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Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In

particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the

presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory,

and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue

that the changes in the mean squared density are, in principle, observable by light scattering experiments.
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I. INTRODUCTION

It is well known that quantized sound waves, whose
excitations are phonons, share several properties with rela-
tivistic quantum fields, such as the electromagnetic field.
This is especially true when the phonon dispersion relation
is approximately linear, which will be assumed throughout
this paper. There is a phononic analog of the usual Casimir
effect, but it tends to be quite small. For example, the force
on two parallel plates due to phonon zero-point energy is
smaller than that in the electromagnetic case by the ratio of
the speed of sound in the fluid to the speed of light [1]. This
ratio is typically of order 10�6. However, forces due to
classical stochastic sound fluctuations have been discussed
recently by several authors [2–7], and can be larger. Here
we will study the local changes in density fluctuations of a
fluid due either to the presence of boundaries or to changes
in the quantum state of the phonons. This is an analog of
the effect of boundaries on the quadratic expectation values
of relativistic quantum fields, such as the mean squared
electric field. In a related context, Unruh [8] has shown that
the velocity potential �, of a moving fluid with velocity
v ¼ r�, satisfies the same equation as does a relativistic
scalar field in a curved spacetime. The present paper is an
expanded version of Ref. [9]. We begin in Sec. II by
reviewing the quantization of sound waves in a fluid and
the calculation of the density correlation function. We
review recent work on the scattering of light by zero-point
fluctuations in a fluid in Sec. III A, and then discuss thermal
corrections in Sec. III B. In Sec. IV, we consider the effects
of a squeezed state of phonons on the local density fluctu-
ations. The effects of boundaries are treated in Sec. V,
where several different geometries are discussed. The op-
erational meaning of these results is discussed in Sec. VI,
where we give estimates for the effects of boundaries on

the light scattering cross section. Our results are summa-
rized and discussed in Sec. VII.

II. QUANTIZATION AND THE DENSITY
CORRELATION FUNCTION

We consider the quantization of sound waves in a fluid
with a linear dispersion relation, �q ¼ cSq, where �q is

the phonon angular frequency, q is the magnitude of the
wave vector, and cS is the speed of sound in the fluid. This
should be a good approximation for wavelengths much
longer than the interatomic separation. Let �0 be the
mean mass density of the fluid. Then the variation in
density around this mean value is represented by a quantum
operator, �̂ðx; tÞ, which may be expanded in terms of
phonon annihilation and creation operators as [10]

�̂ðx; tÞ ¼ X
q

ðbqfq þ byqf�qÞ; (1)

where

fq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
@!�0

2Vc2S

s
eiðq�x��qtÞ: (2)

Here V is a quantization volume. The normalization factor
in Eq. (2) can be fixed by requiring that the zero-point
energy of each mode be 1

2 @�q and using the expression for

the energy density in a sound wave,

U ¼ c2S
�0

�̂2: (3)

In the limit in which V ! 1, we may write the vacuum
density correlation function as

h�̂ðx; tÞ�̂ðx0; t0Þi0 ¼ @�0

16�3c2S

Z
d3q�qe

iðq��x��q�tÞ; (4)

where �x ¼ x� x0 and �t ¼ t� t0. The integral may be
evaluated to write the coordinate space correlation function
as
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h�̂ðx; tÞ�̂ðx0; t0Þi0 ¼ � @�0

2�2cS

�x2 þ 3c2S�t
2

ð�x2 � 3c2S�t
2Þ3 : (5)

This is of the same form as the correlation function for
the time derivative of a massless scalar field in relativistic
quantum field theory, h _’ðx; tÞ _’ðx0; t0Þi. (This analogy has
been noted previously in the literature. See, for example,
Ref. [11].) Apart from a factor of �0, these two quantities
may be obtained from one another by interchanging the
speed of light c and the speed of sound cS. If c ! cS and a
factor of �0 is added, then

h _’ðx; tÞ _’ðx0; t0Þi ! h�̂ðx; tÞ�̂ðx0; t0Þi0: (6)

Note that we are using a convention for the scalar field in
which ðr’Þ2 has dimensions of energy density, so _’2 has
dimensions of mass density.

In the limit of equal times, the density correlation func-
tion becomes

h�̂ðx; tÞ�̂ðx0; tÞi0 ¼ � @�0

2�2cSð�xÞ4
: (7)

Thus the density fluctuations increase as j�xj decreases.
Of course, the continuum description of the fluid and the
linear dispersion relation both fail as j�xj approaches the
interatomic separation. Also note the minus sign in Eq. (7).
This implies that density fluctuations at different locations
at equal times are anticorrelated. By contrast, when
cSj�tj> j�xj, then h�̂ðx; tÞ�̂ðx0; tÞi> 0 and the fluctua-
tions are positively correlated. This is in complete analogy
with the situation in the relativistic theory. Fluctuations
inside the light cone can propagate causally and tend to be
positively correlated. Fluctuations in a fluid for which
cSj�tj< j�xj cannot have propagated from one point to
the other, and are anticorrelated. This can be understood
physically because an overdensity of fluid at one point in
space requires an underdensity at a nearby point.

III. LIGHT SCATTERING BY DENSITY
FLUCTUATIONS

A. Scattering by zero-point fluctuations

In Ref. [12], the cross section for the scattering of light
by the zero-point density fluctuations is computed for the
case that the incident light angular frequency is large
compared to the typical phonon frequency. The result is

�
d�

d�

�
ZP

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos�Þ

p @!5V�4

32�2c5cS�0

ðêk;� � êk0;�0 Þ2; (8)

where � is the scattering angle,V is the scattering volume,
and � is the mean index of refraction of the fluid. In
addition, êk;� and êk0;�0 are the initial and final polarization

vectors, respectively. The !5 dependence of the scattering
cross section can be viewed as the product of the !4

dependence of Rayleigh-Brillouin scattering and one
power of ! coming from the spectrum of zero-point fluc-

tuations in the fluid. The factor of �4 represents the influ-
ence of the fluid on light propagation before and after the
scattering process, and arises as a product of a factor of �
in the incident flux and a factor of �3 in the density of final
states [12]. Because light travels through the fluid at speeds
much greater than the sound speed, light scattering reveals
a nearly static distribution of density fluctuations. Thus we
can regard Eq. (8) as a probe of the fluctuations described
by Eq. (7). The scattering by zero-point fluctuations is
inelastic, with the creation of a phonon. Thus, the scatter-
ing described by Eq. (8) is strictly Brillouin rather than
Rayleigh scattering.
This scattering by zero-point density fluctuations should

be compared to the effects of thermal density fluctuations.
The ratio of the zero point to the thermal scattering for the
Stokes line may be expressed as

R � ðd�=d�ÞZP
ðd�=d�ÞTB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos�Þ

p �
@!

2kBT

��
cS
c

�
�4

�
�0

�
@�

@�0

�
S

��2
: (9)

The index of refraction, �, and the quantity �0ð@�=@�0ÞS,
which involves a derivative of the fluid dielectric function
with respect to density at constant entropy, are both of
order unity. Hence R is primarily determined by the ratio of
the photon energy to the thermal energy, and the ratio of the
speed of sound to the speed of light.

B. Finite temperature effects

Note that the zero-point scattering cross section, Eq. (8),
is the sole cross section at zero temperature. At finite
temperature, the Stokes line cross section (describing the
process in which a phonon is emitted) is modified by the
factor

hnqi þ 1 ¼ 1

e@�q=kT � 1
þ 1; (10)

where hnqi is the mean number of phonons in mode q and

@�q is the phonon energy. In the low temperature limit,

kT � @�q, this correction factor goes to unity, giving the

zero-point result. In the high temperature limit, kT �
@�q, it becomes

hnqi þ 1� kT

@�q

þ 1

2
þOð1=TÞ: (11)

The leading term is the usual high temperature limit. The
next term is the zero-point effect, giving rise to a contri-
bution to the cross section proportional to !5. More pre-
cisely, it is 1=2 of the zero-point effect, the other 1=2
having been canceled by the thermal correction. Our
view is that zero-point fluctuations are always present at
all temperatures, but in this case the thermal correction
partially masks the zero-point effect. However, the half
which remains is potentially observable. For experiments
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in the high temperature limit, the !5 part of the cross
section is given by 1=2 of the right-hand side of Eq. (8).

Some numerical estimates for various fluids are given in
Ref. [12] for violet light with a wavelength of � ¼ 350 nm.
For the case of liquid neon, R � 0:13, so that about 13% of
the Stokes line is due to zero-point motion effects [13],
which might be detectable experimentally. Even in the case
of water at room temperature, R � 0:004. Although small
in absolute terms, this is surprisingly large for a macro-
scopic quantum effect at room temperature.

It is interesting to note that if one were to look only at the
total Brillouin cross section (Stokes plus anti-Stokes), the
zero-point effect would be masked at high temperatures.
The anti-Stokes line describes phonon absorption, so in the
limit that ! � �q, its cross section is of the same form as

that for the Stokes line, but its thermal correction factor is
hnqi. The total cross section from both lines has a factor of

2hnqi þ 1 ¼ coth

�
@�q

2kT

�
� 2kT

@�q

þOð1=TÞ;

kT � @�q: (12)

Here the thermal part completely masks the zero-point
part, leaving a residue of order 1=T. The same masking
effect also occurs for the energy of a collection of harmonic
oscillators, which is proportional to the quantity in
Eq. (12). The thermal effect on scattering is often described
by a structure factor. See, for example, Ref [14]. The
hyperbolic cotangent form of the structure factor, corre-
sponding to Eq. (12), was calculated in Ref. [15].

The key result of this subsection is that zero-point
effects can be distinguished from thermal effects, even at
relatively high temperature. If one examines only the
Stokes line, for which Eq. (11) applies, then the ratio of
the thermal part to the zero-point part is the ratio R. Even
when this ratio is small in magnitude, the linear tempera-
ture dependence of the thermal terms can allow these two
effects to be distinguished.

IV. SQUEEZED STATES OF PHONONS

Here we consider the case where the phonon field is not
in the vacuum state, but rather a squeezed state. Thus in this
section, we will be concerned with state-dependence ef-
fects as opposed to boundary effects. However, the two
effects are closely analogous.

The squeezed states are a two-complex-parameter fam-
ily of states in which the quantum uncertainty in one
variable can be reduced with a corresponding increase in
the uncertainty of the conjugate variable. See, for example,
Refs. [16,17] for a detailed treatment of the properties of
the squeezed states. We will focus our attention on the case
of the squeezed vacuum states j	i for a single mode,
labeled by a single complex squeeze parameter

	 ¼ rei
; (13)

and defined by

j	i ¼ Sð	Þj0i: (14)

Here

Sð	Þ ¼ eð1=2Þ½	�a2�	ðayÞ2	 (15)

is the squeeze operator and a and ay are phonon annihila-
tion and creation operators for the selected mode. This set
of states is of special interest because they are the states
generated by quantum particle creation processes, and they
can exhibit local negative energy densities. (See, for ex-
ample, Refs. [18,19].)
Consider the shift in the mean squared density fluctua-

tions between the given state and the vacuum,

h�̂2iR ¼ h	j�̂2j	i � h0j�̂2j0i; (16)

the ‘‘renormalized’’ mean squared density fluctuation. The
result for this quantity in a single mode squeezed vacuum
state for a plane wave in the z direction is

h�̂2iR ¼ @!�0

c2SV
sinhrfsinhr� coshr cos½2ðkz�!tÞ þ 
	g:

(17)

Here we have used the identities

Syð	ÞaSð	Þ ¼ a coshr� ayei
 sinhr (18)

and

Syð	ÞaySð	Þ ¼ ay coshr� ae�i
 sinhr: (19)

Note that the quantity in Eq. (17) can be either positive or
negative, but its time or space average is positive. The
suppression of the local density fluctuations in a squeezed
state is analogous to the creation of negative energy den-
sities for a massless, relativistic field. [Compare Eq. (17)
with Eq. (48) and Fig. 8 in Ref. [19].]
Thus the creation of a squeezed state of phonons can

suppress the local density fluctuations just as a squeezed
state of photons can produce local negative energy density.

V. BOUNDARIES

If we introduce an impenetrable boundary into the fluid,
the phonon field will satisfy Neumann boundary conditions

n̂ � r
� ¼ 0 (20)

as a consequence of the impenetrability. Thus there will be
a Casimir force on the boundaries which is analogous to
the Casimir force produced by electromagnetic vacuum
effects. For example, consider two parallel plates, which
will experience an attractive force per unit area of

F

A
¼ @cS�

2

480a4
; (21)

which is smaller than the electromagnetic case for perfect
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plates by a factor of cS=ð2cÞ, and is thus quite small in any
realistic situation.

Henceforth, we consider the local effect of boundaries
on mean squared density fluctuations, and now define
h�̂2iR to be the change due to the presence of the boundary.
This quantity is of interest both as an analog model for the
effects of boundaries in quantum field theory, and in its
own right. The shifts in density fluctuations are, at least in
principle, observable in light scattering experiments.

Our interest in the phononic analog model is inspired by
the fact that the study of boundary effects in quantum field
theory is an active area of research, and has given rise to
some recent controversies in the literature [20,21]. One
question is the nature of the physical cutoff which prevents
singularities at the boundary. An example of the subtleties
is afforded by the mean squared electric and magnetic
fields near a dielectric interface. When the material is a
perfect conductor, these quantities are proportional to z�4,
where z is the distance to the interface. Specifically, in
Lorentz-Heaviside units their asymptotic forms are

hE2i � 3@c

16�2

1

z4
(22)

and

hB2i � � 3@c

16�2

1

z4
: (23)

One might expect that a realistic frequency-dependent
dielectric function would remove this singularity, but this
is not the case. Instead one finds [22] that

hE2i �
ffiffiffi
2

p
@!p

32�

1

z3
(24)

and

hB2i � � 5@!2
p

96�c

1

z2
; (25)

where !p is the plasma frequency of the material. Thus

some physical cutoff other than dispersion is required. For
realistic materials, it is likely to be surface roughness, but
fluctuations in the position of the boundary can also serve
as a cutoff [23]. In a fluid, there is always a physical cutoff
at the interatomic separation.

In the remainder of this paper, we will analyze h�̂2iR in
different geometries. We may write the phonon vacuum
density correlation function in the presence of a boundary
as

Gðx;x0;�tÞ ¼ G0ðx;x0;�tÞ þGRðx;x0;�tÞ (26)

where

G0ðx;x0;�tÞ ¼ h�̂ðx; tÞ�̂ðx0; t0Þi0 (27)

is the vacuum correlation function in the absence of a
boundary, which is given by Eq. (5), and GRðx;x0;�tÞ is
the shift in this correlation function due to the presence of a

boundary. Here we treat only the case of static boundaries,
so all correlation functions depend on time only through
�t ¼ t� t0. The shift in mean squared density due to the
boundary is then given by the coincidence limit of GR as

h�̂2ðxÞiR ¼ GRðx;x0;�tÞjx¼x0;�t¼0: (28)

A. One or two parallel plane boundaries

In both of these case, the renormalized density two-point
function may be constructed by the method of images. First
consider the case of a single plate located at z ¼ 0. Let G0

denote the density correlation function in the absence of a
boundary. The two-point function which satisfies the
boundary condition Eq. (20) on this boundary is

G ¼ G0ð�xT; z� z0;�tÞ þG0ð�xT; zþ z0;�tÞ (29)

where xT is in the direction transverse to the plate. The
renormalized two-point function is

GR ¼ G0ð�xT; zþ z0;�tÞ: (30)

The resulting shift in the mean squared density is

h�̂2iR ¼ GRjx¼x0;�t¼0 ¼ � @�0

32�2cSz
4
< 0; (31)

where z is the distance to the boundary. For the case of two
parallel planes, the correlation function is given by an
infinite image sum:

G ¼ X1
n¼�1

½G0ð�xT; z� z0 � 2Ln;�tÞ

þG0ð�xT; zþ z0 � 2Ln;�tÞ	; (32)

where L is the plate separation. If we use the identity

X1
n¼�1

1

ðn� xÞ4 ¼
1

6

d2

dx2
X1

n¼�1

1

ðn� xÞ2

¼ �2

6

d2

dx2
X1

n¼�1
csc2ð�xÞ; (33)

we can obtain the result

h�̂2iR ¼ � @�0

96cSL
4

�
1

15
þ 3� 2sin2ð�z=LÞ

sin4ð�z=LÞ
�
; (34)

where z is the distance to one boundary. Note that h�̂2iR for
both of these cases is negative everywhere. In the absence
of a physical cutoff, both of these expressions diverge as
z�4 near the boundaries, just as the squared electric and
magnetic fields do near a perfectly reflecting plane. In
contrast to the force between two plates, Eq. (21), the shift
in mean squared density is inversely proportional to the
speed of sound, h�̂2iR / 1=cS. This is a general feature of
all shifts in h�̂2i due to boundaries.
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B. A three-dimensional torus

Here we consider a rectangular box with periodic bound-
ary conditions in all three spatial directions, with period-
icity lengths L1, L2, and L3. Thus the three-dimensional
space has the topology of S1 
 S1 
 S1. This is closely
related to the geometry of a waveguide, where the fluctua-
tions of a relativistic scalar field were discussed by
Rodrigues and Svaiter [24]. As in the parallel plane case,
an image sum method may be employed to write

G ¼ X1
‘;m;n¼�1

G0ðx� x0 þ ‘L1; y� y0 þmL2;

z� z0 þ nL3;�tÞ: (35)

This leads to the result

h�̂2iR ¼ � @�0

2�2cS

X0

‘;m;n

1

ð‘2L2
1 þm2L2

2 þ n2L2
3Þ2

: (36)

Here the prime on the summation indices denotes that the
‘ ¼ m ¼ n ¼ 0 term is omitted. In this case, h�̂2iR is a
negative constant.

C. A wedge

Consider two intersecting planes which are at an angle
of�with respect to each other. Now consider a point inside
of this wedge which is located at polar coordinates ðr; �Þ,
where r is the distance to the intersection line and � < �.
This geometry was treated for the relativistic case by
Candelas and Deutsch [25], whose Eq. (5.39) yields

h _’2i ¼ lim
x0!x;�t¼0

@2

@t2
Gðx; x0Þ

¼ c2

3r2
lim
�0!�

�
1þ @2

@�2

�
GRð�; �0Þ: (37)

(In this and the following subsection, G, G0, and GR refer
to relativistic scalar field quantities.) Here GRð�; �0Þ ¼
Gð�; �0Þ �G0ð�; �0Þ, where

G0ð�; �0Þ ¼ @

16�2c3r2
csc2

�
�� �0

2

�
(38)

is the empty space two-point function, and

Gð�; �0Þ ¼ @

16�2c3r2

�
csc2

�
�ð�� �0Þ

2�

�

þ csc2
�
�ð�þ �0Þ

2�

��
(39)

is the two-point function in the presence of the wedge.
We may combine these results to find for the phononic

case

h�̂2iR ¼ � @�0

1440�2cSr
4sin4ð��=�Þ


 fð�� �Þð�þ �Þsin2ð��=�Þ

 ½ð�2 þ 11�2Þsin2ð��=�Þ � 30�2	 þ 45�4g:

(40)

Again, this quantity is negative everywhere.

D. A cosmic string

As is well known, the space surrounding a cosmic string
is a conical space with a deficit angle �< 2�. Quantum
field theory in this conical space has been discussed by
many authors, beginning with Helliwell and Konkowski
[26], and is similar to the wedge problem discussed above.
Equations (37) and (38) hold for the cosmic string as well
as the wedge. However, Eq. (39) is replaced by

Gð�; �0Þ ¼ @

4�2c3r2
csc2

�
�ð�� �0Þ

�

�
; (41)

which is equivalent to Eqs. (15) and (16) in Ref. [26]. At a
distance r from the apex, we find

h�̂2iR ¼ � @�0

1440�2cS�
4r4

ð2�� �Þð2�þ �Þ


 ð11�2 þ 4�2Þ; (42)

which is also negative everywhere provided that �< 2�.

E. Near the focus of a parabolic mirror

The quantization of the electromagnetic field in the
presence of a parabolic mirror was discussed by us in
Refs. [27,28], where a geometric optics approximation
was employed to find the mean squared fields near the
focus. This treatment leads to the result that these quanti-
ties are singular at the focus, diverging as an inverse power
of the distance a to the focus. This result holds both for
parabolic cylinders and for parabolas of revolution, and
basically arises from the interference term of multiply
reflected rays with nearly the same optical path length.
The geometry is illustrated in Fig. 1. An incoming ray at an
angle of � reflects at an angle of �0 to reach the point P,
which is a distance a from the focus F, as illustrated. The
distance from the focus to the mirror itself is b=2 � a.
The relation between � and �0 is given by

� ¼ a

b
fð�0Þ; (43)

where

fð�0Þ ¼ � sin2�0 sinð�0 � �Þ
ð1� cos�0Þ ¼ �ð1þ cos�0Þ sinð�0 � �Þ:

(44)

Note that � is defined somewhat differently than in
Refs. [27,28], so that fð�Þ now has the opposite sign.
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There will be multiply reflected rays whenever different
values of �0 are associated with the same value of f. The
function fð�0Þ is plotted in Fig. 2 for various values of �.
We can see from these plots that, in general, there can be up
to four reflected angles �0 for a given incident angle �.
However, if the mirror size �0 is restricted to be less than
2�=3, then there will never be more than two values of �0
for a given �. Throughout this paper, we will assume �0 <
2�=3, and hence have at most two reflected rays for a given
incident ray. The two reflected rays will occur at �0 ¼ �
and �0 ¼ 
, where

fð�Þ ¼ fð
Þ: (45)

The difference in the optical paths of these two rays (

path minus � path) is denoted by �‘. The detailed ex-
pression for this distance �‘ used in Refs. [27,28] is not
quite correct, as was pointed out to us by Vuletic [29]. The
expression used in Refs. [27,28], which we will denote by
�‘1, is the difference in distance traveled by the two rays
after they cross a line of constant x, perpendicular to the
axis of the mirror. This difference is

�‘1 ¼ aj cos�ðcos�� cos
Þ þ sin�ðsin�� sin
Þj:
(46)

However, the difference in optical path lengths is the
difference in distance traveled after crossing a line perpen-
dicular to the incoming rays, as illustrated in Fig. 3, and is

�‘ ¼ �‘1 � �‘2: (47)

The correction term, �‘2, is

�‘2 ¼ a½sin
 sinð
� �Þ � sin� sinð�� �Þ	: (48)

The corrected expression for �‘ is then

�‘ ¼ a½cos�ðcos�� cos
þ sin2�� sin2
Þ
þ sin�ðsin�� sin
þ sin
 cos
� sin� cos�Þ	:

(49)

The mean squared electric field near the focus of a parabola
of revolution is, in the geometric optic approximation,

hE2ipr ¼ 3@c

2�2

Z d�

ð�‘Þ4 : (50)

The corresponding expression for a parabolic cylinder is

hE2ipc ¼ 16

15�
hE2ipr: (51)

Note that in Eq. (50), the integration is over �, the angle of
the incident ray, not �0, the reflected angle, as was incor-
rectly stated in Refs. [27,28].
A detailed discussion of the electromagnetic case will be

given elsewhere. Here we are concerned with h�̂2iR for the
parabola of revolution, which is obtained from Eq. (50) by
letting c ! cS and multiplying by �0=ð2c2SÞ, leading to the
result

h�̂2iR ¼ 3@�0

4�2cS

Z �max

�min

d�

ð�‘Þ4 : (52)
FIG. 2. The function fð�0Þ is plotted for various values of �.
This function relates the angle of the incident ray, �, to the angle
of the reflected ray, �0, through the relation � ¼ ða=bÞfð�0Þ.

FIG. 3. Two rays reflecting from a parabolic mirror to the point
P are illustrated. The first arrives at an angle of �0 ¼ �, and the
second at �0 ¼ 
. The points of intersection with the mirror are
ðx1; y1Þ and ðx2; y2Þ, respectively. The difference in path lengths
(lower path minus upper path) is �‘ ¼ �‘1 ��‘2, where �‘2
is illustrated.

FIG. 1. The geometry of rays reflecting from a parabolic
mirror is illustrated. An incoming ray at an angle of � reflects
at an angle of �0 to reach the point P, which is a distance a from
the focus F, and at an angle of �. The distance from the focus to
the mirror is b=2, as illustrated, where b � a.
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The corresponding expression of a parabolic cylinder is
obtained by multiplying by 16=15�. Although the inte-
grand in the above expression is singular at�‘ ¼ 0, it may
be treated as a distribution and the integral is well defined.

Here we will treat only the case � ¼ �=2, where the
integrations may be done in closed form. In this case, 
 ¼
��, as may be seen from the fact that fð�0Þ is now an even
function:

fð�0Þ ¼ ð1þ cos�0Þ cosð�0Þ: (53)

The minimum value of � in Eq. (52) is �min ¼ ða=bÞfð�0Þ,
where �0 is the angular size of the mirror. The maximum
value in our case is �max ¼ 2a=b, corresponding to � ¼ 0.
We have that

d�

d�
¼ a

b
f0ð�Þ ¼ �a

b
sin�ð2 cos�þ 1Þ: (54)

This relation may be used to express h�̂2iR as

h�̂2iR ¼ � 3@�0a

4�2cSb

Z 0

�0

d�
sin�ð2 cos�þ 1Þ

ð�‘Þ4 ; (55)

or as

h�̂2iR ¼ 3@�0

64�2cSa
3b

Z �0

0
d�

2 cos�þ 1

sin3�ð1� cos�Þ4

¼ 3@�0

128�2cSa
3b

Z �0

��0

d�
2 cos�þ 1

jsin3�jð1� cos�Þ4 : (56)

This integral may be performed explicitly, with the result

h�̂2iR ¼ 3@�0

4096�2cSa
3b

gð�0Þ; (57)

where

gð�0Þ ¼ log

�
1þ cos�0
1� cos�0

�
þ 30cos5�0 � 120cos4�0 þ 160cos3�0 � 40cos2�0 � 94 cos�0 � 224

15ð1þ cos�0Þð1� cos�0Þ5
: (58)

The function gð�0Þ is negative everywhere, and is plotted in
Fig. 4. The singularity as �0 ! 0 represents a breakdown of
the geometric optics approximation, as diffraction effects
become more important for small �0. For fixed �0, the
result is of the form

h�̂2iR ¼ � @�0C

cSba
3
< 0; (59)

where C is a constant which is small compared to unity.
This, and the analogous expressions for hE2i and hB2i,

which also are proportional to 1=ðba3Þ, are striking in that
they can be large when the focus is far from the mirror
itself, b � a. This result is controversial, and seems to be
in conflict with a general result by Fewster and Pfenning
[30], which implies that quantities such as hE2i or h�̂2iR
should be proportional to the inverse fourth power of the
distance to the mirror, which is to say / b�4 in this case.

On the other hand, there is a simple physical argument to
the contrary, which we find compelling: the interference
term between multiply reflected rays is slowly oscillating
when �‘ / a is small, and should give a contribution
proportional to an inverse power of a, as in Eq. (59). In
any case, the study of the phononic case provides an addi-
tional theoretical, and potentially experimental, probe to
better understand this issue. Results such as Eq. (59) are
potentially observable by light scattering using the method
to be discussed in the next section.

VI. OPERATIONAL MEANING OF CHANGES
IN h�̂2i

In this section, we wish to discuss how changes in h�̂2i,
or more generally in the density correlation function,
h�̂ðx; tÞ�̂ðx0; t0Þi, alter the light scattering cross section.
This cross section may be derived from the interaction
Hamiltonian used in Ref. [12],

H0 ¼ �0
2�0

Z
d3x�̂ðx; tÞE2ðx; tÞ; (60)

where E is the quantized electric field operator. Let the
initial state of the photonþ phonon system be jc ii, con-
taining a photon in mode Fi and no phonons. The final state
is jc fi, containing a photon in mode Ff and one phonon in

state j1ji. Here we do not necessarily assume that the

photon or phonon modes are plane waves. The transition
amplitude in first order perturbation theory is
�i

R
dthc fjH0jc ii, so the transition probability is

FIG. 4 (color online). The function gð�0Þ, defined in Eq. (58),
is plotted.
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jhc fjH0jc iij2 ¼ �20
�2
0

Z
dtdt0d3xd3x0h0j�̂ðx; tÞjji


 hjj�̂ðx0; t0Þj0iMðx;x0; t; t0Þ; (61)

where

Mðx;x0; t; t0Þ ¼ Ffðx; tÞ � F�
i ðx; tÞF�

fðx0; t0Þ � Fiðx0; t0Þ:
(62)

The total transition probability for the photon involves a
sum over all possible phonon modes:

T ¼ X
j

jhc fjH0jc iij2: (63)

However, this is a sum over a complete set of intermediate
states, so

h0j�̂ðx; tÞ�̂ðx0; t0Þj0i ¼ X
j

h0j�̂ðx; tÞjjihjj�̂ðx0; t0Þj0i:

(64)

Thus we may write T as an integral involving the density
correlation function

T ¼ �20
�2
0

Z
dtdt0d3xd3x0h0j�̂ðx; tÞ�̂ðx0; tÞj0iMðx;x0; t; t0Þ:

(65)

Here we have set t0 ¼ t in the correlation function, because
the light scattering occurs on a time scale that is small
compared to any changes in the phonon density.

Let T0 be the scattering probability in the absence of a
boundary, which is given by Eq. (65) with the correlation
function replaced with the vacuum correlation function
given in Eq. (7). Similarly, let TR be the change in scatter-
ing probability due to the boundary, which is given by
Eq. (65) using the renormalized correlation function.
Then TR=T0 is the fractional shift in probability, and hence
in scattering cross section, due to the boundary. The inte-
gral for TR has a well-behaved integrand, as the renormal-
ized correlation function GR is finite as x0 ! x. However,
T0 has an integrand which diverges as jx� x0j�4 in this
limit, and hence must be defined as a distribution.

Use the identity

1

jx� x0j4 ¼ 1

4
r2r02 ln½jx� x0j2=‘2	: (66)

Here r2 and r02 are Laplacian operators in x and x0,
respectively, and ‘ is a constant with units of length, which
we take to be of the order of the dimension of the scattering
region. We may use this identity in the expression for T0

and integrate by parts to write

T0 ¼ � @�20
8�2�2

0cS

Z
dtdt0d3xd3x0 ln½jx� x0j2=‘2	


 r2r02Mðx;x0; t; t0Þ: (67)

The surface terms vanish if we assume that the photon
modes are wave packets, so that the overlap function M
vanishes outside of the scattering region. The integrand
in Eq. (67) now has only an integrable logarithmic
singularity.
The corresponding expression for TR is

TR ¼ �20
�2
0

Z
dtdt0d3xd3x0GRðx;x0; 0ÞMðx;x0; t; t0Þ: (68)

Note that, in general, this depends upon the renormalized
phonon two-point function GRðx;x0; 0Þ and not just upon
its coincidence limit h�̂2iR. However, if we arrange for the
size of the scattering region ‘ to be small compared to the
characteristic distance to the boundary, a, then we may
write

GRðx;x0; 0Þ � h�̂2iR; ‘ � a: (69)

Such a situation is illustrated in Fig. 5. Most of the results
in the various cases treated in Sec. V can be written in the
from

h�̂2iR ¼ � @�0�

cSa
4
; (70)

where � is a constant typically smaller than unity. An
exception is the case of the parabolic mirror, Eq. (59),
which is smaller by a factor of a=b. Let k be the character-
istic wave number of the photon mode functions. Then we
have

r2r02Mðx;x0; t; t0Þ � k4Mðx;x0; t; t0Þ; (71)

where we assume that the photon wave packets are peaked
around a mean wave number k. Note that we must have

a

boundary
scattered

incident

wave packet

wave packet

FIG. 5 (color online). The scattering of photon wave packets
by a region in the vicinity of a boundary is illustrated. The
incident and scattered wave packets overlap in a scattering
region (shaded area). Here the characteristic size of this region,
‘, is assumed to be smaller than the characteristic distance to the
boundary, a.
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k > 1=‘ so that the wave packets may be localized on a
scale of order ‘.

The logarithm function in Eq. (67) is expected to con-
tribute a factor of order unity, so we obtain the estimate

��������
TR

T0

���������
8�2�

ðkaÞ4 (72)

for the cases for which Eq. (70) holds, and the estimate
��������
TR

T0

���������
8�2�

k4ba3
(73)

for the parabolic mirror. Clearly the limit which we have
discussed, where ka � 1, leads to jTRT0j � 1, so the
modification of the scattering cross section is a small
effect. Consider the case of a single mirror, where from
Eq. (31), we have � ¼ 1=ð32�2Þ. If we were to take ka �
10, then we would estimate jTR=T0j � 3
 10�5. Given
that the scattering effect predicted in Ref. [12] for a boun-
daryless fluid has not yet been observed, observation of the
effect of boundaries seems to be beyond the limits of
present technology. However, this pessimistic conclusion
is partly based upon the restriction that ka � 1. If this
restriction is removed, and one uses light for which ka �
1, a larger effect is likely. This cannot be accurately
computed from the analysis in this section, but one might
expect the effect of the boundary to become closer to that
in the boundaryless fluid.

VII. SUMMARYAND DISCUSSION

In this paper, we have treated the effects of squeezed
phonon states and of boundaries on the local quantum
density fluctuations of a fluid, assuming a linear phonon
dispersion relation. The purpose of this investigation is
twofold. The modified density fluctuations are of interest
in their own right and are, in principle, observable by light
or neutron scattering. Second, the phononic system studied
here is a potentially useful analog model for better under-
standing quantum fluctuations in relativistic quantum field
theory with boundaries. After reviewing the density fluc-
tuations in a boundaryless system in the phonon vacuum
state, we treated the effects of a squeezed vacuum state of
phonons. Here we found that such a state will have both
local increases and local decreases in the mean squared
density. However, the time or spatial averaged effect is an
increase. This is in complete analogy to the case in rela-
tivistic quantum field theory, with the decrease in mean
squared density corresponding to regions of negative en-
ergy density.

We next turned our attention to the effects of perfectly
reflecting boundaries and studied the cases of one and two
parallel plates, a torus, a wedge, a cosmic string, and a

parabolic mirror. In all of the cases examined, we found a
decrease in mean squared density, h�̂2iR < 0. This amounts
to a suppression of the usual zero-point fluctuations, and is
analogous to the suppression of vacuum fluctuations which
can lead to negative energy density in quantum field theory.
In general, h�̂2iR due to boundaries is inversely propor-
tional to the speed of sound, cS. This is in contrast to total
energies or forces, such as Eq. (21), which are proportional
to cS, and to the mean squared electric or magnetic fields
near a perfect reflector, Eqs. (22) and (23), which are
proportional to the speed of light.
The case of the parabolic mirror is of particular interest.

Here we were able to correct certain aspects of our pre-
vious treatment [27,28] for electromagnetic fields. We find
that near the focus, h�̂2iR grows as the inverse cube of the
distance to the focus. For the phononic case, this growth
necessarily stops as the scale of interatomic spacing is
reached. However, the analysis performed here for pho-
nons also applies to the case of the quantized electromag-
netic field, where one expects the same rate of growth in
the mean squared electric and magnetic fields.
In this paper, we have considered only the case of a

linear dispersion relation. For the types of effect we con-
sider, this should be a good approximation so long as the
distance to the boundary is large compared to the inter-
atomic spacing. However, the effects of nonlinearity be-
come important if one wishes to consider event horizons
rather than physical boundaries. There has been consider-
able interest in recent years in analog models of black hole
and other horizons [8,31–33].
Finally in Sec. VI, we derived an expression for the

fractional change in scattering probability due to the pres-
ence of the boundary. In the limit treated here, where the
size of the scattering region is small compared to the
distance to the boundary, ‘ � a, we obtained a small
fractional change which scales as ð‘=aÞ4 in most cases. If
it is possible to relax this restriction and treat cases where
‘=a becomes of order unity, then we can expect a larger
change in the scattering cross section. However, this will
require further analysis using the complete expression for
TR, given in Eq. (68). This will be the topic of future
research.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under Grant No. PHY-0855360 and by
Conselho Nacional de Desenvolvimento Cientifico e
Tecnológico do Brasil (CNPq). L. H. F. would like to thank
the Institute of Physics at Academia Sinica in Taipei and
National Dong Hwa University in Hualien, Taiwan for
hospitality while this manuscript was completed.

FLUID ANALOG MODEL FOR BOUNDARY EFFECTS IN . . . PHYSICAL REVIEW D 80, 065034 (2009)

065034-9



[1] I. E. Dzyaloshinskii, E.M. Lifshitz, and L. P. Pitaevski,
Adv. Phys. 10, 165 (1961).

[2] A. Larraza, Phys. Lett. A 248, 151 (1998).
[3] O. Bschorr, J. Acoust. Soc. Am. 106, 3730 (1999).
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