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Threshold effects related to fermion masses are considered for an all-order �-function based on a

background field momentum subtraction scheme. Far away from all thresholds, the suggested �-function

reduces to the conjectured all-order form inspired by the Novikov–Shifman–Vainshtein–Zakharov

�-function of N ¼ 1 supersymmetric gauge theories with a fixed integer number of fermion flavors.

At (formally) infinite masses the corresponding pure Yang–Mills �-function is recovered. We discuss

applications to the phase diagram of non-Abelian field theories.
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I. INTRODUCTION

The �-function of non-Abelian gauge field theories is
scheme independent (universal) up to two loops. This
statement holds if a fixed number of active matter species
is considered. Regarding the renormalization group run-
ning of the coupling for a fixed number of flavors is
legitimate as long as the energy scales under consideration
are either far above or below the fermion masses, that is,
the relevant thresholds. From the viewpoint of renormal-
ization theory, it is legal to use the fixed flavor schemes
even close or across the thresholds, although the freezing
out (By default, we evolve from higher to lower energy
scales.) of heavy flavors is ignored. Sometimes this effect
is incorporated by piecing together �-functions for differ-
ent integer numbers of flavors exactly at the mass of the
flavors which become inactive. While this procedure might
appear somewhat ad hoc, it features already a crucial
aspect of the threshold effect, the scale dependence of
the �-function coefficients. They are no longer scheme
independent in the above sense. The switching also in-
volves a blending between different schemes. It is plausible
that the transition between different numbers of active
flavors at a threshold should happen gradually. Therefore,
we base the following investigation on a background field
momentum subtraction scheme [1], which features natu-
rally a smooth switching. Momentum subtraction schemes
[2–6] respect the decoupling theorem [7], but, in general,
spoil the Slavnov–Taylor identities. The latter shortcoming
is cured by the use of the background field method [8].
Alternatively, we could have used the physical charge
approach of Ref. [9]. The outcome, however, is qualita-
tively and quantitatively close to that in the background
field momentum subtraction scheme (See especially Fig. 2
in [9].) and there the expressions can be handled
analytically.

An all-order �-function without threshold effects has
been conjectured in [10]. It is inspired by the Novikov–
Shifman–Vainshtein–Zakharov �-function of N ¼ 1
supersymmetric gauge theories [11]. The conjectured
�-function possesses the correct limits for exactly known

cases, like super Yang–Mills theory [11] or planar equiva-
lence in a large-Nc limit [12]. At two-loop order it coin-
cides with the universal �-function.
We base our suggestion for a mass-dependent all-orders

�-function on the postulate that, far away from all thresh-
olds, it reduces to the just mentioned all-order �-function
for a fixed number of flavors. At two-loop order it is to be
identical with the �-function in background field momen-
tum subtraction scheme [1]. From the thus obtained mass-
dependent �-function we find that threshold effects are felt
2 orders of magnitude away from the mass of the fermion.
(See Fig. 5.)
One field of research where the mass dependence of the

�-function is of importance is the conformal window of
non-Abelian gauge field theories. In the picture laid out in
[13], the interplay between the matter content of a theory
and chiral symmetry breaking gives rise to different phases
as follows (See Fig. 1.): For no or only little matter the
(dominant) antiscreening of the non-Abelian gauge bosons
inhibits the occurrence of an infrared fixed point (A). This
is the case for quantum chromodynamics. For slightly
more matter a perturbative Caswell–Banks–Zaks [14] fixed
point develops. When arguing based on the two-loop
�-function, this amounts to a change of the sign of the
second coefficient (B). This fixed point, however, need not
be realized, as, for an insufficient matter content, the value
of the coupling may suffice to trigger chiral symmetry
breaking. In that case, the fermions acquire a dynamical
mass and decouple, at least in parts, from the dynamics.
The effective number of flavors is reduced and the anti-
screening dominates again (C). Only above a certain
amount of matter, the fixed point is reached before chiral
symmetry breaking sets in. The coupling constant freezes
(D). Just before this, the quasiconformal case is to be
found, where the fixed point is almost realized (E). There
the �-function is small for a value of the coupling � close
to its critical value for chiral symmetry breaking.
Consequently, the coupling stays almost constant (it walks)
for a large interval of scales before chiral symmetry break-
ing is triggered and the coupling constant starts running
again. Beyond a given amount of matter the theory loses
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asymptotic freedom. The first coefficient of the �-function
changes sign. This discussion indicates why the acquisition
of (more) mass by the fermions is a crucial building block
for the understanding of the dynamics of the theory.

The motivation for carrying out the investigation in [13]
was the determination of walking, that is, quasiconformal
[15] technicolor [16] models, which are consistent with
available electroweak precision data [17,18]. {Walking
technicolor models possess a rich collider phenomenology
for the LHC [19] as well as dark matter candidates [20] and
are also interesting models for studies in the AdS/CFT
framework [21].} In technicolor models, chiral symmetry
breaking among fermions (techniquarks) added to the stan-
dard model without Higgs sector simultaneously breaks the
electroweak symmetry dynamically. Technicolor hence
provides the masses for the weak gauge bosons. The
most intensely researched way to also render massive the
standard model fermions is extended technicolor [22].
Apart from this primary purpose, extended technicolor
may serve to make extra Nambu–Goldstone-modes
(Three of the potentially more modes arising from the
chiral symmetry breaking are absorbed as the longitudinal
modes of the weak gauge bosons.) sufficiently massive,
and or stabilize the vacuum alignment [23,24]. The effects
from extended technicolor are already in place before the
chiral condensate of technicolor forms. Therefore, as shall
be explained below, some of the effects connected to the
stabilization of the vacuum alignment and the Nambu–
Goldstone masses are similar in nature to an explicit
mass term in the sense of the electroweakly induced quark
masses relative to the chiral dynamics of quantum
chromodynamics.

The just described occurrence of walking is due to
inherently nonperturbative effects from chiral symmetry
breaking. In the context of the mass-dependent �-function
discussed here, we would like to point out that there is also
the possibility to see walking from an interplay of more
perturbative effects: Let us think of an asymptotically free
gauge theory, which would have an infrared fixed point for
massless fermions. ‘‘Hard’’ fermion masses in the sense of,
for example, the electroweakly induced quark masses as
seen by quantum chromodynamics lead to a reduction of
the screening due to the fermions. If this occurs at the
correct energy scale (Here, the occurrence of walking
depends on the initial condition for the coupling constant.),
the infrared fixed point is never reached, but a situation
analogous to the one depicted in Fig. 1(e) can arise.
The paper is organized as follows. In Sec. II, we derive

our mass-dependent all-order �-function. Section III con-
tains the application to the question of the determination of
the conformal window. The subsection under Sec. III stud-
ies the quantitative influence of fermion masses on the
(quasi)conformal window. Section IV summarizes the re-
sults. The appendix contains plots of the (quasi)conformal
windows for gauge field theories with fermions transform-
ing under various representations of SUðNcÞ, Spð2NcÞ, and
SOðNcÞ gauge groups.

II. A MASS-DEPENDENT �-FUNCTION

The �-function describes the change of the gauge cou-
pling g of non-Abelian gauge field theories with the energy
scale �. It is subtraction scheme independent up to two
loops,

�ðgÞ ¼ � �0

ð4�Þ2 g
3 � �1

ð4�Þ4 g
5 � . . . ; (1)

�0 ¼ 11
3C2ðGÞ � 4

3TðRÞNf; (2)

�1 ¼ 34
3C2ðGÞ2 � 20

3C2ðGÞTðRÞNf � 4C2ðRÞTðRÞNf: (3)

In the background field momentum subtraction scheme,
however, the first two �-function coefficients are different
[1],

�0 � ��0 ¼ 11

3
C2ðGÞ � 4

3
TðRÞX

Nf

j¼1

b0ðxjÞ; (4)

�1 � ��1 ¼ 34

3
C2ðGÞ2 � TðRÞX

Nf

j¼1

b1ðxjÞ: (5)

Here, xj ¼ ��2=ð4m2
j Þ, mj is the mass of the fermion

flavor j. Further,

b0ðxÞ ¼ 1þ 3½1�GðxÞ�=ð2xÞ; (6)

(which coincides with the result from the physical charge
approach [25]) where GðxÞ¼ ð2ylnyÞ=ðy2�1Þ as well as

FIG. 1. behavior of the �-function as a function of the
coupling � and of the coupling as a function of the energy scale
�, depending on the matter content of the theory. (A) No or little
matter; (B) existence of a perturbative Caswell–Banks–Zaks
fixed point; (C) actual shape due to chiral symmetry breaking;
(D) realized fixed point; (E) quasiconformal case; (F) loss of
asymptotic freedom. The dashed line in the plot on the left-hand
side indicates the critical values of the coupling for chiral
symmetry breaking.
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y¼ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1=x

p �1Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1=x

p þ1Þ and

b1ðxÞ ¼ 16ð1� x2ÞC2ðRÞ þ ð1þ 8x2ÞC2ðGÞ
6x2ð1� xÞ �ðxÞ � 2

3x2
ðC2ðGÞ � 2C2ðRÞÞIðxÞ þ 2

3x
~Ið4Þ3 ðxÞC2ðGÞ

þ ½ð1þ 3x� 10x2 þ 12x3ÞC2ðGÞ � 3ð3� 3x� 4x2 þ 8x3ÞC2ðRÞ� 43xGðxÞ2 � ½ð147� 4x� 100x2 þ 8x3ÞC2ðGÞ

þ 168ð1� xÞC2ðRÞ þ 6ð9þ 4xÞ lnð�4xÞC2ðGÞ� 1
9x

GðxÞ þ ½ð99þ 62xÞC2ðGÞ þ 12ð11þ 3xÞC2ðRÞ

þ 2ð27þ 24x� 2x2Þ lnð�4xÞC2ðGÞ� 19x ; (7)

�ðxÞ ¼ f2Li2ð�yÞ þ Li2ðyÞ þ ½lnð1� yÞ þ 2 lnð1þ yÞ
� ð3=4Þ lny� lnygð1� y2Þ=y (8)

IðxÞ ¼ 6½�3 þ 4Li3ð�yÞ þ 2Li3ðyÞ� � 8½2Li2ð�yÞ
þ Li2ðyÞ� lny� 2½2 lnð1þ yÞ þ lnð1� yÞ�ln2y;

(9)

~I ð4Þ
3 ðxÞ ¼ 6�3 � 6Li3ðyÞ þ 6Li2ðyÞ lnyþ 2 lnð1� yÞln2y:

(10)

Here, �3 ¼ �ð3Þ ¼ 1:202 056 9 . . . stands for Apéry’s con-
stant, that is, Riemann’s zeta function evaluated at 3.
LinðzÞ ¼

P1
j¼1

zj

jn is the polylogarithm.
In the background field method, the �-function is ob-

tained from the background field renormalization constant
ZA according to

�2 d

d�2

�

4�
¼ lim

�!0
��

d

d�
lnZA: (11)

Here, � ¼ g=ð4�Þ and � emanates from dimensional regu-
larization, d ¼ 4� 2�. (Complications arising from the
renormalization of the gauge parameter can be avoided
by adopting background field Landau gauge, but the physi-
cal result does not depend on this choice.) Consequently,
only background field propagator diagrams have to be
evaluated, that is, diagrams with two external couplings
to the external field and no other external legs. ZA is
obtained from,

ZA ¼ 1þ�0ðQ2; �2; fm2
j gÞ

1þ�ðQ2; �2; fm2
j gÞ

; (12)

where �0 is the bare and � the renormalized self-energy
amplitude. The renormalized masses fmjg of the fermions

be defined as poles of the corresponding propagators. In the
momentum subtraction scheme, the renormalized self-
energy amplitude is fixed by the condition

�ðQ2; �2; fm2
j gÞjQ2¼�2 ¼ 0: (13)

After computing the renormalized self-energy amplitude to
two-loop order, the corresponding �-function can be ex-
tracted by differentiation according to Eq. (11). In this

context, IðxÞ and ~Ið4Þ3 ðxÞ are master integrals appearing in

the computation of �.
Let us consider Nf mass degenerate flavors, all trans-

forming under the same representation of the gauge group.
Then the modifications of ��0 and ��1 relative to �0 and �1

can be collected in ‘‘numbers of active flavors’’

Nf;0=Nf ¼ b0ðxÞ; (14)

Nf;1=Nf ¼ b1ðxÞ=½ð20=3ÞC2ðGÞ þ 4C2ðRÞ�: (15)

Both go to Nf for massless fermions and to zero for very

massive fermions, thereby satisfying the decoupling theo-
rem [7]. The concept of number of active flavors can even
be given a gauge invariant meaning [9], which makes such
numbers observable, in principle. This, however, raises all
the more the question why there should be different num-
bers of active flavors in each term of the �-function.
Furthermore, Nf;0 interpolates monotonously between the

two limiting cases Nf and zero, which would be expected

from a number of active flavors, while Nf;1 does not. The

latter is, in general, not even positive for all values of x.
This suggests that the interpretation as active number of
flavors is more appropriate for Nf;0 than it is for Nf;1. We

shall revisit this point below.
The apparent contradiction to the statement about

scheme independence of the two-loop �-function arises
from the fact that the background field momentum sub-
traction scheme is not a fixed subtraction scheme in the
above sense, but can be seen as a smooth interpolation
between subtraction schemes as a function of the scale [5].
The transition takes place when the scale closes in on the
mass of a flavor, which then freezes out gradually. We can
also think about the other way to incorporate the change of
the number of active flavors with the energy scale, that is,
the matching of running couplings for different integer
numbers of flavors. The matching is performed exactly
where the scale meets the mass of a given flavor. In this
sense, also the two-loop �-function coefficients are func-
tions of the scale and do not coincide with the subtraction
scheme independent expressions for a fixed number of
flavors.
Based on the argument of universality in [10], an all-

order �-function was conjectured,
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�ðgÞ ¼ � g3

ð4�Þ2
�0 � 2

3TðRÞNf�ðg2Þ
1� g2

8�2 C2ðGÞð1þ 2
�0
0

�0
Þ
; (16)

where �0
0 ¼ C2ðGÞ � TðRÞNf. � stands for the anomalous

dimension of the fermion mass operator, �ðg2Þ ¼
ð3=2ÞC2ðRÞg2=ð4�2Þ þOðg4Þ. An expansion to two-loop
order reproduces the universal two-loop coefficients. Many
expression would achieve this, but, as shown in [10], (16) is
consistent with limiting cases in which the �-function is
known exactly like super Yang–Mills theory [11] or planar
equivalence in a large-Nc limit [12].

Our objective is to find a mass-dependent all-order
�-function that when expanded to second order reproduced
the two-loop �-function in the background field momen-
tum subtraction scheme. (If we chose a different mass-
dependent two-loop �-function as starting point the result-
ing all-order �-function would be accordingly different.)
Further, in the massless limit the mass-dependent all-order
�-function is to coincide with the mass-independent all-
order �-function. This ascertains that the exactly known
supersymmetric results can be reproduced. Likewise, in the
ultramassive limit it is to coincide with the pure Yang–
Mills version of the mass-independent all-order
�-function. This implies also that all terms involving the
Casimir C2ðRÞ have to be absorbed in the term involving
the anomalous dimension.

We propose the following mass-dependent �-function,

��ðgÞ ¼ � g3

ð4�Þ2
��0 � 2

3TðRÞ
PNf

j¼1 ��ðxjÞ
1� g2

8�2 C2ðGÞð1þ 2
��0
0
��0
Þ
; (17)

where

��ðxjÞ ¼ 3

2

g2

4�2

1

4
b1ðxjÞjC2ðGÞ!0 (18)

and

�� 0
0 ¼ C2ðGÞ þ TðRÞX

Nf

j¼1

�
2

3
b0ðxjÞ � 1

4

b1ðxjÞjC2ðRÞ!0

C2ðGÞ
�
:

It fulfils all of the aforementioned requirements: Taking all
masses mj to zero reproduces Eq. (16). In fact, all barred,

that is, mass-dependent quantities ��0, ��1, ��0
0 and espe-

cially, �� go to their unbarred, that is, massless counterparts
separately. ��ðxjÞ= ��ðxj ! �1Þ has the same limits, 0 for

x ! 0 and 1 for x ! �1, as found from the mass-
dependent anomalous dimension �m ¼ �m¼0½1þ lnð1�
4xÞ=ð4xÞ� given in [3]. Expanding to two-loop order repro-
duces Eqs. (4) and (5). [This last feature would also be
achieved if a factor 1þOðg2Þ was introduced in �� and/or
��0
0. (The same is already true in the massless case.) Its

effect would, however, only make an appearance at third
order and could, hence, be absorbed in a change of the
renormalization scheme. Likewise, if one wanted to ac-
commodate a particular three-loop term, one could include

such a factor and adjust the denominator accordingly,
which would amount to a change of scheme.]
Like Eq. (16), Eq. (17) can be generalized to allow for

flavors which transform under different representations of
the gauge group. In this case it reads

��ðgÞ ¼ � g3

ð4�Þ2
��0 � 2

3

PNf

j¼1 TðRjÞ ��ðxjÞ
1� g2

8�2 C2ðGÞð1þ
��0
0
��0
Þ
; (19)

where

�� 0
0 ¼ C2ðGÞ þ

XNf

j¼1

TðRjÞ
�
2

3
b0ðxjÞ � 1

4

b1ðxjÞjC2ðRÞ!0

C2ðGÞ
�

(20)

and Rj is the representation of flavor j.

Through Eq. (17), the coupling g now depends on the
anomalous dimension � in a twofold way: As in Eq. (16),
there is a direct dependence in the numerator. Here addi-
tionally, the �-function depends on the masses, which via
the renormalization group equations

�
d

d�
gð�Þ ¼ þ�½gð�Þ; fmkð�Þ=�g�; (21)

�
d

d�
mjð�Þ ¼ ��½gð�Þ; fmkð�Þ=�g�; (22)

are functionals of the anomalous dimension.

III. IMPACT ON THE CONFORMALWINDOW

Here, predominantly for the sake of notational simplic-
ity, we concentrate on walking technicolor models with
two techniflavors, the generalization to more flavors being
straightforward. (The most intensely studied technicolor
models, minimal and next-to-minimal walking technicolor
[17,18,26], feature two techniflavors.)
Models in which the techniquarks do not transform

under a (pseudo)real representation of the technicolor
gauge group have the essential SUð2ÞL � SUð2ÞR flavor
symmetry. When it breaks to SUð2ÞV , the electroweak
SUð2ÞL �Uð1ÞY breaks to Uð1Þem, regardless of the em-
bedding [23]. The breaking leads to three pseudo-
Nambu–Goldstone-modes, which become the longitudinal
degrees of freedom of the weak gauge bosons.
Models with techniquarks in (pseudo)real representa-

tions of the technicolor gauge group have an SUð4Þ un-
broken flavor symmetry. For real representations it breaks
to SOð4Þ, which leaves behind six Nambu–Goldstone-
modes beyond the 3 degrees of freedom, which are ab-
sorbed as longitudinal degrees of freedom of the weak
gauge bosons. They have to be sufficiently massive, as
these potentially lightest states of a technicolor theory
have not been detected to date. It turns out that electroweak
radiative corrections can take them outside the direct ex-
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clusion limit for technimesonic pseudoscalars [24], which
is slightly above the mass of the weak gauge bosons [27].
On top of that, these extra Nambu–Goldstone-modes carry
nonzero technibaryon number and hence, as opposed to
technimesons, they can only be produced in pairs. The
positive electroweak contributions to the squared masses
of the Nambu–Goldstone-modes also stabilize the embed-
ding of the electroweak gauge group, which leads to its
correct breaking [23]. It could have been embedded in such
a way that it remains unbroken, but the latter embedding
would be destabilized by electroweak radiative
corrections.

This is different in the pseudoreal case. There, the break-
ing goes to Spð4Þ, which yields two uneaten Nambu-
Goldstone-modes. They receive negative contributions to
their squared masses from electroweak radiative correc-
tions. Thus, the embedding that leads to the correct break-
ing of the electroweak gauge group is destabilized. It must
be stabilized by an additional mechanism, which is usually
incorporated with the extended technicolor sector. In fact,
looking at the non-(pseudo)real case, all it takes to provide
suitable masses to the weak gauge bosons is an SUð2ÞL �
SUð2ÞR ! SUð2ÞV breaking pattern. Hence, above the
technicolor scale not the full SUð4Þ symmetry has to be
preserved, but only the SUð2ÞL � SUð2ÞR.

Looking, for the moment, exclusively at the two-flavor
technicolor sector neither with electroweak interactions
nor extended technicolor effects, it consists of four Weyl
fermions, UL, DL, UR, and DR. Representing the right-
handed fields such that they transform as left-handed fields,
�i�2U�

R and �i�2D�
R, the SUð4Þ flavor symmetry be-

comes apparent. The assignment of the left and right fields
is dictated by the coupling to the electroweak interactions.
From the viewpoint of the flavor symmetries, the mass
terms

L m ¼ mð �ULUR þ �URUL þ �DLDR þ �DRDLÞ (23)

and

L 	 ¼ 	ð �ULDL þ �DLUL þ �URDR þ �DRURÞ (24)

are equivalent: Imagine, for example, that the four Weyl
flavors are arranged in a column vector. Then the respective
mass terms can be expressed by contraction with the
matrices

O 1
1 O

� �
or

1 O
O �1

� �
; (25)

which are linked by an SUð4Þ transformation. O and 1 are
2� 2 zero and unit matrices, respectively.

The first mass term above, however, breaks the electro-
weak symmetry, while the second does not; it breaks the
SUð4Þ to SOð4Þ ’ SUð2ÞL � SUð2ÞR. Consequently, it
contributes to the masses of those Nambu–Goldstone-
modes, which link left- with right-fields, that is, the modes
with nonzero technibaryon number. Apart from a direct

application to dynamical electroweak symmetry breaking,
for which the electroweak symmetry must be unbroken
before the chiral condensate is formed, the investigation of
the impact of an explicit mass term of Lm-type is interest-
ing per se as well as for quantum chromodynamics, and
natural for a study in the framework of lattice field theory.
For techniquarks in a pseudoreal representation of the

technicolor gauge group, terms which break the SUð4Þ
flavor symmetry to SUð2ÞL � SUð2ÞR are needed to stabi-
lize the vacuum. The motivation for studying additional
mass terms of L	-type for real representations (and yet
another motivation for studying it for pseudoreal represen-
tations) is to control the amount of walking or even avoid
conformality of an otherwise promising candidate [28]. (In
fact, it appears to be interesting to compare the implica-
tions from our mass-dependent all-order �-function with
results from lattice studies, which is an active field in the
context of walking technicolor theories [28,29].) For this
purpose, we do not even have to increase the value of the
mass parameter 	 beyond its value when used to make the
extra Nambu–Goldstone-modes sufficiently massive: The
extended technicolor-induced term is of dynamical origin.
Thus, arguing based on a Gell-Mann–Oakes–Renner rela-
tion,

m2
�f

2
� ¼ 2	hQ �Qi; (26)

where m� ¼ O (few 0.1 TeV) is the extended technicolor
contribution to the mass of the corresponding pions, f� ¼
O (few TeV) their decay constant and hQ �Qi ¼ OðTeV3Þ
the related techniquark condensate, results in 	 being of
OðTeVÞ as well. This is where also the technicolor scale is
situated. Hence, an interference of related threshold effects
with the technicolor phase transition appears natural. Thus,
the extended technicolor might affect the technicolor phase
transition.
On the other hand, the dynamically generated techni-

quark mass in the Lm channel can be estimated to be [30]

�ð0Þ � 2�F�=
ffiffiffiffiffiffi
dR

p
; (27)

where for technicolor models with two techniflavors F� ¼
�ew ¼ 246 GeV. dR is the dimension of the representation
of the technicolor gauge group with respect to which the
techniquarks transform. Hence,�ð0Þ is also ofOðTeVÞ and
it seems likely that also the critical value of the coupling��
is influenced by the presence of L	.
As another example consider partially (electroweakly)

gauged technicolor [17]. In partially gauged technicolor,
be it with matter in a single or different simultaneously
present representations of the technicolor gauge group,
only some of the techniquarks are gauged under the elec-
troweak gauge group. This is usually done to alleviate
constraints from electroweak precision data, in particular,
from the oblique parameters. At the same time it allows to
bring the theory close to the (quasi)conformal window. The
part of the techniquarks that is not gauged under the

MASS-DEPENDENT �-FUNCTION PHYSICAL REVIEW D 80, 065032 (2009)

065032-5



electroweak can be given masses without breaking the
electroweak symmetry. Depending on the flavor symmetry
among the electroweakly gauged techniquarks of a par-
tially gauged technicolor model, specific mass terms that
leave the electroweak symmetry intact might be possible in
this sector as well, as was already explained above.

The conformal window

In [13], the lower bound of the conformal window in the
plane spanned by the number of colors of an SUðNÞ theory
and the number of flavors was determined by equating the
coupling at the Caswell–Banks–Zaks fixed point with the
critical coupling [31] for the formation of a chiral conden-
sate as obtained within the ladder-rainbow-approximation
to the Dyson–Schwinger–equations. Solving for the num-
ber of flavors as a function of the number of colors yields
the dotted curves in Fig. 2, for four different representa-
tions; from top to bottom, the fundamental, the two-index
antisymmetric, the two-index symmetric and the adjoint.
Asymptotic freedom is lost above the solid curves.

In [10], the conjectured �-function (16) was used to
determine the lower bound of the conformal window. To

this end, it was equated to zero and the value of the
anomalous dimension � was kept fixed. While the
ladder-rainbow-approximation yields a critical value of
one, the only theoretically hard upper bound on � arises
from the requirement of unitarity of the gauge field theory
and is two. (This follows from the fact that in a conformal
field theory the dimension 3� � of all nontrivial spinless
operators and thus, that of the chiral condensate must be
larger or equal to unity [32].) The lower bound for the
conformal window must, hence, not lie below the thus
obtained curve. (There are also indications from duality
arguments [33] for choosing the maximum value for �.)
Again, after solving for the number of flavors as a function
of the number of colors, this approach gives rise to the
dash-dotted curves (� ¼ 1) and dashed curves (� ¼ 2),
respectively, in Fig. 2. This approach has also been applied
to gauge groups other than SUðNÞ and to multiple repre-
sentations [34,35]. Interestingly, this approach leads to a
universal formula 1 ¼ 
2NfTðRÞ=C2ðGÞ for the lower

bound of the conformal window [36]. In [36], this relation
was found in the framework of the world line formalism,
and 
 � 1=4 was determined from matching to SQCD.
From Eq. (16), one finds 
 ¼ ð2þ �Þ=11. (A combination
of the two results would yield � � 3=4.) Such a relation
was also found in [37].
Here, we study the influence of threshold effects due to

the fermion masses based on the �-function (17) by fixing
�� to the two benchmark values from the massless study.
For vanishing mass, we find the same results as before. For
nonzero values of the mass, the ‘‘lower bound of the
conformal window’’ is moved towards a larger number of
flavors. In the presence of massive fermions this term
(‘‘. . .’’) is somewhat abused, here. Clearly, in a theory,
where all fermions have a nonzero mass, however tiny it
may be, they freeze out for scales far enough below this
mass, and we are effectively left with a pure Yang–Mills
theory, where the antiscreening from the gluons is unchal-
lenged. Hence, in a theory in which all flavors are massive,
there is strictly speaking no conformal window. Therefore,
what above was called ‘‘lower bound of the conformal
window’’ in the massive case is the phenomenologically
decisive minimal number of flavors above which the cou-
pling develops a plateau (walks). Consequently, we should
talk of a ‘‘quasiconformal window,’’ which in the limit
m ! 0 coincides with the conformal window. In the mass-
less case, the walking setups were to be found slightly
below the lower edge of the conformal window. (There,
above the edge, the theory does evolve into the fixed point.)
In the massive case, in a setup slightly below the modified
bound, there will also be at least some walking. In that
case, the amount of walking, that is, the range of scales of
quasiconformal behavior, is determined by a direct inter-
play of the freezing out of the flavors due to the explicit
mass and the onset of chiral symmetry breaking.
(Independent of walking, a similar interplay between quark

FIG. 2 (color online). Massless fermions: Conformal window
for SUðNÞ gauge theories with fermions in the (from top to
bottom) fundamental (black; straight, rising line), two-index
antisymmetric (blue; curved, falling line), two-index symmetric
(red; curved, rising line) or adjoint (green; straight, horizontal
line) representation of the gauge group. Above the solid curves
asymptotic freedom is lost. The dotted lines show the lower
bound for the conformal window according to the rainbow-
ladder-approximation to the Dyson–Schwinger-equations. The
lower bounds for the conformal window are depicted by the
dash-dotted (� ¼ 1) and the dashed (� ¼ 2; minimal lower
bound) curves.
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mass effects and chiral symmetry breaking exists in quan-
tum chromodynamics for the strange quark.) If the number
of flavors is really below this bound, it never comes near
the fixed point and does not show any walking. If the
number of flavors is above this bound (and the theory is
still asymptotically free) the theory approaches the fixed
point very closely and stays in its vicinity until the flavors
start decoupling gradually. Once the flavors are decoupled
sufficiently, the coupling starts running again. This means
also that in such a setting, the position of the low-energy
end of the plateau is not determined by the initial condi-
tions for the renormalization group evolution, but by the
value of the fermion masses. As examples we present the
quasiconformal windows for � ¼ 1 and x ¼ �4 (� ¼ 4m)
in Fig. 3 and for � ¼ 2 and x ¼ �4 in Fig. 4. For com-
parison, the massless case is also always shown. (We
concentrate here on equal masses for all fermions. The
phenomenology becomes richer, once we allow for differ-
ent masses, which, on the other hand, would also break
more symmetries.)

At this point, let us revisit briefly the notion of ‘‘number
of active flavors.’’ The determination of the conformal
window relies on setting the �-function (17) equal to

zero. This amounts to finding the zero of its numerator.
For fixed ��, the latter depends only on ��0 and not ��1.
Hence, the number of active flavors that counts, at least for
this way of determining the quasiconformal window, is
Nf;0. This aspect together with the fact that Nf;1 is not

monotonously interpolating between the limiting cases
indicates that Nf;1 or ��1, and actually probably all the

Nf;j or ��j with j � 1, encode something else than a

mere modification of the number of flavors.
In Fig. 5, in order to show the influence of the mass of

the fermions, we plot the critical number of flavors as a
function of x ¼ ��2=ð4m2Þ for an SUð2Þ field theory with
two adjoint Dirac flavors, that is, the core of minimal
walking technicolor. First of all, one can see that the
switching zone spans 4 orders of magnitude. In other
words, threshold effects are felt for energy scales, which
are a hundred times bigger than the mass of the fermions.
Further, taking the mass to infinity (x to zero) does not lead
to the zero flavor result because � is kept fixed. As for the
range of the mass effect, for � ¼ 1, an x of Oð�101Þ lifts
the lower bound to the value obtained from the ladder-
rainbow-approximation. A value for x slightly below �1,

FIG. 3 (color online). Massive fermions, � ¼ 1:
Quasiconformal window for SUðNÞ gauge theories with fermi-
ons in the (from top to bottom) fundamental (black; straight,
rising line), two-index antisymmetric (blue; curved, falling line),
two-index symmetric (red; curved, rising line) or adjoint (green;
straight, horizontal line) representation of the gauge group.
Above the solid curves asymptotic freedom is lost. The dotted
lines show the lower bound for the conformal window according
to the rainbow-ladder-approximation to the Dyson–Schwinger-
equations. For massless fermions the lower bound is depicted by
the lower dash-dotted curve; for fermions with x ¼ �4 (� ¼
4m), by the upper dash-dotted curve.

FIG. 4 (color online). Massive fermions, � ¼ 2:
Quasiconformal window for SUðNÞ gauge theories with fermi-
ons in the (from top to bottom) fundamental (black; straight,
rising line), two-index antisymmetric (blue; curved, falling line),
two-index symmetric (red) or adjoint (green; straight, horizontal
line) representation of the gauge group. Above the solid curves
asymptotic freedom is lost. The dotted lines show the lower
bound for the conformal window according to the rainbow-
ladder-approximation to the Dyson–Schwinger-equations. For
massless fermions the lower bound is depicted by the lower
dashed curve; for fermions with x ¼ �4 (� ¼ 4m), by the upper
dashed curve.
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that is, 2m & �, closes the quasiconformal window alto-
gether, as asymptotic freedom is lost, before quasiconfor-
mality is reached. For � ¼ 2, the ladder-rainbow-value is
only reached for x slightly above �1, that is, 2m * �; the
quasiconformal window closes for infinite fermion masses,
x ! 0.

In principle, the quasiconformal windows, shown in
Figs. 3 and 4 for SUðNcÞ gauge theories, have to be

replotted for every value of x. Therefore, in the appendix,
we have attempted to give a universal representation that
permits to read off Nf for the lower bound of the quasi-

conformal window for SUðNcÞ (Fig. 7), Spð2NcÞ (Fig. 8),
and SOðNcÞ (Fig. 9) gauge theories, from single plots.
Figure 6 explains the procedure.

IV. SUMMARY

We propose a mass-dependent all-order �-function (17),
which combines the ideas that, in [10], led to the super-
symmetry inspired mass-independent all-order �-function
(16) with results for the �-function coefficients in the
mass-dependent background field momentum subtraction
scheme. (Formally, it is legal to use mass-independent
subtraction schemes. They, however, neglect completely
the influence of the constituent masses on the evolution of
the gauge coupling constant.) For vanishing fermion
masses, the mass-independent all-order �-function (16)
is recovered from the mass-dependent all-order �-function
(17). We use the �-function (17) to study the impact of
explicit fermion masses on the lower bound of the (quasi)
conformal window of the corresponding field theory:
Effects of the fermion mass can be sensed at scales more
than a hundred times bigger than the fermion mass; (See
Fig. 5.) the lower bound of the (quasi)conformal window
can be moved to a considerably higher number of flavors;
in fact, it can be closed up altogether. (See Figs. 3–5.) This
means that the corresponding theory does not show quasi-
conformal behavior for any number of flavors below the
value for which asymptotic freedom is lost. In the inves-
tigation of dynamical electroweak symmetry breaking by
walking technicolor theories, our approach may be useful
for studying effects of extended technicolor interactions,
which may be primarily required to stabilize the vacuum
and/or render additional Nambu–Goldstone-modes suffi-
ciently massive. (These effects interfere with the chiral

FIG. 5. Lower bounds for the (quasi)conformal window, two
flavors, adjoint representation, SUð2Þ: ladder-rainbow-
approximation (dotted line); � ¼ 1 massless (horizontal straight
line, dash-dotted), massive (curve, dash-dotted); � ¼ 2 massless
(horizontal straight line, dashed), massive (curve, dashed).
Above the solid line asymptotic freedom is lost. The zone in
which the flavors are gradually switched off, spans 4 orders of
magnitude.

Nc-x

Nf

FIG. 6 (color online). Examples for how to use Figs. 7–9 on the example of the (quasi)conformal window for SUðNcÞ theories. More
explanations are given at the end of the body of the text of the appendix.
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Nc-x

Nf
FIG. 9 (color online). (Quasi) confor-
mal window for SOðNcÞ theories. Right-
hand side: Conformal window for
SOðNcÞ gauge theories with fermions in
the (from top to bottom) fundamental
(black; straight, rising line), two-index
symmetric (red; curved, rising line) or
adjoint (green; straight, horizontal line)
representation of the gauge group.
Above the solid curves asymptotic free-
dom is lost. The lower bounds for the
conformal window are depicted by the
dash-dotted (�¼1) and the dashed (�¼
2; minimal lower bound) curves. Left-
hand side: Effective rescaling of the Nf

axis due to massive fermions for �¼1
(dash-dotted line) and �¼2 (dashed
line).

Nc-x

Nf
FIG. 8 (color online). (Quasi) confor-
mal window for Spð2NcÞ theories. Right-
hand side: Conformal window for
Spð2NcÞ gauge theories with fermions
in the (from top to bottom) fundamental
(black; straight, rising line), two-index
antisymmetric (blue; curved, falling line)
or adjoint (green; straight, horizontal
line) representation of the gauge group.
Above the solid curves asymptotic free-
dom is lost. The lower bounds for the
conformal window are depicted by the
dash-dotted (�¼1) and the dashed (� ¼
2; minimal lower bound) curves. Left-
hand side: Effective rescaling of the Nf

axis due to massive fermions for � ¼ 1
(dash-dotted line) and � ¼ 2 (dashed
line).

Nc-x

Nf
FIG. 7 (color online). (Quasi) confor-
mal window for SUðNcÞ theories. Right-
hand side: Conformal window for
SUðNcÞ gauge theories with fermions in
the (from top to bottom) fundamental
(black; straight, rising line), two-index
antisymmetric (blue; curved, falling
line), two-index symmetric (red; curved,
rising line) or adjoint (green; straight,
horizontal line) representation of the
gauge group. Above the solid curves
asymptotic freedom is lost. The lower
bounds for the conformal window are
depicted by the dash-dotted (�¼1) and
the dashed (�¼2; minimal lower bound)
curves. Left-hand side: Effective rescal-
ing of the Nf axis due to massive fermi-

ons for �¼1 (dash-dotted line) and
�¼2 (dashed line).

MASS-DEPENDENT �-FUNCTION PHYSICAL REVIEW D 80, 065032 (2009)

065032-9



dynamics of technicolor in a similar way as electroweakly
induced masses interfere with the chiral dynamics of quan-
tum chromodynamics.) Additionally, it might be extended
technicolor effects that make a theory quasiconformal,
which from its bare technicolor structure would be com-
pletely conformal and hence, not suited for breaking the
electroweak symmetry dynamically. It would be interest-
ing to address the issue of mass dependence, in particular,
and of other extended technicolor effects, in general, in
lattice simulations and to contrast them to the present
investigation.

ACKNOWLEDGMENTS

The author would like to thank A. Armoni, R. Barbieri,
S. J. Brodsky, M. T. Frandsen, M. Järvinen, and F. Sannino
for discussions. The work of D. D.D. was supported by the
Danish Natural Science Research Council.

APPENDIX: QUASICONFORMALWINDOWS

The critical number of flavors obtained by setting the
mass-dependent �-function equal to zero at a fixed value
for �� is given by,

Nf ¼ 11

2

C2ðGÞ
TðRÞ ½ ��þ 2b0ðxÞ��1: (A1)

The modification due to the mass of the fermion is, hence,
universal in the sense that it neither depends on the gauge
group nor the representation. The latter is encoded in the
fraction C2ðGÞ=TðRÞ, while the mass effect are contained
in b0ðxÞ.

We are here making use of this universality by giving an
illustration for the quasiconformal windows for theories
constructed from the fundamental, 2-index antisymmetric,
2-index symmetric or adjoint representation of an SUðNcÞ
(Fig. 7), Spð2NcÞ (Fig. 8), or SOðNcÞ (Fig. 9) gauge group.
{The m ¼ 0 case was first treated in [13] (SU), [34]
ðSp; SOÞg. Said representation consists of split figures;
their left half depicts the quasiconformal windows for
vanishing mass and their right half the modification due
to a nonzero mass, for both benchmark values, �� ¼ 1 and
�� ¼ 2, respectively.

Figure 6 explains how to use the depiction:
On the right-hand side, we have the conformal window

for SUðNcÞ gauge theories with fermions in the (from top
to bottom) fundamental (black; straight, rising), two-index
antisymmetric (blue; curved, falling), two-index symmet-
ric (red; curved, rising) or adjoint (green; straight, hori-
zontal) representation of the gauge group [here SUðNcÞ].
Above the solid curves, asymptotic freedom is lost. The
lower bounds for the conformal window are depicted by
the dash-dotted (� ¼ 1) and the dashed (� ¼ 2; minimal
lower bound) curves.
The left-hand side shows the effective rescaling of the

Nf axis due to massive fermions for � ¼ 1 (dash-dotted)

and � ¼ 2 (dashed). Note that the curves signalling the
loss of asymptotic freedom are not rescaled.
The black numbers mark the first example, in which we

read off the lower bound of the quasiconformal window for
x ¼ �1 for fermions in the fundamental representation of
SUð3Þ with the criterion � ¼ 2: (1) In the plot on the right-
hand side, pick Nc ¼ 3; (2) go up to the � ¼ 2 curve for
fermions in the fundamental representation, which yields
Nf � 8 for the lower bound of the massless conformal

window; (3) find the Nf ¼ 8 curve in the plot on the left-

hand side; (4) pick the �x ¼ 1 line; (5) find the crossing
between the curve and the line; (6) read off the result on the
axis; here, Nf � 11.

The grey numbers indicate the second example, in which
the value of �x is to be determined for which the quasi-
conformal window closes up completely for fermions in
the 2-index antisymmetric representation of SUð5Þ and
using the criterion � ¼ 1: (1) In the plot on the right-
hand side, pick Nc ¼ 5; (2) go to the � ¼ 1 curve for
fermions in the 2-index antisymmetric representation,
which yields Nf � 6 for the lower bound of the massless

conformal window; (3) find theNf ¼ 6 curve in the plot on

the left-hand side; (4) determine the number of flavors for
which asymptotic freedom is lost from the plot on the
right-hand side, which is Nf * 9; (5) find where the curve

in the plot on the left-hand side reaches this value; (6) go
down to the �x axis, which yields �x * 1.
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