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We show that in a general class of strongly interacting theories at high temperatures the speed of sound

approaches the conformal value c2s ¼ 1=3 universally from below. This class includes theories holo-

graphically dual to a theory of gravity coupled to a single scalar field, representing the operator of the

scale anomaly.
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I. INTRODUCTION

The discovery of the holographic correspondence be-
tween string and gauge theories [1–3] has led to a number
of applications to modelling properties of quark-gluon
plasma of QCD in the regime relevant to heavy-ion colli-
sion experiments (see, e.g., Ref. [4] for a guide and
references).

Although the precise form of the theory holographically
dual to QCD is not known, many features of QCD can be
implemented on the string theory side of the correspon-
dence. Alternatively, one can pursue a bottom-up ap-
proach, by constructing an effective theory, or a model,
with a minimal set of operators needed to describe the
relevant physics. In this paper, we consider a general class
of such models, describing the physics of scaling violation
in QCD. In Refs. [5–7] such theories have been considered
with the aim to model, or mimic, the equation of state of
QCD known numerically from the lattice calculations. This
has been achieved by tuning the potential Vð�Þ of the
scalar field in the model.

The main goal of this paper is to establish properties of
the equation of state pð�Þ, which are universal with respect
to the choice of the potential Vð�Þ. An obvious universal
property is that the conformal symmetry is gradually re-
stored, and thus pð�Þ ! �=3, as the temperature T ! 1.
This is natural since the temperature becomes the only
relevant scale. It is a welcomed feature of the models since
the same phenomenon occurs in QCD.

Here, we shall show that the deviation of the speed of
sound c2s ¼ dp=d� from the conformal limit c2s ¼ 1=3 is
universally negative in such holographic models, at least to
the leading order in inverse temperature.

At the outset, we must point out that c2s ¼ 1=3 is by no
means a universal upper bound on the sound velocity. A
counterexample is given by the speed of sound in QCD at
large isospin chemical potential [8], where cs can approach
the speed of light in a certain limit. Nevertheless, a number
of string theory examples [9–11] of holographically dual
theories do indeed consistently show c2s � 1=3.

In QCD, Monte Carlo lattice calculations [12] show that
this inequality is fulfilled. In the regime T � �QCD, this

inequality follows from asymptotic freedom �ð�Þ< 0. For
a pure Nc-color Yang-Mills theory at high T, for example,
[13]

c2s ’ 1=3þ 5Nc=ð36�Þ�ð�Þ< 1=3: (1)

How general is the inequality c2s < 1=3 and what are the
prerequisites for it to hold? For example, does it hold in
regimes where the theory is close to being conformal, but is
still strongly interacting, as is apparently the case for QCD
in the range of T � ð2–3ÞTc?
To investigate this question, we consider a class of

theories, or models, which possess a holographically dual
description. The minimal set of operators that we need to
consider consists of the stress-energy tensor T�� and a
scalar operator O necessary to provide a nonzero right-
hand side of the scale (trace) anomaly equation. As an
example, in QCD, the role of such an operator is played by
TrF2: � ¼ �ð�Þ=ð8��2ÞTrF2.
At this point it is helpful to express the energy density �

and pressure p in terms of the heat function (enthalpy)w ¼
�þ p and the trace of the stress-energy tensor � ¼ ��
3p:

� ¼ ð3wþ �Þ=4; p ¼ ðw� �Þ=4: (2)

Then

c2s ¼ dp

d�
¼ 1� d�=dw

3þ d�=dw
: (3)

In conformal theories � � 0 and c2s ¼ 1=3. The inequality
c2s < 1=3 is equivalent to d�=dw> 0. This inequality is
somewhat reminiscent, but not equivalent, to the inequality
dðpT�4Þ=dT ¼ �=T5 > 0 conjectured in Ref. [14] and the
weaker constraint

R
dT�=T5 > 0 proposed in

Refs. [15,16].
Since the enthalpy w appears to play here the role of a

more natural thermal parameter than T, it is helpful to keep
in mind that w is a monotonous function of T: dw=dT ¼
cv þ s > 0.
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II. THE THEORY

The class of the five-dimensional (5D) holographic
theories that we consider contains a scalar field �, holo-
graphically dual to the (scaling violating) operator O,
coupled to the metric g�� (dual to T��). The fields are

governed by the action

S5 ¼ 1

2	2

�Z
M
d5x

ffiffiffiffiffiffiffi�g
p �

R� Vð�Þ � 1

2
ð@�Þ2

�

� 2
Z
@M

d4x
ffiffiffiffiffiffiffiffi�


p
K

�
; (4)

where R is the Ricci scalar, g is the determinant of the
metric, 
 is the determinant of the induced metric on the
UV boundary @M, K is the extrinsic curvature on @M, and
	2 is the 5D Einstein gravitational constant. The value of
	2 is inversely proportional to the number of the degrees of
freedom in the dual four-dimensional theory, e.g., N2

c in a
gauge theory with large number of colors Nc. The small-
ness of 	2 (i.e., the largeness of the number of colors)
controls the semiclassical approximation which we use.
The last term in the action is the Gibbons-Hawking term,
which removes the boundary terms arising upon integra-
tion by parts of the terms in R linear in second derivatives
of the metric [17]. This boundary term does not affect
classical equations of motion, but is essential for evaluating
variations of the action with respect to the boundary values
of the fields.

We assume that the potential Vð�Þ has an extremum at
� ¼ 0. The value of Vð0Þ ¼ 2� ¼ �12, where � is the
cosmological constant necessary to achieve proper asymp-
totics of the metric near the boundary.

It should be noted that we are going to treat the holo-
graphic theory with a method technically different from the
one used in either Refs. [5,6] or Ref. [7]. Our approach is
complementary to the existing ones and has its own ad-
vantages, which might go beyond the specific application
which we consider in this paper.

According to the holographic correspondence, the cor-
relation functions of the dual four-dimensional (4D) theory
are equal to the variations of the 5D action under the
changes of the boundary conditions on the 5D fields. We
shall first determine the extremum of the action, and then
consider first-order variations, which we can relate to
energy density and pressure. The most general metric (up
to general coordinate transformations) possessing three-
dimensional Euclidean isometry is given by

ds2 ¼ 1

z2
ð�fðzÞdt2 þ d~x2Þ þ e2BðzÞ

dz2

z2fðzÞ : (5)

The functions BðzÞ and fðzÞ depend on the holographic
coordinate z and will be determined by extremizing the
action. The boundary @M is located at z ¼ " with " acting
as an UV regulator. In relations involving only physical
quantities " can be taken to 0.

Substituting the metric of Eq. (5) into the equations of
motion, we find

_B ¼ �1
6
_�2; (6)

€f ¼ ð4þ _BÞ _f; (7)

� 6 _fþ fð24� _�2Þ þ 2e2BVð�Þ ¼ 0; (8)

€�fþ _�ð _f� fð4þ _BÞÞ � e2BV0ð�Þ ¼ 0; (9)

where a dot denotes a logz derivative, e.g., _� ¼ zd�=dz,
while V0 ¼ dV=d�. The holographic correspondence pro-
vides the boundary conditions at the UV boundary z ¼ ".
The boundary condition on �,

�ð"Þ ¼ c"�� ; (10)

corresponds to introducing a term cO into the action of the
4D theory dual to the theory in Eq. (4), where c is the
source of the scalar operator O, dual to the field �. The
dimensions of the source and the operator are given by

½c� ¼ ��; ½O� ¼ �þ; �þ þ �� ¼ 4: (11)

The metric must approach the Lorentz invariant form at
the UV boundary, hence,

fð"Þ ¼ 1: (12)

Equation (7) can be integrated once to give

_f ¼ �wz4eB: (13)

The integration constant w must be positive if the metric is
to possess a horizon fðzHÞ ¼ 0 at some value of zH.
There are no more independent boundary conditions.

The boundary value of B is determined by Eq. (8), which
is algebraic in B. The role of the second boundary condi-
tion for Eq. (9) is played by the requirement that� is finite
at the horizon, z ¼ zH, which is a regular singular point of
the second order differential Eq. (9).
Thus, we find a two-parameter family of solutions.

These parameters are c from Eq. (10) and w from Eq.
(13). Different members of this family are related by
rescaling z ! z=�,w ! �4w, c ! ���c, which represents
scale invariance inherent in the action given by Eq. (4).
Near the z ¼ " ! 0 boundary, � ! 0, B ! 0, _B ! 0,

and _f ! 0. Equation (9) for � can be linearized and the
asymptotic behavior of � near the boundary can be deter-
mined easily:

�ðzÞ ! ðc� d"�þ���Þz�� þ dz�þ þ . . . ; (14)

where the curvature of the potential V00ð0Þ � m2 deter-

mines the indices �� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
. The coefficient of

the first term is related to c by Eq. (10). The coefficient d of
the second linearly independent solution should be deter-
mined by the finiteness condition at the horizon.
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By calculating the derivative of the 5D action with
respect to c and matching it, by holographic correspon-
dence, to the expectation value hOi, one finds [18]

hOi ¼ �@S5=@c ¼ �dð�þ � ��Þ: (15)

III. EQUATION OF STATE

Rather than following existing approaches to calculating
the speed of sound, based on the relation c2s ¼
d logT=d logs, [5,6] or looking at the poles of the two-
point function for the sound channel [19,20], we shall
directly calculate one-point functions hTtti and hTxxi and
use the relation c2s ¼ dp=d�. As we shall see, this quickly
yields some closed-form results, not evident in the alter-
native approaches.

In order to calculate the one-point function, such as
hTtti, we observe that the generalization of the 4D theory
to a curved 4D background with metric h�� corresponds,

holographically, to imposing the following boundary con-
dition on the bulk 5D metric

g��ð"Þ ¼ h��"
�2: (16)

Holographic correspondence then gives us

hT��i ¼ 2�S5=�h��: (17)

Variation of the boundary condition causes variations of
the metric in the bulk, as it follows the equations of motion.
But since we are varying around the extremum of the
action, the only contribution to the first-order variation
comes from the boundary. This contribution consists of
the variation of the boundary terms, which appear during
integration by parts while deriving equations of motion for,
e.g., gtt, as well as the variation of the Gibbons-Hawking
term. Altogether this gives

hTtti ¼ � 6

"4
e�Bð"Þ; hTxxi ¼ w� hTtti: (18)

Both of these quantities are divergent as " ! 0. This
represents the familiar vacuum energy divergence in the
quantum field theory. A simple vacuum subtraction

� ¼ hTtti � hTttiT¼0; p ¼ hTxxi � hTxxiT¼0; (19)

takes care of this, and we find for the energy density and
the pressure, after solving Eq. (8) for B at z ¼ " ! 0 with
� from Eq. (14):

� ¼ ð3w� cd��ð�þ � ��ÞÞ=4;
p ¼ ðwþ cd��ð�þ ���ÞÞ=4:

(20)

We can now conclude that the integration constant intro-
duced in Eq. (13) is the enthalpy, w ¼ �þ p, of the
corresponding 4D field theory. We also observe that the
scale anomaly

� ¼ �� 3p ¼ �cd��ð�þ ���Þ ¼ ��chOi (21)

is related to the expectation value of the operator O [using
Eq. (15)]. This relation is easy to derive directly on the field
theory side by observing that the violation of the scale
invariance comes from the dimensionful parameter c.
Naturally, it is proportional to the dimension of c, ��.
From Eq. (20), the speed of sound can be expressed now

in terms of the derivative @d=@w at fixed c and dimensions
��:

c2s ¼ dp

d�
¼ 1þ c��ð�þ � ��Þð@d=@wÞ

3� c��ð�þ � ��Þð@d=@wÞ : (22)

It should be emphasized that this equation is an exact
expression valid for all temperatures.

IV. HIGH TEMPERATURE

The high-temperature limit is equivalent to the small c
limit, since c is the only other dimensionful parameter in
the theory, and high-temperature expansion is controlled

by the dimensionless parameter c=T�� , or cw���=4. In this
limit,

c2s ¼ 1=3þ ð4=9Þc��ð�þ ���Þð@d=@wÞ þ . . . : (23)

We shall now show that, even though generally the depen-
dence of d onw can be only found numerically, in the high-
temperature (i.e., high w) limit an analytic expression can
be found for arbitrary potential Vð�Þ.
One can begin by observing that at large w the function

f varies very rapidly according to Eq. (13). This means one
can neglect variations of the function B between the
boundary z ¼ " and the horizon z ¼ zH, since zH becomes

small (asw�1=4). Since on the boundary B ¼ 0 (up to terms
of order "2�� , negligible here, according to Eq. (8)), we
find from Eq. (13)

fðzÞ ¼ 1� wz4=4: (24)

Another consequence is that �, which is small at z ¼ ",

remains small up to zH (�� cz��
H � c=T�� � 1), and the

linearized approximation to Eq. (9) is valid not only near
the boundary, but all the way to the horizon. With B ¼ 0
and f from Eq. (24) we obtain

�
1� 1

4
wz4

�
�00 �

�
3

z
þ wz4

4

�
�0 �m2

z2
� ¼ 0: (25)

Equation (25) can be solved analytically

�ðzÞ ¼ cz��
2F1ð��=4;��=4;��=2; wz4=4Þ

þ dz�þ
2F1ð�þ=4;�þ=4;�þ=2; wz4=4Þ; (26)

where the coefficients follow the notations of Eq. (14) (up
to terms Oð"�þ���Þ, here negligible). Both linearly inde-
pendent solutions are logarithmically divergent at the ho-
rizon z ¼ zH, where wz4H=4 ¼ 1. The condition
j�ðzHÞj<1 requires us to select the linear combination
in which these divergences cancel. This fixes d in terms of
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c:

d ¼ �cwð�þ���Þ=4Dð��Þ; (27)

where the function Dð��Þ ¼ 1=Dð�þÞ is given by

Dð��Þ ¼ �2��

2� ��
cotð���=4Þ�ð��=2Þ2

�ð��=4Þ4
: (28)

Substituting Eq. (27) into Eq. (22) we find our main result

c2s ¼ 1

3
� 1

9
c2��ð�þ � ��Þ2w���=2Dð��Þ þ . . . : (29)

It is clear that the correction term is negative for all values
of 0< �� < 2 (i.e., 2< �þ < 4). As expected, the cor-
rection vanishes with the power of w dictated by the
dimension of the operator O.

V. DISCUSSION

When this work was completed, the authors learned
about a similar result [21], obtained using the relation c2s ¼
d logT=d logs. In Ref. [21] the speed of sound is expressed
in terms of the value �H of the scalar field at the horizon
(since both s and T are calculated at the horizon) c2s ¼
1=3� C�2

H þ . . . . The coefficient C is then given by an
integral from the boundary to the horizon of the square of a
hypergeometric function, which is manifestly positive. We
have verified that, upon evaluating the integral, the result of
Ref. [21] coincides with Eq. (29). For completeness of
comparison we evaluate �H explicitly by using Eq. (26)
and applying relation Eq. (27)

�H ¼ cw�=4�12��=2ð2�� 4Þ�ð�=4Þ
2

�ð�=2Þ ; (30)

where � ¼ �þ. Using Eq. (29) we then find

c2s ¼ 1

3
� 1

18�
ð4��Þð4� 2�Þ tanð��=4Þ�2

H þ . . . :

(31)

As we have pointed out already, and as Eq. (30) dem-
onstrates explicitly, in the high-temperature (large w) limit
the value of � remains small everywhere between the

boundary and the horizon. This is the origin of the univer-
sality we find. The speed of sound near the high T limit
depends only on the behavior of the scalar potential near
the origin, i.e., specifically, on V 00ð0Þ ¼ m2 ¼ �ð�� 4Þ.
One can interpret and further generalize our results in

the following way. In the high-temperature limit, Eq. (21)
becomes � ¼ ��c2O þ . . . . The susceptibility O �
@hOi=@c can be related to the effective potential for hOi,
defined as the Legendre transform of the generating func-
tional WðcÞ (in holography W ¼ �S5), i.e., �ðhOiÞ �
WðcÞ þ chOi, as O ¼ 1=�00ð0Þ. Stability implies �00ð0Þ>
0, and thus O > 0. Consequently, � > 0, as conjectured in
[14]. Holographic models confirm these expectations ac-
cording to Eqs. (15) and (27).
We also find that d�=dw> 0, which requires

dO=dw > 0. That means that the curvature �00ð0Þ ¼
�1
O decreases with temperature. This behavior is unusual,

if one recalls that in a weakly coupled ��4 scalar theory,
the leading perturbative temperature correction to the cur-
vature (� �T2) increases with temperature (e.g., the res-
toration of a broken symmetry is a well-known
manifestation of this). The opposite behavior of the curva-
ture of the effective potential �ðhOiÞ can be understood by
counting dimensions ½�1

O � ¼ �� � �þ < 0, which

means �1
O � T����þ and decreases with T.

In conclusion, we have shown that in a quite general
class of gravity dual theories with a single scalar operator
representing the scale anomaly the speed of sound always
approaches the conformal value c2s ¼ 1=3 from below.
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