXk: (45)

The physical radius square of the sphere (for large N) at a
fixed location 
 is

rð
Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
Tr

�X
i

X2
i

�s
� N

2gYM

: (46)

So the radius of the sphere varies with the location, 
, and
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it blows up near the boundary 
 ¼ 0, the location of M5-
brane. These fuzzy-sphere solutions have earlier been ob-
tained in the D1–D3 system [17] and BMN-matrix model
[18].

II) Although in the above we have taken B� ¼ 0, X8 a

constant while solving for the fuzzy solution, instead we
can take B� to be pure gauge such that it solves @
X

8 �
gYMB
 ¼ 0. The fuzzy-sphere configuration above is still
a solution with

1

2
gYM TrðXijXijÞ ¼ @� TrðB�X

8Þ ¼ 1

gYM
Tr@
ðX8@
X

8Þ
(47)

but with a constant tensor field. We then determine that

X8 � 1ffiffiffi
3

p X3
i¼1

Xi: (48)

These two fuzzy-sphere solutions, one with nontrivial
tensor field and the other with a constant or vanishing
value, are not related via infinitesimal (shift) symmetry
as discussed in Eq. (27). Hence we conclude that there can
be a nontrivial tensor field background for the fuzzy-sphere
solution in the membrane BF theory.

We also check that for the sphere solution all fermionic
variations (28) can be made to vanish identically. Note that,
from �sc ¼ 0 the arbitrary spinors need to satisfy


2
���

1238
_B _A

�
_A� ¼ ��

_B� (49)

where �1238
_B _A

is a lower diagonal component of the 16� 16

matrix

�� p ¼ ��1
��2

��3
��8 ¼

~�1238
BA 0
0 �1238

_B _A

 !
: (50)

In our conventions �1238
_B _A

¼ �
2 � 12 � 
2 and the prop-

erty that ð ��pÞ2 ¼ 1. Corresponding to (49) the 32 compo-

nent Weyl spinors �̂ ¼ ð0; �Þ would then satisfy8


̂ 2�̂1238�̂ ¼ ��̂: (51)

Thus 
̂2�̂1238 will act as a projector for an arbitrary Weyl
spinor �̂. We can always choose the eigenvalues such that
the eight components of the spinors remain intact.
Likewise other fermionic variations also identically vanish.
Thus we find that fuzzy sphere is a 1=2-supersymmetric
solution of STBF theory. This is in agreement with the
other known cases of fuzzy 2-sphere in the literature
[17,18]. Previous works on fuzzy-sphere solutions in
Bagger-Lambert-Gustavsson membrane theory can be
found in [19,20].

V. CONCLUSION

We have discussed the supersymmetrization of the
membrane BF theory (STBF) having dual pairs of non-
propagating scalar and tensor fields. The construction has
been based on ordinary Lie-algebra structure. This con-
struction leads us to a supermembrane theory with tensor
fields which has UðNÞ gauge symmetry, SOð8Þ R-
invariance, as well as the scale invariance. There are no
free parameters in the action as those can be scaled away.
The theory does not have propagating ghost degrees of
freedom as the tensor fields are topological in nature.
However, we do find that a Lorentzian trialgebra structure
can emerge if the tensor fields are dualized into propagat-
ing scalar fields via a ‘‘generalized’’ dNS-like duality, and
as a consequence the theory goes over to the known L-BLG
formulation [4]. We have explicitly shown that there exists
a fuzzy S2 solution which supports a nontrivial 2-rank
tensor field and it is 1=2-supersymmetric. It will be inter-
esting if we can find a fuzzy S3 solution in STBF theory.
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APPENDIX A: CONVENTIONS

The 3D Clifford algebra with signature ð� þþÞ is given
by

f
�; 
�g ¼ 2���: (A1)

We choose a real representation where 
0 ¼ i�2, 
1 ¼ �1,
and 
2 ¼ �3. The �’s are the Pauli matrices. The matrix
C ¼ 
0 and satisfies C
�C�1 ¼ �ð
�ÞT . The fermionic
invariants can be constructed involving 2-component
Majorana spinors as

��	 ¼ �T
0	 ¼ �	�; ��
�	 ¼ � �	
��;

��
��	 ¼ � �	
���; � � � :
The 
-commutators are defined as


�� ¼ 1

2
½
�; 
�� ¼ ����
�; 
��� ¼ ����1 (A2)

while the Levi-Civita tensor is �012 ¼ 1.
For the internal space the SOð8Þ Dirac algebra requires

16� 16 reducible matrices,

�� I ¼ 0 �I
A _A

ð~�IÞ _BB 0

 !

corresponding to the 16-component Majorana spinors

8Here 
̂� ¼ 
� � �ch, with �ch ¼ diagð�18; 18Þ being the
chirality operator. While �̂1238 ¼ 12 � ��p.
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� ¼ ðc A
s ; c

_A
c Þ

which are formed from the Weyl spinors c A
s and c

_A
c . We

denoted ~�I ¼ ð�IÞT and the spinorial indices are A, _A ¼
1; . . . ; 8. The ��I’s satisfy the algebra

f ��I; ��Jg ¼ 2�IJ (A3)

provided �I
A _A

satisfy the relations

�I
A _A
~�J

_AB þ �J
A _A
~�I

_AB ¼ 2�IJ�AB

~�I
_AA�

J
A _B

þ ~�J
_AA�

I
A _B

¼ 2�IJ� _A _B:
(A4)

Similarly, we can also define antisymmetric products

�I
A _A
~�J

_AB � �J
A _A
~�I

_AB ¼ 2�IJ
AB

~�I
_AA�

J
A _B

� ~�J
_AA�

I
A _B

¼ 2�IJ
_A _B
:

(A5)

The component matrices �I
A _A

can also be treated as real

Clebsch-Gordon coefficients. With these �’s an SOð8Þ
invariant quantity can be constructed by combining the
vector and two fermionic representations. We shall be
using the real representation

�1 ¼ 
2 � 
2 � 
2; �2 ¼ 1� �1 � 
2;

�3 ¼ 1� �3 � 
2; �4 ¼ 
2 � 1� �1

�5 ¼ 
2 � 1� �3 �6 ¼ �1 � 
2 � 1

�7 ¼ �3 � 
2 � 1 �8 ¼ 1� 1� 1;

(A6)

where 
2 ¼ i�2. See for more details on the representa-
tions in [21].

APPENDIX B: THE TOPOLOGICAL SCALAR-
TENSOR 3D ACTION

Let us discuss here a topological scalar-tensor (ST)
action just like we have BF (Chern-Simons) gauge action
in 3D. We can write

SST �
Z

d3x

�
� 1

2
����CI

��@��
I � i ��	

�
: (B1)

The fermions �A and 	A make the supersymmetric partners
for �I and CI

�� and belong to 8s representation of SOð8Þ.
All the fields in the Lagrangian are nonpropagating (aux-
iliary) fields. The equations of motion of the fermions are
simply

	 ¼ 0 ¼ ��:

There is an obvious gauge invariance under �CI
�� ¼

@½��I
��.

The action (B1) does possess N ¼ 8 supersymmetry
under the infinitesimal variations

��I ¼ i ��~�I�; �� ¼ �@6 �I�I�;

�CI
�� ¼ i ��~�I
��	; �	 ¼ 1

2

���@�C

I
���

I�:
(B2)

The supersymmetry parameters �
_A are 8 two-component

Majorana spinors belonging to 8c representation of SOð8Þ.
The above scalar-tensor action can be constructed in

analogy with Chern-Simons gauge action [22]

S ¼ �
Z

d3x

�
1

2
����A�F�� þ i ���

�
; (B3)

which is topological in nature.

APPENDIX C: ROMANS’ TYPE IIA
SUPERGRAVITY: THE BDGPT DUALITY

The massive type IIA maximal supergravity [23] in ten
dimensions is known to have a cosmological constant term
proportional to m2 along with mass terms for 2-rank tensor
fields. Because of this the action does not have the known
Z2 invariance of type II strings, under which RR p-form
potentials flip their sign, unless the mass parameter simul-
taneously changes its sign. It was interestingly suggested in
[24] that the mass parameter m could, in fact, be lifted to a
0-form, Fð0Þ, which in turn can be Hodge-dualized to a 10-

form field strength

Fð10Þ � dAð9Þ: (C1)

Particularly, the D8-branes are charged under 9-form po-
tential Að9Þ, which are 1=2-BPS solutions of the theory.

Under this ‘‘localization’’ of the Romans’ mass, the action
goes over to [24]

LIIA
m ðAðpÞ;mÞ ! LIIA

m ðAðpÞ;Fð0ÞÞ þ Fð0Þ ^ dAð9Þ: (C2)

In fact, the 9-form potential Að9Þ plays the role of a

Lagrange multiplier field. It imposes the constraint that

dFð0Þ ¼ 0; (C3)

i.e., in the vacuum <Fð0Þ> ¼ m. The duality relation

between Fð0Þ and Fð10Þ is nothing but the Fð0Þ equation of

motion

�LIIA
m ðAðpÞ;Fð0ÞÞ
�Fð0Þ

¼ � �10 dAð9Þ: (C4)

We call this as Bergshoeff-de-Roo-Green-Papadopoulos-
Townsend (BdGPT) duality relation. In this formulation
the massive type IIA SUGRA regains the Z2 symmetry
under which the local fields transform as

Fð0Þ ! �Fð0Þ and Að9Þ ! �Að9Þ (C5)

instead of a constant mass parameter m ! �m. It is this
similar argument which we incorporated in constructing an
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SOð8Þ invariant BF theory [13]. In that construction there
are eight constant couplings gI which transform under
SOð8Þ. However, the theory transforms along with the
couplings. So it was needed to make these couplings

localized,

gI � �IðxÞ:
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