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We study cosmology of the Einstein-Yang-Mills theory in ten dimensions with a quartic term in the

Yang-Mills field strength. We obtain analytically a class of cosmological solutions in which the extra

dimensions are static and the scale factor of the four-dimensional Friedmann-Lemaitre-Robertson-Walker

metric is an exponential function of time. This means that the model can explain inflation. Then we look

for solutions that describe dynamical compactification of the extra dimensions. The effective cosmologi-

cal constant �1 in the four-dimensional universe is determined from the gravitational coupling, ten-

dimensional cosmological constant, gauge coupling, and higher derivative coupling. By numerical

integration, the solution with �1 ¼ 0 is found to behave as a matter-dominated universe which asymptoti-

cally approaches flat space-time, while the solution with a nonvanishing �1 approaches de Sitter space-

time in the asymptotic future.
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I. INTRODUCTION

There have been many attempts to consider extra di-
mensions in addition to our world of four-dimensional
space-time, even though they have not been observed.
The original idea dates back to Nordström [1], Weyl [2],
Kaluza [3], and Klein [4], who considered extra dimen-
sions in order to unify gravity and electromagnetic force in
five space-time dimensions. Now the most promising uni-
fied theory, describing all fundamental forces including
two types of nuclear forces, is considered to exist in ten,
eleven, or twelve dimensions after string theory, M theory
[5], and F theory [6] have appeared. Superstring theory is
consistent in ten-dimensional space-time. The extra six
dimensions should be compactified. Some people require
supersymmetry in four-dimensional space-time and the
extra-dimensional space was assumed as a Calabi-Yau
manifold. After the discovery of D-branes, D-branes or
more generally ‘‘branes’’ offer the possibility of large extra
dimensions or the brane world scenario [7].

There were many efforts to describe cosmological solu-
tions in the framework of higher-dimensional theories.
Especially, the realization of de Sitter-like expansion of a
four-dimensional part has attracted much attention in con-
nection with the inflationary scenario or the current accel-
erated expansion of our Universe. One of those attempts is
the flux compactification, which has received a lot of
attention in recent years [8]. One of the most important
and basic features of the flux compactification is to stabi-
lize the size of a compactified space by certain configura-

tions of high-rank differential form fields. There were also
efforts to realize dynamical compactifications by using
various kinds of scalar fields [9].
Before string theory was discovered, Cremmer and

Scherk studied an attractive possibility of compactification
with the size of a compactified space being stabilized [10].
In order to achieve it, they placed a nontrivial topological
solution (soliton) of a gauge field on the compactified
space, for instance a monopole on the sphere S2 or a
Yang-Mills instanton on the four-dimensional sphere S4.
In these cases, the compactified space is stabilized at a
finite radius rather than decompactified to an infinite ra-
dius. So they called it ‘‘spontaneous compactification.’’
In this paper we would like to study if such a compacti-

fication can occur dynamically or not. In general, in order
to stabilize a topological configuration of a Yang-Mills
field in dimensions greater than four, we need higher order
terms of the gauge field strength [11]. Some years ago
Tchrakian introduced such a term, which we call the
Tchrakian term, in order to generalize ’t Hooft-Polyakov
monopoles and Yang-Mills instantons to those analogues
in dimensions greater than four [12]. The term is not
renormalizable, but still quadratic in the time derivative.
Recently some of the present authors have numerically
studied a monopolelike solution in six-dimensional
Minkowski space by adding the Tchrakian term [13].1

1This was originally motivated by the computation of non-
Abelian Berry’s phases in T-dualized unitary simplectic matrix
model [14].
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One of the authors has further studied an asymptotic solu-
tion of five-dimensional Tchrakian monopole, the general-
ization of Tchrakian monopole [15]. In the case of a six-
dimensional sphere, an exact solution to a generalized self-
duality relation has been constructed for SO(6) Yang-Mills
fields with the Tchrakian term [16].2 Then this relation has
been successfully embedded in the Einstein-Yang-Mills
theory with the Tchrakian term in the geometry of the
direct product of the four-dimensional Minkowski space
(anti–de Sitter space AdS4) and S6 of a constant radius,
with (without) a ten-dimensional cosmological constant
[18]. In this solution the gauge field distributes on S6

homogeneously, so it is a natural generalization of
Cremmer and Scherk [10]. At least for the Yang-Mills
part, the configuration attains the minimum of the
Bogomol’nyi bound when the radius of S6 satisfies a
certain relation with the gauge coupling constant and the
coupling strength of the Tchrakian term. Therefore we
expect that if we turn on the time variation of the space-
time, we obtain a solution which describes the process of
dynamical compactification.

In this paper we consider cosmological solutions with a
time-dependent scale factor of the three dimensions as well
as with a time-dependent radius of S6, and study if there
exist solutions with the radius of S6 tending to a finite
value, as a possible model of dynamical compactification.

This paper is organized as follows. In Sec. II, we de-
scribe our theory; that is, the Einstein-Yang-Mills theory
with the Tchrakian term in ten dimensions. We review the
discussion of Bogomol’nyi completion. In Sec. III, we
introduce an ansatz on the ten-dimensional metric, namely,
the direct product of the four-dimensional Friedmann-
Lemaitre-Robertson-Walker metric and S6 with the radius
as a function of time. Then we specify a gauge configura-
tion which satisfies the self-duality relation and solves the
Yang-Mills equation with the Tchrakian term. In Sec. IV,
simple analytical solutions with a fixed radius of S6 are
given. The four-dimensional part of the solutions is either
Minkowski or de Sitter, depending on the choice of the
model parameters. In Sec. V, we consider solutions that
describe the process of dynamical compactification. We
investigate the behavior of the solutions both analytically
and numerically. In general, the four-dimensional part
behaves as de Sitter plus small oscillations, while the S6

radius undergoes damped oscillations toward a finite value.
For a particular choice of the model parameters that gives
the product of a flat space-time times S6 with a fixed radius,
we find the four-dimensional part behaves as a dust-
dominated universe, that is, with the scale factor propor-

tional to t2=3. Sec. VI is devoted to conclusion and
discussions.

II. MODEL SETTING AND BOGOMOL’NYI
EQUATION

Let us start from the following action in ten-dimensional
space-time:

Stot :¼ SEH þ SYMT;

SEH :¼ 1

16�G

Z
dvR;

SYMT :¼ 1

16

Z
Trf�F ^ �Fþ �2ðF ^ FÞ ^ �ðF ^ FÞ

� V0dvg:

(1)

Here dv is the invariant volume form, R is the scalar
curvature with respect to the metric gMN , and F is the field
strength twoform which takes values in the Lie algebra
SO(6). The star ( � ) denotes the Hodge dual operator act-
ing on differential forms in ten dimensions. Our notation is
summarized in Appendix A. For more details, see [19].
We consider the case where the space-time is locally a

product space of M and N . M is a four-dimensional
curved space-time and N is a compact space. Let us
denote the total space T . The metric on this space is

ds2 ¼ g��ðxÞdx�dx� þ gIJðx; yÞdyIdyJ ¼ ds2M þ ds2N ;

�; � ¼ 0; 1; 2; 3; I; J ¼ 4; 5; � � � ; 9: (2)

For the case where the field strength has only compo-
nents along the compact directions, we can manipulate the
Yang-Mills action as [18]

1

16

Z
T
Trf�F ^ �Fþ �2ðF ^ FÞ ^ �ðF ^ FÞg

¼ 1

16

Z
M

dvð4Þ Z
N

Tr½ðF� i��7 �6 ðF ^ FÞÞ
^ �6ðF� i��7 �6 ðF ^ FÞÞ�
� 1

16

Z
M

dvð4Þ Z
N

Tr2i��7F ^ F ^ F; (3)

where �6 represents the Hodge dual operator along the
compact direction N . We call this procedure
Bogomol’nyi completion. The term Q :¼ R

N Tr�7F
3 is

a surface term and it gives the bound on the energy density.
Then the Bogomol’nyi equation is

F� i��7 �6 ðF ^ FÞ ¼ 0: (4)

If either of these equations is satisfied, the energy attains
the minimum given by Q irrespective of the sign �.

Suppose that Að0Þ is a solution of equation of motion and

Fð0Þ is the corresponding field strength. We denote the

fluctuations around this solution �A, A ¼ Að0Þ þ �A. Let
us expand the left-hand side of Eq. (4) in terms of the
following fluctuations:

F� i��7 �6 F ^ F ¼ B0 þB1ð�AÞ þB2ð�AÞ; (5)
2Generalization of instantons on the complex projective space

CP3 has been also given [17].
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where

B0 :¼ Fð0Þ � i��7 �6 Fð0Þ ^ Fð0Þ;

B1ð�AÞ :¼ D0�A� i��7 �6 ðD0�A ^ F0 þ F0 ^D0�AÞ;
B2ð�AÞ :¼ q�A ^ �A� i��7 �6 ðq�A ^ �A ^ F0

þ F0 ^ q�A ^ �AÞ � i��7 �6 ½ðD0�A

þ q�A ^ �AÞ ^ ðD0�Aþ q�A ^ �AÞ�: (6)

HereB0 is the 0th order term with respect to �A. The term
B1ð�AÞ is linear in �A. The remaining B2ð�AÞ includes
higher order terms. By substituting this to Eq. (3), we
obtain

� 1

16

Z
Trf�F ^ �Fþ �2ðF ^ FÞ ^ �ðF ^ FÞg

¼ � 1

16

Z
dvð4Þ TrfB0 ^ �6B0 þ 2B0 ^ �6B2ð�AÞg

� 1

16

Z
dvð4Þ TrfB1ð�AÞ ^ �6B1ð�AÞg þOð�A3Þ

þ
Z
ðtotal derivativeÞ: (7)

Here the term B0 ^ �6B1ð�AÞ is a total derivative term

because Að0Þ is a solution of the equation of motion. The
term 2B0 ^ �6B2ð�AÞ includes the indefinite quadratic
form of �A, which might yield a tachyonic mass term.

When Að0Þ is a solution of B0 ¼ 0 which is one of Eq. (4),
no tachyonic mass term appears in gauge sector. We men-
tion that this does not necessarily mean the stability of the
system under the presence of fluctuations of both the
metric and the gauge field. This is an issue to be studied
in the future.

III. ANSATZ FOR THE METRIC AND GAUGE
FIELDS

In this section we consider time-dependent solutions in
the sense of Freund [20]. Namely, the metric is assumed to
be in the form,

ds2 ¼ ds24 þ ds26;

ds24 ¼ �dt2 þ L2
0e

2�1
jd	j2

ð1þ 
j	j2=4Þ2 ;

ds26 ¼ L2
0e

2�2
jdyj2

ð1þ jyj2=4Þ2 ;

(8)

where the coordinates 	i ¼ ð	1; 	2; 	3Þ span the three-
dimensional space and yI ¼ ðy4; y5; � � � ; y9Þ span S6.
j	j2 :¼ ð	1Þ2 þ ð	2Þ2 þ ð	3Þ2 and jyj2 :¼ ðy4Þ2 þ
ðy5Þ2 þ � � � þ ðy9Þ2. The parameter 
 is �1 or 0. �1 and
�2 are functions of time t. L0 is a constant with dimension
of length. The radius of S6 is given by R ¼ L0e

�2 . These
types of metrics were considered in various contexts, for
instance in [21,22].

The SO(6) gauge field configuration, represented in
terms of differential forms, is assumed to be in the form

A ¼ 1

4qL0e
�2

�aby
aþ3Vbþ3; (9)

where a; b ¼ 1; 2; � � � ; 6 are the indices of the Lie algebra
of SO(6), �ab :¼ ð1=2Þ½�a; �b� are the infinitesimal gen-
erators represented by spinor, and VI is the vielbein of the
six-dimensional metric ds26,

VI :¼ L0e
�2

dyI

ð1þ jyj2=4Þ : (10)

q is the gauge coupling constant. In the configuration of the
gauge field A, the internal indices a; b; � � � and the spatial
indices I; J; � � � are identified by an embedding of the spin
connection of the six-dimensional sphere into the gauge
group.
The exterior derivatives of the vielbeins are

dVI ¼ �L0e
�2

�JKy
JdyK ^ dyI

2ð1þ jyj2=4Þ2 þ L0

_�2e
�2dt ^ dyI

ð1þ jyj2=4Þ
¼ ��JKy

JVK ^ VI

2L0e
�2

þ _�2dt ^ VI: (11)

Then the Ricci tensor components are given by

Rtt ¼ �3ð €�1 þ _�2
1Þ � 6ð €�2 þ _�2

2Þ;
Rij ¼ gij

�
€�1 þ 2




L2
0e

2�1
þ 3 _�2

1 þ 6 _�1
_�2

�
;

RIJ ¼ gIJ

�
€�2 þ 5

1

L2
0e

2�2
þ 6 _�2

2 þ 3 _�1
_�2

�
:

(12)

The scalar curvature is

R ¼ 6 €�1 þ 12 €�2 þ 12 _�2
1 þ 42 _�2

2 þ 36 _�1
_�2

þ 6

L2
0

ð
e�2�1 þ 5e�2�2Þ: (13)

Thus the Einstein tensor components are given by

Gtt ¼ 3 _�2
1 þ 15 _�2

2 þ 18 _�1
_�2 þ 3

L2
0

ð
e�2�1 þ 5e�2�2Þ;

Gij ¼ �gij

�
2 €�1 þ 6 €�2 þ 3 _�2

1 þ 21 _�2
2 þ 12 _�1

_�2

þ 1

L2
0

ð
e�2�1 þ 15e�2�2Þ
�
;

GIJ ¼ �gIJ

�
3 €�1 þ 5 €�2 þ 6 _�2

1 þ 15 _�2
2 þ 15 _�1

_�2

þ 1

L2
0

ð3
e�2�1 þ 10e�2�2Þ
�
:

(14)

As for the gauge field, its field strength is given by

F ¼ 1

4qL2
0e

2�2
�abV

aþ3 ^ Vbþ3: (15)

DYNAMICAL COMPACTIFICATION AND INFLATION IN . . . PHYSICAL REVIEW D 80, 066004 (2009)

066004-3



This satisfies the following duality relations:

�F ¼ �i��7dv
ð4Þ ^ F ^ F;

�ðF ^ FÞ ¼ i

�
dvð4Þ ^ �7F;

(16)

where

� :¼ qL2
0

3
e2�2 : (17)

The self-duality relation Eq. (16) becomes the
Bogomol’nyi Eq. (4) if � ¼ �. In this case, there are no
tachyonic modes, at least in the gauge sector. This deter-
mines a particular radius R ¼ Lc of the extra dimensions in
terms of the gauge coupling constants q and �,

Lc :¼
ffiffiffiffiffiffi
3�

q

s
: (18)

Because �2 depends only on the time coordinate, the

exterior derivative of �dð4Þv vanishes,

dð�dð4ÞvÞ ¼ 0: (19)

This means that the configuration satisfies the equation of
motion,

Dð�FÞ � �2Df�ðF ^ FÞ ^ Fþ F ^ �ðF ^ FÞg ¼ 0:

(20)

The energy momentum tensor of the gauge field is given
by

T MN ¼ 1

8
Tr

�
�FMPFN

P þ �2

3!
HMPQSH

PQS
N

�
� 1

2
gMN�;

� :¼ 1

8
Tr

�
� 1

2
FMNF

MN þ �2

4!
HMNPQH

MNPQ þ V0

�
:

(21)

Here HIJKL are the components of F ^ F introduced in
Appendix A. For our gauge configuration we have

T tt ¼ 1

2
�;

T ij ¼ � 1

2
gij�;

T IJ ¼ � 5

8q2L4
0

e�4�2

�
1� 32�2

q2L4
0

e�4�2

�
gIJ � 1

2
gIJV0;

(22)

where

� � �ð�2Þ ¼ 15

4q2L4
0

e�4�2

�
1þ 32�2

q2L4
0

e�4�2

�
þ V0: (23)

In this gauge configuration, the Einstein field equations are

8�G

2
� ¼ 3 _�2

1 þ 15 _�2
2 þ 18 _�1

_�2

þ 3

L2
0

ð
e�2�1 þ 5e�2�2Þ; (24)

8�G

2
� ¼

�
2 €�1 þ 6 €�2 þ 3 _�2

1 þ 21 _�2
2 þ 12 _�1

_�2

þ 1

L2
0

ð
e�2�1 þ 15e�2�2Þ
�
; (25)

8�G

�
� 5

8q2L4
0

e�4�2

�
1� 32�2

q2L4
0

e�4�2

�
� 1

2
V0

�

¼ �
�
3 €�1 þ 5 €�2 þ 6 _�2

1 þ 15 _�2
2 þ 15 _�1

_�2

þ 1

L2
0

ð3
e�2�1 þ 10e�2�2Þ
�
; (26)

where the first equation is a constraint on the field and its
derivatives, the Hamiltonian constraint equation, determin-
ing the three-dimensional hypersurface in the four-
dimensional phase space. We note that the kinetic term in
the Hamiltonian constraint is quadratic in the field veloc-
ities, and it has one positive and one negative eigenvalues.
The above system of differential equations is invariant
under the time translation and time reversal transformation.
If 
 ¼ 0, there is in addition an invariance under the shift
of �1. The time evolution of the fields �1 and �2 is
determined by Eqs. (25) and (26), describing the trajectory
on the three-dimensional hypersurface defined by the con-
straint equation.
It is convenient to express the field equations in terms of

a rescaled time coordinate 
 ¼ t=L0, and introduce the
following dimensionless parameters,

a ¼ 8�G

q2L2
0

; (27)

b ¼ �2

q2L4
0

; (28)

c ¼ 4�GV0L
2
0; (29)

where c is related to the ten-dimensional cosmological
constant � by c ¼ �L2

0. In what follows, the 
 derivative

of a function hð
Þ will be denoted by h0. For L0 ¼ Lc the
parameter b is fixed to the value b ¼ 1=9, leaving only two
free parameters in the field equations.
By manipulating the field equations we can reduce them

to the following convenient set of two differential equa-
tions:

V1 ¼ ð�0
1Þ2 þ 5ð�0

2Þ2 þ 6ð�0
1Þð�0

2Þ; (30)

V2 ¼ �00
2 þ 6ð�0

2Þ2 þ 3ð�0
1Þð�0

2Þ; (31)
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where V1 and V2 are defined by

V1ð�1; �2Þ :¼ 4�GL2
0

3
�ð�2Þ � 5e�2�2 � 
e�2�1

¼ 5

8
ae�4�2ð1þ 9be�4�2Þ þ c

3
� 5e�2�2

� 
e�2�1 ; (32)

V2ð�2Þ :¼ 5a

32
e�4�2ð5þ 63be�4�2Þ þ c

4
� 5e�2�2 : (33)

We can solve Eq. (30) for �0
1 to obtain

�0
1 ¼ �3�0

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 þ 4ð�0

2Þ2
q

: (34)

By using this equation, we can eliminate�0
1 from Eq. (31).

Then the Einstein field equations are reduced to a system of
coupled differential equations given by

�0
1 þ 3�0

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 þ 4ð�0

2Þ2
q

¼ 0; (35)

�00
2 � 3ð�0

2Þ2 þ 3�0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 þ 4ð�0

2Þ2
q

� V2 ¼ 0; (36)

where we have chosen the positive value of the square root
in Eq. (35). In the next section, we look for a solution in
which the extra-dimensional part of the metric is static;
that is, a solution with �0

2 ¼ 0. In this case, �1 grows with
time for the above choice of the square root sign, ensuring
that the four-dimensional part of the metric describes an
expanding universe.

IV. SOLUTIONS WITH STATIC EXTRA
DIMENSIONS

In this section we consider solutions in which the metric
of the extra-dimensional space, S6, is static; that is when
�2 ¼ const. In this case, Eq. (35) becomes integrable with
respect to �1, and Eq. (36) becomes an algebraic equation
for e�2�2 . We note that we do not require our solution to
satisfy the Bogomol’nyi Eq. (4). Hence for those solutions
whose extra-dimensional radius is different from Lc given
by Eq. (18), the absence of tachyon modes is not guaran-
teed. Therefore we simply assume that there is a suffi-
ciently wide range of parameters in which there appears
no harmful tachyons. This issue is left for a future study.

Below we first consider general solutions. As wewill see
shortly, there is a particular solution given by e�1 ¼ffiffiffiffiffiffiffiffi�

p


þ C for 
 ¼ �1, 0. Since this is somehow special,
we treat it separately.

A. The general case

Static solutions of Eq. (36) are determined by the roots
of V2ð�2Þ ¼ 0. Let us set Z :¼ ae�2�2 . We note that Z /
ðL0e

�2Þ�2, where L0e
�2 is the linear scale of the extra

dimensions. The equation V2 ¼ 0 becomes

fðZÞ � Z4 þ 5�1Z
2 � 32�1Zþ 8�2�1

5
¼ 0; (37)

where

�1 :¼ a2

63b
¼ 64�2G2

63�2q2
; �2 :¼ ac ¼ 32�2G2V0

q2
:

(38)

Note that �1 and �2 are independent of L0 and �2. As
demonstrated in Appendix B, the equation fðZÞ ¼ 0 has
one or two real solutions Z1 and Z2 (we assume Z1 � Z2)
provided that �1 and �2 satisfy a certain inequality.
Let us first consider the solution Z1. The relation be-

tween the original variables and Z1 can be written as

L2
0 expð2�2Þ ¼ L2

1
:¼ 8�G

q2
1

Z1

; (39)

where L1 represents the size of the extra dimensions. Thus
the size of the extra dimensions is completely fixed by the
coupling constants.
As easily seen, Eqs. (35) and (36) are invariant under the

rescaling,

L0 ! CL0; expð�2Þ ! C�1 expð�2Þ;
expð�1Þ ! C�1 expð�1Þ:

(40)

Using this degree of freedom, we fix the length scale L0 to
be the size of the extra dimensions L1, or equivalently, we

set �2 ¼ �ð1Þ
2 ¼ 0 for this solution. Then we have Z1 ¼ a.

Therefore a must be a solution of Eq. (37)

fðaÞ ¼ 0 , c ¼ 20� 5a

8
ð5þ 63bÞ: (41)

With this normalization, we find a positive real Z2 for c >
0. The condition Z2 	 Z1 and c � 0 give the following
inequalities:

32

5þ 63b
� a � 16

5þ 126b
: (42)

In terms of �2 these two solutions are given by

�ð1Þ
2

:¼ � 1

2
logðZ1=aÞ ¼ 0; �ð2Þ

2
:¼ � 1

2
logðZ2=aÞ:

(43)

Those points are critical points or equilibrium solutions of

the differential Eq. (36). The value of �ð2Þ
2 is depicted as a

function of a for each value of b in Fig. 1. The discussions
in the rest of this subsection are valid for both solutions.
Now we turn to Eq. (35). Setting �0

2 ¼ 0, we have

�0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
i � 
e�2�1

q
, ðe�1Þ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
i e

2�1 � 

q

; (44)

where �i (i ¼ 1, 2) is defined by

�2
i
:¼ 4

3
�GL2

0�ð�ðiÞ
2 Þ � 5e�2�ðiÞ

2 : (45)
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We assume �2
i is positive. �2

1 � 0 gives an additional
condition on the parameter a,

4

1þ 18b
� a � 16

5þ 126b
: (46)

If this inequality is satisfied, �2
2 � 0, because

4
3�GL2

0�ð�2Þ � 5e�2�2 is concave downward as a func-

tion of e�2�2 and its derivative at e�2�2 ¼ 1 is negative.
The allowed region of a and b given by Eq. (46) is depicted
in Fig. 2.

The Eq. (44) can be integrated to give

e�1 ¼ 1

2�i

ðe�i
 þ 
e��i
Þ; (47)

where the origin of the time coordinate has been chosen to
make the expression simple. Four-dimensional parts of
these solutions are the same as those of Ishihara [21].

For large 
, the term proportional to 
 can be neglected
and the scale factor of the four-dimensional space-time
approaches RðtÞ ¼ L0e

�i
, which describes a universe
with accelerated expansion. Thus, although we do not
claim that our model can give a realistic model of the
universe, depending on the value of the constant �i, it
can reproduce a period of inflation in the very early uni-
verse or the present universe dominated by a very small
cosmological constant.

B. The case �i ¼ 0

When �i ¼ 0 the solution (47) is no longer valid as it is,
and we need a special treatment. In this case Eq. (44)
implies that 
 must be either �1 or 0. In either case,
ðe�1Þ0 ¼ ffiffiffiffiffiffiffiffi�


p
, and the solution is

e�1 ¼ ffiffiffiffiffiffiffiffi�

p


þ C ð
 ¼ �1; 0Þ; (48)

where C is an integration constant.
The four-dimensional part of the solution for 
 ¼ 0 is

flat. It was obtained in [18], which is almost the same as the
one obtained by Cremmer-Scherk [10], but with the radius
of S6 and the value of ten-dimensional cosmological con-
stant modified by the presence of the Tchrakian term.
The solution for 
 ¼ �1 is also flat. The four-

dimensional line element is

ds2 ¼ L2
0

�
�d
2 þ 
2

d	2

ð1� j	j2
4 Þ2

�
: (49)

This metric covers the inside of either the future light cone
or the past light cone of the flat space-time.

V. DYNAMICAL COMPACTIFICATION

In this section, we switch on the time dependence of �2

in order to see if our model has the possibility to describe
the process of dynamical compactification. For this pur-

pose, we analyze the stability of the solution �2 ¼ �ð1Þ
2

( ¼ 0) and �2 ¼ �ð2Þ
2 in the second order nonlinear differ-

ential Eq. (36) in the case of 
 ¼ 0 both analytically and
numerically.
We first analyze the stability of the critical points ana-

lytically. For this purpose, we linearize the system of
differential equations (see e.g. [23]). We find, however,
that for �1 ¼ 0 this method is not sufficient to establish
the stability of the critical point �0

2 ¼ �2 ¼ 0. Therefore
we will try a different approach in this case.
We first consider the critical point ð�2; �

0
2Þ ¼ ð0; 0Þ,

which is a stationary or equilibrium solution of the differ-
ential Eq. (36). Denoting X :¼ �2 and Y :¼ �0

2 and keep-
ing only terms linear in X and Y, Eq. (36) is written as the
following system of first order differential equations:

X 0 :¼ X0
Y0

� �
¼ Y

dV2

d�2
j�2¼0X � 3�1Y

� �
¼ AX; (50)
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a

FIG. 1 (color). The plot of �ð2Þ
2 as a function of a for b ¼

0:5=9, 1=9, 2=9, and 5=9. Because�ð2Þ
2 � �ð1Þ

2 ¼ 0, only the part

of the curves above the line �ð2Þ
2 ¼ 0 is meaningful. The value of

a is bounded as given by Eq. (42).
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FIG. 2 (color). The allowed region of a and b. The filled
region is the allowed region which is bounded by the lines �2

1 ¼
0 and c ¼ 0.
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where the matrix A is given by

A ¼ 0 1
dV2

d�2
j�2¼0 �3�1

 !
¼ 0 1

��2 þ 21
2 �

2
1 �3�1

� �
(51)

with

�2
1 ¼

5

3
� 5

12
að1þ 18bÞ; (52)

�2 :¼ 5

4
ð6� aÞ: (53)

Note that �1 in the above is equal to the one defined by
Eq. (45) with the normalization condition (41). The solu-
tion ðX; YÞ ¼ ð0; 0Þ is asymptotically stable if both of the
two eigenvalues of the matrix A,

�1;� ¼ � 3

2

�
�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 þ

4

9

dV2

d�2

���������2¼0

s �
; (54)

have negative real part.
To analyze the stability of the second critical point,

ð�2; �
0
2Þ ¼ ð�ð2Þ

2 ; 0Þ, we simply replace �2 by �2 ��ð2Þ
2

when linearizing Eq. (36). Then the eigenvalues are

�2;� ¼ � 3

2

�
�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2 þ

4

9

dV2

d�2

���������2¼�ð2Þ
2

s �
: (55)

For �1 ¼ 0 the real part of the two eigenvalues is zero,
and the linear system corresponds to the harmonic oscil-
lator for �2 > 0. In this case we can not apply Poincare-
Lyapunov’s theorem above and additional information is
required to establish the character of the critical point for
the full nonlinear equation. We therefore treat this case
separately.

A. The case �1 > 0

As in Sec. IV, we are interested in the solutions with �1

real and positive. Then the real part of the eigenvalues�1;�
is negative if

� dV2

d�2

���������2¼0
¼
�
�2 � 21

2
�2
1

�
> 0: (56)

This condition coincides with the condition Z2 < Z1,
which is satisfied when the parameters satisfy Eq. (46).
Thus the critical point ð�2; �

0
2Þ ¼ ð0; 0Þ is stable.

The system shows two different kinds of behavior in the
neighborhood of the critical point ð�2; �

0
2Þ ¼ ð0; 0Þ. When

�2
1 � 4

9 ð�2 � 21
2 �

2
1Þ< 0, the system undergoes damped

oscillations with the amplitude decreasing as e�3=2�1
.
Otherwise the system is over-damped, showing simple
exponential damping toward the critical point.

For the second critical point ð�2; �
0
2Þ ¼ ð�ð2Þ

2 ; 0Þ, it can
be shown that

dV2

d�2

���������ð2Þ
2

¼ � 5

16

63b

a3
Z2

df

dZ
ðZ2Þ � 0; (57)

where fðZÞ is the function introduced in Eq. (37) and Z2 is
the solution of fðZÞ ¼ 0 corresponding to the second
critical point. This inequality follows from the fact that
df=dZ is a monotonically increasing function of Zwith the
unique df=dZ ¼ 0 at Z ¼ Z0 and Z2 	 Z0, which is
proved in Appendix B. If df=dZðZ2Þ< 0, there are two
real eigenvalues with opposite signs. Hence the critical
point is an unstable saddle-point. In the special case
when df=dZðZ2Þ ¼ 0, the first and second critical points
become degenerate, and �2 ¼ 0 becomes the only equi-
librium solution of the system. Note that we have �2 ¼
21=2�2

1 in this case.
To confirm the above stability analysis, we have per-

formed numerical integration of Eq. (36). Our numerical
results indicate that the linear analysis around the first
critical point is accurate. In Fig. 3, we show the phase
space orbits of the solutions of Eq. (36) with �1 > 0. In this
case, the first critical point is stable and the other critical
point along the �0

2 ¼ 0 axis is an unstable saddle point.
The location of the saddle point depends on the values of
the parameters a and b as well, and it roughly defines an
effective stability radius for orbits near the solution (0, 0).
The time evolution of �2 for an asymptotically stable
solution is shown in Fig. 4, where e�2 oscillates with a
decreasing amplitude until �2 reaches zero.
We have also integrated Eq. (35) for �1. The time

evolution of the three-dimensional cosmic scale factor R /
e�1 is shown in Fig. 5. Initially when the oscillatory energy
of �2 is non-negligible, the scale factor behaves as the one

in a matter-dominated universe, Rð
Þ / 
2=3. For suffi-
ciently large 
, after the amplitude of �2 has decayed

-0.1

 0

 0.1

 0.2

 0.3

-0.4 -0.2  0  0.2  0.4

φ 2
’

φ2

FIG. 3 (color). The phase space diagram ð�2; �
0
2Þ for �2

1 ¼
5=12 and �2 ¼ 25=4. These are equivalent to take a ¼ 1 and
b ¼ 1=9. The figure shows the two critical points of the system.
The point (0, 0) is stable while the second critical point is a
saddle point with unstable orbits to its right.
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exponentially, the universe eventually enters a stage of
accelerated expansion, Rð
Þ / eH
, with the (dimension-
less) Hubble parameter H ¼ �1.

B. The case �1 ¼ 0

In the case �1 ¼ 0 the real part of�1;� is zero, rendering

the linear analysis insufficient to determine the stability of
the solution. Therefore we have to take into account the
second order terms.

To second order in X and Y, Eq. (36) gives the equations,

X0 ¼ Y; (58)

Y0 ¼ ��2X þGðX; YÞ: (59)

where GðX; YÞ is a quadratic function given by

GðX; YÞ ¼
�
9�2 � 15

2

�
X2 þ 3Y2 � 3Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2X2 þ 4Y2

p
:

(60)

Let us solve Eqs. (58) and (59) perturbatively. We as-
sume �2 > 0. To first order in X and Y, the system
describes a harmonic oscillator. Namely, we have

Xð
Þ ¼ r cosð�
þ c Þ; (61)

Yð
Þ ¼ ��r sinð�
þ c Þ (62)

as a solution of the first order equations, where r and c are
arbitrary constants. Then the orbits in phase space are
ellipses about the critical point (0, 0).
Now we consider the effect of the second order terms.

Here we just apply the so-called Krylov-Bogoliubov
method of averaging [23] to study the behavior of the
solutions.3

First, we introduce varying constants in the harmonic
oscillator solution as

Xð
Þ ¼ rð
Þ cosð�
þ c ð
ÞÞ; (63)

Yð
Þ ¼ ��rð
Þ sinð�
þ c ð
ÞÞ: (64)

Then the system of differential equations may be expressed
as

r0 ¼ frð
; r; c Þ; (65)

c 0 ¼ fc ð
; r; c Þ; (66)

where

frð
; r; c Þ ¼ � 1

�
sinð�
þ c Þ


Gðr cosð�
þ c Þ;��r sinð�
þ c ÞÞ;
(67)

fc ð
; r; c Þ ¼ � 1

�r
cosð�
þ c Þ


Gðr cosð�
þ c Þ;��r sinð�
þ c ÞÞ:
(68)

Note that the right-hand sides of Eqs. (65) and (66) are
periodic in 
 with the period 2���1. Then instead of these
equations, applying the Krylov-Bogoliubov method of
averaging we consider the following time-averaged equa-
tions:

�r 0 ¼ �

2�

Z 2�=�

0
frðs; �r; �c Þds ¼ �3��r2; (69)
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FIG. 5 (color online). This figure shows the time evolution of
the scale factor Rð
Þ for �2 ¼ 25=4 and �1 ¼ 0:001.
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FIG. 4 (color). This figure shows the damped oscillations of
the radius of the extra dimensions with time 
 ¼ tL�1

0 .

3The detailed calculation is shown in Appendix C.
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�c 0 ¼ �

2�

Z 2�=�

0
fc ðs; �r; �c Þds ¼ 0 (70)

for �r and �c . The solution is given by

�r ¼ 1

3�
þ const
; (71)

�c ¼ const: (72)

These give approximate behavior of r and � at sufficiently
large 
. From Eq. (63), approximations to �2 and �0

2 for
large 
 are given by

�2ð
Þ � 1

3�

cos�
; (73)

�0
2ð
Þ � � 1

3

sin�
: (74)

Then, for large 
, Eq. (35) gives

�0
1 �� sin�




þ 2

3

: (75)

We can now read off an approximate solution for the field
�1,

�1 � 2

3
log
� Sið�
Þ: (76)

Thus the scale factor behaves as

Rð
Þ ¼ L0e
�1ð
Þ � L0


2=3e�Sið�
Þ: (77)

Apart from the small oscillations, this describes a matter-
dominated universe.

In Figs. 6 and 7, we show numerical solutions of the full
nonlinear system for �1 ¼ 0. The numerical results are in

good agreement with our analytical estimations. The time
evolution of e�1 in Fig. 7 clearly exhibits oscillations

around its central value 
2=3 as we have shown analytically.

VI. CONCLUSION AND DISCUSSION

In this article, we studied time-dependent solutions of
the ten-dimensional Einstein-Yang-Mills theory with the
Tchrakian term. We obtained a class of simple analytic
solutions in which the extra dimensions are static and the
scale factor of the four-dimensional Friedmann-Lemaitre-
Robertson-Walker metric behaves exponentially in time
with the rate of expansion given by constants denoted by
�i (i ¼ 1, 2). Thus our model admits solutions describing
inflation.
We then considered a possible dynamical compactifica-

tion of the extra dimensions by allowing them to be time
dependent. In the case �1 > 0, we found solutions in which
the scale factor of the extra dimensions undergoes damped
oscillations and approaches a constant value, while the
four-dimensional scale factor approaches e�1
. In the
case of �1 ¼ 0, we found numerically that the scale factor

behaves as a matter-dominated universe R / 
2=3.
Our model includes four dimensionful constants

ðG;V0; q; �Þ. They define four typical length scales in our
model. Or if we fix the Planck scale or the gravitational
constant, G, we are left with three dimensionless parame-
ters. In addition, if we require the Bogomol’nyi equation to
be satisfied, the linear size of the extra dimensions is fixed

to be Lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3�=q

p
, and there remains only two dimension-

less parameters.
As is shown in Sec. II, when the radius of the compact

direction is equal to Lc, there are no tachyonic modes in the
gauge sector. However, for a set of model parameters that
gives a radius substantially different from Lc, a tachyonic
mode may appear. To investigate when a tachyon appears
and how it affects our model is certainly an important
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FIG. 6 (color online). The time evolution of ðe�2 � 1Þ=L0 with
time 
 ¼ t=L0. We have chosen� ¼ 25=4, corresponding to the
choice of a ¼ 1. The oscillations in the proximity of the equi-
librium solution �2 ¼ 0 are rapidly damped out as 1=
.
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FIG. 7 (color). The time evolution of e�1=L0 for � ¼ 0. In this
plot � ¼ 25=4, which corresponds to a ¼ 1. The time-averaged
scale factor aðtÞ / he�1 i describes a matter-dominated universe.
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issue. Also for a complete analysis, in addition to fluctua-
tions of the gauge field, it is necessary to include fluctua-
tions of the metric and cross terms between them. These
are left for future work.

We also note that all the discussions given in this paper
apply equally to the gauge group SU(4) in place of SO(6),
because the matrices �ab are block diagonalizable.
Namely, if we project those matrices on the four-
dimensional eigenspace with respect to the eigenvalue
þ1 of �7, we obtain self-duality relation of SU(4) without
�7. Thus all cosmological solutions obtained in this paper
are also valid for models with SU(4) gauge theory.
Furthermore, since SU(4) is a subgroup of SUðNÞ, our
cosmological solutions can be embedded into the
Einstein-Yang-Mills theory with the Tchrakian term with
the SUðNÞ gauge group. Generalization to other gauge
groups like E8 or SOðNÞ with N � 8 remains as a future
issue [24].

Recently some of us (H.K. and M.N.) considered the
Bogomol’nyi equation on CPn [17]. By using the gauge
configuration on CP3, we expect that we will be able to
obtain similar cosmological solutions for CP3 compactifi-
cation instead of S6 studied in this paper. Also, it is
interesting to see if similar cosmological solutions can be
obtained for other types of compactification such as the
compactification in terms of the Casimir energy [25].
These are also issues to be investigated in the future.
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APPENDIX A: NOTATION

1. Definitions and properties of tensors

Here we explain our notation. The Einstein tensor and
the energy momentum tensor are defined as

GMN :¼ RMN � 1

2
gMNR;

T MN :¼ � 2ffiffiffiffiffiffiffi�g
p �SYMT

�gMN :
(A1)

In terms of these tensors the Einstein equation is

G MN ¼ 8�GT MN: (A2)

The Einstein tensor is obtained by the differentiation of the
Einstein-Hilbert action SEH with respect to the metric gMN.
The corresponding Levi-Civita connection �M

NP is defined
as

�M
NP

:¼ 1
2g

MQð@NgQP þ @PgQN � @QgNPÞ: (A3)

The Riemannian curvature RM
NPQ is defined as

RM
NPQ

:¼ @P�
M
NQ � @Q�

M
NP þ �M

PA�
A
NQ � �M

QA�
A
NP:

(A4)

The Ricci tensor RMN and scalar curvature R are

RMN :¼ RQ
MQN; R :¼ gMNRMN: (A5)

2. Differential forms

The tangent vector space of a point is spanned by @M.
The basis dxM of the cotangent space is the dual vector,
dxMð@NÞ ¼ �M

N . For vector space V the Grassmann algebra
��ðVÞ is defined as TðVÞ=I where TðVÞ is the tensor
algebra TðVÞ :¼ �1

p¼0V

p and I is the two-sided ideal

generated by v 
 v, v 2 V. We can define a linear opera-
tion which is called the Hodge dual. Let us fix p and q :¼
D� p. The Hodge dual operator � is defined as

� dXM1���Mp :¼ 1

q!
ffiffiffiffiffiffiffi�g

p �M1���Mp
N1���Nq

dXN1���Nq : (A6)

By using the Hodge dual operation the metric on the
differential suppose that ! is a p form,

! :¼ 1

p!
!M1���Mp

dXM1���Mp: (A7)

The inner product is given by ð!;!Þ :¼ ! ^ �!. Let us
show the metric in terms of the component,

! ^ �! ¼ 1

ðp!Þ2 !M1���Mp
!K1���Kp

dXM1���Mp ^ 1

q!
ffiffiffiffiffiffiffi�g

p �K1���Kp
N1���Nq

dXN1���Nq

¼ 1

ðp!Þ2q! ffiffiffiffiffiffiffi�g
p !M1���Mp

!K1���Kp
�K1���Kp

N1���Nq
dXM1���MpN1���Nq

¼ � 1

gðp!Þ2q!!M1���Mp
!K1���Kp

�K1���Kp
N1���Nq

�M1���MpN1���Nqdv ¼ � 1

p!
!M1���Mp

!K1���Kp
�K1���Kp;M1���Mp; (A8)
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where the metric �K1���Kp;M1���Mp is defined as follows:

�K1���Kp;M1���Mp :¼ 1

p!

X
	2Sp

signð	ÞYp
i¼1

gKiM	ðiÞ : (A9)

Here Sp is the pth symmetric group consisting of all
permutations of p characters. Finally we obtain

! ^ �! ¼ � 1

p!
!M1���Mp

!M1���Mp: (A10)

The minus sign is from the fact that the signature of the
metric gMN is Lorentzian.

3. Clifford algebra

We will use the Clifford algebra with respect to the six-
dimensional Euclidean metric in order to represent the
algebra SO(6). Indices a; b ¼ 1; 2; � � � ; 6 refer to the inner
space. The Clifford algebra is generated by �a which
satisfy

f�a; �bg ¼ 2�ab; �ab :¼ 1
2½�a; �b�: (A11)

These generators are represented as 8
 8 matrices. �ab

satisfy the commutation relation of the Lie algebra SO(6).
Anticommutation relation of �ab is

f�ab; �cdg ¼ 2�abcd � 4�ab
½cd�: (A12)

Here �abcd is an antisymmetric product of four generators
defined as

�a1a2���ap :¼ 1

p!

X
	2Sp

sgn	�a	ð1Þ���a	ðpÞ : (A13)

The chirality operator �7 is defined as

�7 ¼ �i�1�2�3�4�5�6; �2
7 ¼ 1; �y

7 ¼ �7:

(A14)

By using this matrix, �abcd is written as a sum of products
of �7 and �ab,

�abcd ¼ � i

2!
�abcdef�7�ef: (A15)

4. Notation for gauge fields

The degree of freedom of a gauge boson is represented
by the Lie algebra-valued oneform A,

A :¼ 1
2A

ab
M �abdX

M; F ¼ dAþ qA ^ A; (A16)

where F is the corresponding gauge field strength twoform
and q is the gauge coupling constant. Let us rewrite the
action in terms of the components,

1

16
Trð�F^�FÞ ¼ 1

32
TrðFMNF

MNÞdv

¼ 1

4 �32F
ab
MNF

cd;MN Tr�ab�cddv

¼ 1

4 �32F
ab
MNF

cd;MNdv8ð�bc�ad��bd�acÞ

¼� 1

4 �2F
ab
MNF

ab;MNdv: (A17)

For notational simplicity, we introduce the composite four
form operator H,

H :¼ F ^ F ¼ 1

4!
HMNPQdX

MNPQ: (A18)

The energy momentum tensor is

T MN ¼ 1

2
Fab
MPF

abP
N þ �2

8 � 3! TrHMPQSHN
PQS � 1

2
gMN�

¼ 1

8
Tr

�
�FMPFN

P þ �2

3!
HMPQSHN

PQS

�
� 1

2
gMN�;

(A19)

where

� :¼ Tr

�
� 1

16
FMNF

MN þ �2

4!
HMNPQH

MNPQ þ V0

�
:

(A20)

APPENDIX B: �2 ¼ constant SOLUTIONS

In this Appendix, we derive an inequality which gives
the condition for Eq. (37) to have two real solutions.
Because d2fðZÞ=dZ2 ¼ 12Z2 þ 10�1 > 0 for arbitrary

Z, the polynomial fðZÞ has a unique minimum. This means
that the number of real solutions of fðZÞ ¼ 0, Eq. (37), is at
most 2. Let the value of Z at the minimum be Z0. Then
fðZ0Þ must be nonpositive for a real solution to exist

fðZ0Þ ¼ Z4
0 þ 5�1Z

2
0 � 32�1Z0 þ 8

5
�1�2 	 0: (B1)

Also Z0 must be the unique real solution of the equation,

dfðZÞ
dZ

¼ 4Z3 þ 10�1Z� 32�1 ¼ 0: (B2)

Because�32�1 is negative, Z0 must be positive. In fact, by
using Cardano’s formula, we obtain

Z0 ¼
�
4�1 þ 4�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 53

33 � 27 �1

s �
1=3

�
�
�4�1 þ 4�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 53

33 � 27 �1

s �
1=3

; (B3)

which is manifestly positive definite.
Now using dfðZ0Þ=dZ ¼ 0, the condition (B1) reduces

to
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5

2
Z2
0 � 24Z0 	 � 8�2

5
: (B4)

Thus when the couplings ðG;V0; q; �Þ satisfy the condition
(B4), there are one or two real solutions Z1 and Z2, (Z1 �
Z2). Because Z0 is positive, and we have the relation Z1 �
Z0 � Z2, Z1 is always positive if it exists. When the equal-
ity in Eq. (B4) is satisfied, we have Z1 ¼ Z2ð¼ Z0Þ.

We assume that the parameters satisfy Eq. (B4). Then
for �2 � 0 or equivalently c � 0, we have fð0Þ � 0, hence
both solutions are non-negative, Z1 � Z2 � 0. The solu-
tions are given by the Ferrari’s formula,

Z ¼ �1

ffiffiffi
u

p
2

þ �2
ffiffiffiffi
D

p
;

D :¼ � 1

4
ð10�1 þ uÞ þ 16�1

�1ffiffiffi
u

p :

(B5)

Here �1 and �2 are �1, and u is

u ¼ � 10�1

3
þ
�
� J

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

4
�H3

27

s �
1=3

þ
�
� J

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

4
�H3

27

s �
1=3

; (B6)

where

H ¼ 25�2
1

3
þ 32�2�1

5
;

J ¼ 64�2
1�2

3
� 210�2

1 �
250�3

1

33
:

(B7)

If �1 and �2 satisfy Eq. (B4), J2=4�H3=27> 0. This
means that u is positive. The equation must have only
one or two real solutions. This implies �1 ¼ 1 because
D< 0 if �1 ¼ �1. Thus the two real solutions are

Z1 ¼
ffiffiffi
u

p
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

4
ð10�1 þ uÞ þ 16

�1ffiffiffi
u

p
s

;

Z2 ¼
ffiffiffi
u

p
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

4
ð10�1 þ uÞ þ 16

�1ffiffiffi
u

p
s

;

(B8)

where Z1 � Z2.
The above expressions for the solutions Z1 and Z2 are

quite complicated as they are. However, using the scaling
freedom of L0, it is possible to simplify the expressions.
For this purpose, let us first recapitulate Eq. (39) where the
length L1 representing the linear extension of the extra
dimensions was introduced,

L2
1 ¼

8�G

q2

1

Z1

: (B9)

Then we set L0 ¼ L1, which implies Z1 ¼ a.
Also for Z2, we may also simplify the expression in

terms of a, b, c with the normalization L0 ¼ L1. In this
case, since Z ¼ Z1 ¼ a is a solution of fðZÞ ¼ 0, we have

Eq. (41),

fðaÞ ¼ 0 , c ¼ 20� 5a

8
ð5þ 63bÞ; (B10)

and fðZÞ can be divided by ðZ� aÞ. The quotient is
63ab

8
ððZ=aÞ3 þ ðZ=aÞ2Þ þ

�
4� c

5

�
ðZ=aÞ � c

5
¼ 0:

(B11)

In order to use the Cardano’s formula, let us change the
equation into the normal form,

ðZ=aþ 1=3Þ3 þ AðZ=aþ 1=3Þ þ B ¼ 0; (B12)

where

A ¼ 5þ 42b

63b
> 0; B ¼ � 2ð48� 5að1þ 14bÞÞ

3 � 63ab :

(B13)

This equation has only one real positive solution Z2.
Therefore the solution is

Z2=a ¼ � 1

3
�
�
1

2

�
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4A3

27

s ��
1=3

þ
�
1

2

�
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4A3

27

s ��
1=3

: (B14)

Finally let us derive the bounds on the parameters a and
b. We assume c � 0. From Eq. (B10), this gives a bound on
a and b,

32� að5þ 63bÞ> 0: (B15)

In addition, since Eq. (B11) has only one real positive
solution Z2 which is equal to or smaller than Z1, the left-
hand side of it is non-negative at Z ¼ a,

63ab

4
þ
�
4� c

5

�
� c

5
¼ 1

4
ðað5þ 126bÞ � 16Þ � 0:

(B16)

Therefore the conditions that Z2 	 Z1 and c � 0 yield the
bounds on the parameters a and b as

32

5þ 63b
� a � 16

5þ 126b
: (B17)

APPENDIX C: ASYMPTOTIC BEHAVIOR IN THE
CASE OF �1 ¼ 0

Here we derive the asymptotic behavior of the solution
of the system given by Eqs. (58) and (59). Eqs. (65) and
(66) can be written as

c 0

r
�cosð�
þ c Þ þ

�
r0

r2
þ 6�

�
�sinð�
þ c Þ

¼ �3�2 �
�
6�2 � 15

2

�
cos2ð�
þ c Þ; (C1)
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c 0

r
¼ r0

r2
tan�1ð�
þ c Þ: (C2)

By eliminating the term c 0=r from these equations, we
obtain

r0

r2
¼ �3�þF ; (C3)

where

F ¼ �
�
9

2
�� 15

8�

�
sinð�
þ c Þ þ 3� cosð2�
þ 2c Þ

�
�
3

2
�� 15

8�

�
cosð3�
þ 3c Þ: (C4)

We can integrate this to obtain an expression for r,

1

r
¼ 3�
�

Z 

d
F : (C5)

As for the angle c , from Eqs. (C2) and (C3), it satisfies

c 0 ¼ �r�cosð�
þ c Þ
�
3þ 6 sinð�
þ c Þ

þ
�
6� 15

2�2

�
cos2ð�
þ c Þ

�
: (C6)

As clear from this equation, c tends to a constant for r !
0. Then F will be a function oscillating around zero. This
implies that the integral of F in Eq. (C3) cannot be large.
Thus in the region where 
 is large enough, r damps out in
time as 1=
,

r ¼ 1

3�
� R
d
F

� 1

3�

: (C7)

This is consistent with our anticipation that c tends to a
constant. Therefore ignoring an irrelevant integration con-
stant, the asymptotic behaviors of �1 and �2 at large 
 are
given by

�2 � 1

3�

sin�
; �1 � 2

3
log
� Sið�
Þ: (C8)
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