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We show that the squared speed of sound v2
s is bounded from above at high temperatures by the

conformal value of 1=3 in a class of strongly coupled four-dimensional field theories, given some mild

technical assumptions. This class consists of field theories that have gravity duals sourced by a single-

scalar field. There are no known examples to date of field theories with gravity duals for which v2
s exceeds

1=3 in energetically favored configurations. We conjecture that v2
s ¼ 1=3 represents an upper bound for a

broad class of four-dimensional theories.
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I. INTRODUCTION

The gauge/gravity duality, which relates gauge theories
to string theories in higher-dimensional spaces [1], has
been used in recent years to shed light on the properties
of plasmas described by strongly coupled, large Nc gauge
theories. When a field theory that has a string dual is in the
large Nc and strong coupling limits, the string dual gen-
erally reduces to a classical supergravity theory. This al-
lows one to get information on strongly coupled quantum
gauge theories by doing classical calculations in higher-
dimensional ‘‘holographic’’ gravitational theories. For in-
stance, transport coefficients, which are normally theoreti-
cally inaccessible in strongly coupled systems, can be
calculated in theories with gravity duals.

Unfortunately, there are no known gravity duals to the
gauge theories that are currently used to describe nature. In
particular, there is no known gravity dual to QCD, which
for Nc ¼ 3 describes the strongly coupled quark-gluon
plasma under exploration at RHIC. The gauge/gravity
duality therefore makes no quantitative predictions for
phenomenologically interesting theories. However, one
might hope to learn some qualitative lessons by searching
for quantities that do not depend sensitively on the details
of any particular gravity dual. With luck, insights gleaned
from such ‘‘universal’’ properties may extend to theories
with no known duals. A striking example of a universal
quantity is the ratio �=s of shear viscosity to entropy
density. This takes the value 1=4� in all theories with
gravity duals (i.e., certain field theories that are in the large
Nc and strong ’t Hooft coupling limits) [2]. The phenome-
nological implications of the universality of�=s in theories
with gravity duals remain unclear [3]. Moreover, the devi-
ations from �=s as one moves away from the supergravity

limit do not appear to be universal, as they can either
increase or decrease �=s [4]. Nevertheless, the search for
universal behaviors in holographic theories remains im-
portant both for theoretical reasons and for its possible
phenomenological relevance.
In this paper, we show that in the simplest class of

nonconformal four-dimensional (4D) theories with gravity
duals, the squared speed of sound v2

s is always bounded
from above by 1=3 at sufficiently high temperatures. (We
work in natural units with c ¼ @ ¼ kB ¼ 1 throughout,
and we focus on 4D field theories for definiteness.) Of
course, vs is not universal in the same sense as �=s; in
general it depends on the temperature T, the chemical
potential �, and other details of a system. However, as
we will show, this dependence takes a certain universal
form at high T in the class of theories that we consider.
Furthermore, since v2

s > 1=3 has to date never been ob-
served in energetically stable configurations of theories
with gravity duals, it is tempting to speculate that v2

s ¼
1=3 is an upper bound in a broad class of strongly coupled
gauge theories.

II. SINGLE-SCALAR SYSTEMS

The squared speed of sound can be written as v2
s ¼

@p=@�, where p is the pressure of a system and � is its
energy density. For systems at zero chemical potential, v2

s

can also be written in terms of the entropy density s as

v2
s ¼ d logT

d logs
: (1)

In a 4D conformal field theory (at finite T), the entropy
density s behaves as s� T3, and v2

s ¼ 1=3. However, in
nonconformal field theories, v2

s has a nontrivial depen-
dence on the temperature and other properties of the theo-
ries. The simplest class of gravity duals that describe
nonconformal strongly coupled 4D field theories at large
Nc and zero chemical potential is the so-called ‘‘single-
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scalar model’’ [5–7] with the action

S ¼ 1

2�2
5

Z
d5x

ffiffiffiffiffiffiffi�g
p �

R� 1

2
ð@�Þ2 � Vð�Þ

�
: (2)

Above, �2
5=ð8�Þ is the five-dimensional (5D) gravitational

constant, � is a real scalar field, and Vð�Þ is a smooth
potential that is symmetric about an extremum at � ¼ 0.
Different potentials correspond to different dual gauge
theories.

We study systems at finite temperature with translational
invariance in the ðt; ~xÞ directions and SOð3Þ invariance in
the ~x directions. The most general metric ansatz consistent
with these symmetries is

ds2 ¼ a2ð�hdt2 þ d~x2Þ þ dr2

b2h
; (3)

where a, b, and h are functions of the holographic coor-
dinate r only, and � ¼ �ðrÞ. A black hole horizon occurs
at r ¼ rh, where h has a simple zero. a, b, and � are all
regular at r ¼ rh. For this system, s and T can be read off in
the usual way

s ¼ 2�

�2
5

jaðrhÞj3; T ¼ jaðrhÞbðrhÞh0ðrhÞj
4�

: (4)

We consider theories that become approximately con-
formal deep in the UV. This corresponds to assuming that
the gravity dual approaches 5D anti-de Sitter space (AdS5)
as jaj ! 1. To obtain asymptotically AdS5 geometries in
the UV as � ! 0, Vð�Þ must behave as

lim
r!1Vð�Þ ¼ � 12

L2
þ 1

2L2
�ð�� 4Þ�2 þOð�4Þ; (5)

with L the AdS curvature radius,�ð�� 4Þ=L2 the squared
mass m2 of the scalar, and � the scaling dimension of the
gauge theory operatorO� dual to the scalar field� [1]. We

restrict our attention to relevant O�, for which �< 4.

Since stable backgrounds must satisfy the Breitenlohner-
Freedman bound m2L2 >�4 [8], we focus on 2<�< 4
in our analysis.

A potential with just the constant term �12=L2 would
have anAdS5-Schwarzschild black hole as a solution to the
equations of motion with a conformal field theory (CFT) at
finite T living on the AdS5 boundary. Thus, a 4D gauge
theory that has a description in terms of a 5D single-scalar
gravity dual is just a CFT deformed by the addition of a
relevant operator. As illustrated in Refs. [5,6], the thermo-
dynamics of these single-scalar systems is quite rich: Many
equations of state vsðTÞ are possible, and the system can
undergo first- or second-order phase transitions, depending
on the form of Vð�Þ.

We now demonstrate that in all models of this class,
v2
s � 1=3 at high T. As our derivation will self-consistently

show, small �H � �ðrhÞ corresponds to asymptotically
high T [9], and at high T these models are sensitive only
to the universal part of Vð�Þ given in Eq. (5). By high T,

we mean temperatures that are large compared to all other
scales in the problem. Since these systems are approxi-
mately conformal in the UV, we expect that at very high T,
the background geometry will approximate an AdS-
Schwarzschild black hole. Thus, v2

s should approach the
conformal value of 1=3 as T ! 1. However, the sign of the
first nonzero correction in a high-temperature expansion of
v2
s is less obvious.
To determine the sign of this correction, we solve the

equations of motion resulting from Eq. (2) perturbatively
around the AdS-Schwarzschild black hole solution.
Working to second order in �H, it is possible to obtain a
closed-form expression for the backreaction of the scalar
field on the geometry, which then allows us to evaluate s
and T and find v2

s using Eq. (1). We sketch the derivation in
an appendix and simply present the result here:

v2
sð�HÞ¼ 1=3�Cð�Þ�2

HþOð�3
HÞ;

whereCð�Þ¼ 1

576
ð��4Þ2�

�
16þð��4Þ�

�
Z 1

1
dss2F1ð2��=4;1þ�=4;2;1� sÞ2

�

¼ 1

18�
ð4��Þð4�2�Þ tanð��=4Þ; (6)

and 2F1 is a hypergeometric function. The simplified form
in the last line can be obtained by standard identities. Since
Cð�Þ is positive, v2

s � 1=3. This result was also obtained
by different methods in Ref. [10].
Using the methods discussed in the Appendix, it is not

hard to show that

�H ¼ ð�LTÞ��4 �ð�=4Þ2
�ð�=2� 1Þ (7)
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FIG. 1 (color online). Plot of the high-temperature approxima-
tion to v2

s in Eqs. (6) and (7) for � ¼ 3 (solid line) versus a
numerical solution (dashed line) for v2

s found using the methods
of Ref. [5]. The numerical solution is for Vð�Þ ¼ � 12

L2 �
coshð12�Þ, which corresponds to � ¼ 3. The sound bound v2

s ¼
1=3 is shown as a horizontal dotted-dashed line.

ALEKSEY CHERMAN, THOMAS D. COHEN, AND ABHINAV NELLORE PHYSICAL REVIEW D 80, 066003 (2009)

066003-2



plus corrections that go to zero as T ! 1. As promised,
small �H corresponds to high temperatures. In Fig. 1, we
demonstrate that the closed-form result for v2

s in Eqs. (6)
and (7) matches a numerical solution for v2

s at large T.

III. SPEED OF SOUND IN OTHER MODELS

The result that we have obtained above for single-scalar
holographic models fits into a pattern. All other calcula-
tions of v2

s in theories with gravity duals in the literature to
date have found v2

s � 1=3 at high temperatures, at least in
energetically stable systems. We review some representa-
tive results from the literature below.

First, we note that single-scalar models with potentials
that do not fall into the class that we considered above [11]
also obey v2

s � 1=3 at high temperatures.
The speed of sound has been calculated to be 1=5 [12] in

the finite-temperature generalization of the Sakai-
Sugimoto model [13], which is dual to a strongly coupled
field theory that contains fundamental matter [14]. It has
also been shown that v2

s � 1=3 at high T in the D3=D7
system [15].

The speed of sound at high temperatures has also been
computed in a 4D cascading gauge theory [16]. This
strongly coupled theory has the effective gauge group
SUðKÞ � SUðK þ PÞ at high T, where P � K, and v2

s

was calculated using a gravity dual to be

v2
s ¼ 1

3
� 4

9

P2

K
þO

�
P4

K2

�
: (8)

At high T, v2
s has also been calculated inN ¼ 2� gauge

theory [17]. This theory is 4D N ¼ 4 super Yang-Mills
theory at finite T, which is deformed by turning on small
masses for the bosons and fermions in two of the N ¼ 1
chiral multiplets that are part of the N ¼ 4 gauge theory.
To leading order in the deformations, it was found that

v2
s ¼ 1

3
� 2½�ð3=4Þ�4m2

f

9�4T2
þOðmb;mf=T

4Þ: (9)

IV. SOUND BOUND CONJECTURE

From the examples above, it appears that v2
s � 1=3 at

high temperatures in a much broader class of systems than
just the single-scalar models, for which we were able to
show a universal bound on the speed of sound at high
temperatures. It is not clear just how broad the class of
theories that satisfy the bound is. Motivated by the ex-
amples above, we conjecture that v2

s � 1=3 at high tem-
peratures in all 4D theories with gravity duals, at least for
energetically stable systems [18] at zero chemical
potential.

It is not implausible that the bound holds more broadly.
In all of the examples in the literature so far where vs has
been calculated in stable systems away from the high-T
limit, v2

s remains less than 1=3 [5,20]. Thus, the sound

bound v2
s � 1=3 may continue to hold away from the

high-T limit for some broad class of theories.
It is a challenge for future work to determine the class of

systems for which such a sound bound may apply. Note
that the sound bound cannot apply to all field theories in
nature. For instance, in QCD at zero temperature and
nonzero isospin chemical potential �I, the speed of sound
can be accurately calculated in chiral perturbation theory
provided oneworks in the regime� 	 �I,m� (where� is
a typical hadronic scale and m� is the pion mass) [21]. In
the nontrivial phase with �I > m�,

v2
s ¼ �2

I �m2
�

�2
I þ 3m2

�

; (10)

so v2
s ! 1 asm2

� ! 0. Similar behavior was seen earlier in
more ad hoc models [22,23].
The counterexample above shows that the sound bound

cannot generally apply to all systems with chemical poten-
tials. It is not yet known whether the bound might be
violated in holographic systems at finite chemical poten-
tial. Ref. [24] showed that v2

s � 1=3 in a D3=D7 holo-
graphic model at finite isospin chemical potential where
�I < m�, and it would be interesting to investigate v2

s

when �I > m� in systems with gravity duals.
There are some heuristic field-theoretic arguments that

suggest that v2
s � 1=3 at high temperatures for systems at

zero chemical potential. For example [25], suppose we
write the entropy in terms of the number of effective

degrees of freedom NeffðTÞ, so that s ¼ 16�2

45 NeffðTÞT3.

Then we have v�2
s ¼ 3þ TN0

effðTÞ=NeffðTÞ. In asymptoti-

cally free theories, one expects that at high temperatures
N0

effðTÞ 
 0, with N0
effðTÞ ! 0 at large T. This makes it

plausible that in such theories, which remain well defined
in the UV, the speed of sound will approach 1=3 from
below. In fact, this is what happens in QCD at zero chemi-
cal potential [26].
Of course, the heuristic argument above only applies

cleanly to theories that are weakly coupled at high tem-
peratures, so it does not apply directly to theories with
gravity duals. It was conjectured in Ref. [27] that for
strongly coupled theories, NeffðTÞ in the UV must be
greater than in the IR. However, this by itself does not
imply the sound bound unless NeffðTÞ grows monotoni-
cally, which is not always the case.

V. CONCLUSIONS

We have shown that v2
s � 1=3 at high temperatures in

theories with single-scalar gravity duals. Our techniques
can be extended to show that v2

s � 1=3 in systems with
multiple scalars and also to compute transport coefficients
other than v2

s , as will be discussed in a companion paper
[28]. It would be interesting to study other strongly coupled
systems with gravity duals to determine what class of
systems satisfies the sound bound of v2

s � 1=3, and to
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see if there are classes of systems where such a bound can
apply beyond just the high-temperature limit. To investi-
gate whether there is a class of field theories without
gravity duals for which such a bound might apply, it would
be useful to explore the 1=Nc and 1=� corrections to v2

s in
gauge/string duality.
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APPENDIX

Consider the action Eq. (2) with Vð�Þ as in Eq. (5) and
the metric ansatz Eq. (3). There are three independent
equations of motion: the scalar equation and the tt and rr
components of Einstein’s equations. Let us work in the
gauge a ¼ r so that r ! 1 at the boundary. When �
vanishes identically, the general solution to the equations
of motion is AdS5-Schwarzschild. When � is everywhere
small, it assumes the profile

�ðrÞ ¼ �02F1ð1� �=4;�=4; 1; 1� r4=r4hÞ; (A1)

where �0 is an integration constant that measures the
smallness of the scalar. Equation (A1) is one solution to
the linearized scalar equation of motion in
AdS5-Schwarzschild. We have discarded a second solution
that is not regular at r ¼ rh, the location of the black hole
horizon.

Now imagine fixing the entropy density s of
AdS5-Schwarzschild at some large s0 in the high-
temperature regime. We need to find the temperature that
corresponds to s0 when � is turned on. To this end, we
pursue perturbation expansions of the metric and the scalar
in powers of �0. Working up to Oð�n

0Þ is sufficient for

computing corrections to v2
s up to Oð�n

0Þ. The metric

backreacts on the scalar at odd orders in �0, and the scalar
backreacts on the metric at even orders in �0. Meanwhile,
the dual CFT Lagrangian has been deformed by the addi-
tion of the relevant term�4��O�. Here,� is a new energy

scale that also appears in the leading behavior of the scalar
at the boundary

� � ð�LÞ4��r��4: (A2)

We must keep � fixed when computing equations of state,
so we set �L ¼ 1. Comparing the asymptotic form of Eq.
(A1) as r ! 1 with Eq. (A2) then gives rise to a relation-
ship connecting rh and �0:

r��4
h �ð�=4Þ2 ¼ �0�ð�=2� 1Þ: (A3)

Fixing � thus imposes a consistency condition on the
expansion. Small �0 necessarily corresponds to large rh,
which means that the exact single-scalar background only
approaches AdS5-Schwarzschild in the ‘‘conformal’’ high-
temperature limit. The four boundary conditions we im-
pose at each order in �0: (1) maintain �L ¼ 1 and hence
also Eq. (A3); (2) retain the horizon location r ¼ rh so that
s remains at s0; (3) ensure that the solution is regular at
r ¼ rh; and (4) preserve the boundary asymptotics h ! 1
and b ! r=L. We do not present our results for b and h
here because they are cumbersome, but we note that�H ¼
�0 up to Oð�2

0Þ. v2
s is computed straightforwardly to

Oð�2
HÞ by plugging the Oð�2

0Þ results for b and h into

Eqs. (4), eliminating rh using Eq. (A3), and subsequently
applying the formula Eq. (1).
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