
Nonperturbative volume reduction of large-N QCD with adjoint fermions

Barak Bringoltz and Stephen R. Sharpe

Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
(Received 26 June 2009; published 28 September 2009)

We use nonperturbative lattice techniques to study the volume-reduced ‘‘Eguchi-Kawai’’ version of

four-dimensional large-N QCD with a single adjoint Dirac fermion. We explore the phase diagram of this

single-site theory in the space of quark mass and gauge coupling using Wilson fermions for a number of

colors in the range 8 � N � 15. Our evidence suggests that these values of N are large enough to

determine the nature of the phase diagram for N ! 1. We identify the region in the parameter space

where the ðZNÞ4 center symmetry is intact. According to previous theoretical work using the orbifolding

paradigm, and assuming that translation invariance is not spontaneously broken in the infinite-volume

theory, in this region volume reduction holds: the single-site and infinite-volume theories become

equivalent when N ! 1. We find strong evidence that this region includes both light and heavy quarks

(with masses that are at the cutoff scale), and our results are consistent with this region extending toward

the continuum limit. We also compare the action density and the eigenvalue density of the overlap Dirac

operator in the fundamental representation with those obtained in large-N pure-gauge theory.
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I. INTRODUCTION

The 1=N expansion of SUðNÞ gauge theories is a par-
ticularly useful tool for exploring the nonperturbative dy-
namics of QCD and related theories. Applications can be
found in many areas of research, including the dynamics of
confinement, issues related to the phase diagram of QCD,
and the relation of QCD to a possible string construction.
While large-N methods offer a route to approach certain
QCD-related theories with some analytic control, the
large-N limit of QCD itself remains unsolved. This makes
lattice studies of this limit quite useful, and indeed these
have provided a substantial body of nonperturbative infor-
mation about large-N QCD. This information plays an
important role in guiding and testing the approximate
analytic approaches to large-N QCD.1

One way to approach the large-N limit on the lattice is to
use a straightforward generalization of the methods used to
simulate QCD. The continuum and infinite-volume limits
are taken for various values ofN, and the resulting physical
quantities then extrapolated to the large-N limit (typical
values of N used are 2 � N � 8, but in some instances
larger values, N ¼ 10–16, have been used).

In this paper we use a complementary approach com-
monly referred to as ‘‘large-N volume reduction.’’ The
original idea was proposed for lattice regulated theories
in the seminal paper by Eguchi and Kawai [2]. One con-
siders a ‘‘latticelike’’ matrix model that, under certain
assumptions, can be shown to be equivalent to a corre-
sponding (infinite-volume) lattice gauge theory if N ! 1
in both theories. By latticelike we mean a model whose
degrees of freedom take values in the group, rather than in

its algebra, and that depends on dimensionless couplings
and bare masses. The equivalent lattice gauge theory has
the same values for these dimensionless couplings and
masses. The equivalence is thus to a theory with a fixed
cutoff, and one must take the large-N limit before tuning
parameters to take the continuum limit.
The idea of Eguchi and Kawai has spawned much

interesting work demonstrating large-N equivalences be-
tween different theories. The two equivalences that moti-
vate our present work are the orientifold and orbifold
equivalences of Refs. [3–5]. Combining these leads to the
following result [6].
The large-N limit of infinite-volume lattice QCD with

2Nf Dirac fermions in the antisymmetric representation is

equivalent, for some observables, to the large-N limit of
QCD with Nf Dirac fermions in the adjoint representation

defined on a lattice with a finite number of sites Ns. The
boundary conditions in all directions for both fermions and
gauge fields must be periodic. This equivalence holds, in
particular, for the ‘‘single-site theory’’ in which Ns ¼ 1.
Thus, by studying the large-N limit of the single-site

theory with adjoint fermions, we can explore large-N QCD
with fermions in the antisymmetric representation. The
latter theory has considerable phenomenological interest
because it reduces to physical QCD with 2Nf fermions in

the fundamental representation when N ¼ 3. Thus, using
the equivalence above, we are able to study a large-N limit
of QCD that differs from the standard ‘t Hooft limit. This
alternate limit has the distinguishing feature that fermion
loops are present at leading order in the large-N expansion.
In order for the combined equivalence to hold several

conditions must be fulfilled [6,7]:
(1) The ground state of infinite-volume large-N QCD

with Nf Dirac fermions in the adjoint representation

must be translation invariant.

1References to the lattice studies can be found, for example, in
Ref. [1].
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(2) The ground state of infinite-volume large-N QCD
with 2Nf Dirac fermions in the antisymmetric rep-

resentation must be charge-conjugation invariant.
(3) The ground state of the large-N single-site QCD

with Nf Dirac fermions in the adjoint representa-

tions must be ðZNÞ4 invariant. This symmetry is the
familiar center symmetry in which each of the four
Polyakov loops that wind around the four Euclidean
compactified directions is independently multiplied
by a ZN factor. (Note that in the single-site model
each Polyakov loop is composed of a single link
matrix.)

It is also necessary that all theories obey cluster decom-
position; the ground state must not be linear combination
of vacua that become disjoint at large N. This then implies
that multitrace expectation values factorize at large-N. We
do not expect cluster decomposition to fail, but we mention
this condition for completeness.

Clearly, a crucial question is whether the three condi-
tions listed above actually hold. We have no reason to
suspect that the first two conditions fail, and we assume
here that they hold. The status of the third condition is less
clear. In the following we give a brief summary of relevant
results in the literature, fromwhich we conclude that, while
there are some reasons to think that the condition holds,
what is needed is a direct study of this issue.

First we note that the third condition fails when the
quark masses go to infinity. In that limit the single-site
theory becomes the Eguchi-Kawai (EK) model, for which
analytical and numerical results show that the center sym-
metry is spontaneously broken at weak coupling [8–10].
This is not necessarily a concern, however, because we are
interested in small quark masses, and there are reasons to
think that there will be a transition to a phase with restored
center symmetry as the quark mass is lowered. In particu-
lar, in the limit of zero quark mass, an analysis of the
continuum theory on R3 � S1, using weak-coupling tech-
niques that are valid when the radius of the S1 is small
enough, finds that the center symmetry (here just ZN) is
unbroken for small radius [6]. The situation at nonzero
quark mass has been discussed in Refs. [11]. It appears to
us that the conclusion from the last of these papers is that
the center symmetry is broken for any nonzero mass when
N ! 1. We also note in passing that, for very heavy quark
masses, the effect of the fermions is to induce extra inter-
actions between Polyakov loops wrapping around the com-
pactified direction, and from this point of view, the
emergent model is in the class of ‘‘deformed EK models’’
suggested in Ref. [12], for which the center symmetry is
unbroken at weak coupling for a judicious choice of its
parameters (for a related study see Ref. [13]).

Very recently, the calculation in Ref. [6] was extended in
Ref. [14] to lattice regularization using Wilson fermions.
The results were promising: the ZN symmetric vacuumwas

seen to have a lower energy than that of the vacua breaking
ZN ! �, for a range of lattice parameters that are physi-
cally relevant and that include the chiral point. The results
of Ref. [14] also suggest that the center symmetry may be
intact even for quite heavy fermions, thus opening a path to
study the pure-gauge theory on a lattice with one direction
reduced to a point. We note, however, a caveat concerning
the results of Ref. [14]: the possibility of more elaborate
center-symmetry breaking to nontrivial subgroups of ZN

was not considered. Such symmetry breaking has been
found in a different, though similar, setup, in which one
uses a continuum regulator in the R3 directions and a lattice
regulator in the S1 direction [15]. In fact, in this setup the
symmetry is found to break even at zero mass.
For completeness, we note that other approaches to

large-N reduction have been followed in the literature.
Most closely related to the present work is the study of
EK reduction in the matrix model obtained by dimensional
reduction of SUðNÞ supersymmetric Yang-Mills theory
(the Nf ¼ 1=2 case discussed below) [16]. This work

differs, however, in using a noncompact representation of
the gauge fields. Nevertheless, the evidence found in
Ref. [16] that reduction holds for a range of scales is
encouraging. See also the related work in Ref. [17].
In addition, for QCD with quarks in the fundamental

representation, whose dynamics in the N ! 1 limit are
those of the pure-gauge theory, it has been found that
volume independence does hold as long as one does not
reduce the length of the box below a fixed physical size of
Oð1 fmÞ [18] (see also Ref. [19]). Other approaches to
repair the center-symmetry breaking problem of the EK
model, such as the twisted [20] and quenched [8,9] EK
models, have been found recently to fail for weak coupling
[21–24].
As can be seen, there are no results that directly address

our third condition for the single-site model. In principle,
one could extend the perturbative calculation of Ref. [14]
to the case where all Euclidean directions are reduced to a
point, but this would require dealing with infrared diver-
gences that arise in the single-site theory. In fact, even if
such a weak-coupling calculation were done, it would not
tell us the center-symmetry realization for moderate cou-
plings, where actual lattice calculations are done. For
example, we might find that a weak-coupling calculation
points to a ZN broken phase, but that the larger fluctuations
in the gauge fields, which occur as the coupling increases,
restore the symmetry. Alternatively, if a one-loop calcula-
tion tells us the symmetry is intact, then a sufficiently
intricate vacuum manifold could lead to symmetry break-
ing at strong enough coupling. These possibilities are not
just academic exercises as both were observed in related
models—for example see the phase diagram of the model
studied in Ref. [22].
From the discussion above it is clear that a nonperturba-

tive lattice Monte-Carlo analysis of the single-site model is
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required, and this is what we perform in this paper. In
particular we focus here on the theory with Nf ¼ 1, which

is connected, through the equivalences mentioned above,
to physical QCD with two flavors. Our results suggest that
the ðZNÞ4 symmetry is intact for a broad range of quark
masses including zero. Thus we are studying a theory
which is ‘‘within 1=N’’ of the infinite-volume theories
appearing in conditions (1)–(2) above: QCD at large N
with one Dirac fermion in the adjoint representation, QCD
at large N with two Dirac fermions in the antisymmetric
representation, and, last but not least, QCD at N ¼ 3 with
two degenerate flavors in the fundamental.

It would also be of considerable interest to study
whether reduction holds for other values of Nf. For Nf ¼
1=2, the equivalence is, in the massless limit, to the large-N
limit of N ¼ 1 SUSY (and to QCD with a single Dirac
flavor). For two colors this SUSY theory was studied on the
lattice by various authors [25,26] (see also the review in
Ref. [27] and the work noted above on the reduced model
in the noncompact theory [16]). The Nf ¼ 2 case is of

interest as a potential example of a nearly-conformal or
conformal theory. Again, for a small number of colors,
these theories have been studied on the lattice [28,29].

The following is the outline of the paper. In Sec. II we
discuss QCD with Nf adjoint fermions—the theory that

our single-site model is potentially equivalent to. We define
the theory and describe a conjecture for its phase diagram.
In Sec. III, we discuss the corresponding volume-reduced
single-site theory—again defining this theory and present-
ing a conjecture for its phase diagram. Section IV provides
some technical details of our lattice Monte-Carlo simula-
tions of the single-site theory. In Sec. V we define the
observables we measure and use them to map the parame-
ter space of our model, looking for regimes in which the
center symmetry is intact. Section VI includes a restricted
set of results of physical interest, such as certain eigenvalue
densities of Dirac operators. We summarize our study in
Sec. VII and discuss possible future directions of study.

II. LATTICE QCD WITH ADJOINT FERMIONS

If reduction holds, the single-site matrix model dis-
cussed in the next section is equivalent, at large N, to
lattice QCD with fermions in the adjoint representation
in (arbitrarily) large volumes. Here we discuss the proper-
ties of the latter theory, so that we know what we should
expect to find in the single-site model if reduction holds.

The orbifold construction that underlies this potential
equivalence implies that the form of the lattice actions is
the same in both the reduced and unreduced theories. We
use the Wilson gauge action and Wilson fermions for the
matrix model, and so discuss below the same action for the
large-volume theory. We thus consider a gauge theory in
four Euclidean dimensions, with lattice spacing a and L4

sites, and whose path integral

Zadj ¼
Z

DUDcD �c expðSgauge þ �cDWc Þ: (2.1)

The gauge action is

Sgauge ¼ 2Nb
X
P

ReTrUP; (2.2)

where P labels plaquettes, UP is product of SUðNÞ link
variables around the plaquette, and b is the inverse ‘t Hooft
coupling that is kept fixed as N is increased

b � ðg2NÞ�1: (2.3)

The Nf Dirac fields c carry implicit spatial, spinor, and

adjoint color indices. We use the lattice Wilson-Dirac
operator

ðDWÞxy ¼ �xy � �

�X4
�¼1

ð1� ��ÞUG
x;��y;xþ�

þ ð1þ ��ÞUyG
x;��y;x��

�
; (2.4)

where x and y label sites, and � is the usual hopping
parameter, related to the bare quark mass by

� ¼ 1

8þ 2am0

: (2.5)

The boundary conditions on both gauge and fermion fields
are taken to be periodic.
In a literal implementation, UG

x;� would be the adjoint

representatives of the SUðNÞ matrices Ux;� appearing in

the gauge action. ThusUG would be a matrix of dimension
(N2 � 1), and c an (N2 � 1)-dimensional color vector. We
find it simpler to place the fermions in the reducible N �
�N ¼ adj � 1 representation, so that they have N2 color
components, and are acted on by N2 � N2 matrices. As
will be seen shortly, the additional singlet component
decouples from the dynamics.
We denote fundamental representation color indices by

lower-case letters, e.g. a, b 2 ½1; N�, andN � �N indices by
upper-case letters, e.g. A, B 2 ½1; N2�. We choose a basis
in which the latter index is composite:

A � ða1; a2Þ; (2.6)

and, correspondingly, in which

UG
AB � UG

ða1;a2Þ;ðb1;b2Þ ¼ Ua1;b1U
?
a2;b2

: (2.7)

This acts on a fermion field with indices c B ¼ c ðb1;b2Þ. By
a change of basis we can bring UG into block diagonal
form, with a 1-d block for the singlet, and an ðN2 � 1Þ � d
block for the desired adjoint part. The singlet part is,
however, unity for all U 2 SUðNÞ. This implies that

detDWðUN� �NÞ ¼ detDWðUadjÞ � constant; (2.8)

showing that we obtain the path integral of the desired
adjoint theory up to an irrelevant overall constant. To
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calculate fermionic expectation values one would, how-
ever, need to remove the singlet component.

At tree level in perturbation theory, the quarks become
massless when � ¼ 1=8, a result which holds for any
representation. At higher order, and nonperturbatively,
am0 is additively renormalized, and the true chiral point
occurs at �c > 1=8. This is because Wilson fermions break
chiral symmetry explicitly for any nonzero lattice spacing.
The physical mass is then given by

mphys ¼ Zm

a

�
1

2�
� 1

2�c

�
; (2.9)

with Zm a multiplicative renormalization factor that de-
pends on the scheme chosen to define the mass. This factor
is finite and of Oð1Þ as long as we consider lattice spacings
that are not too small, as we do in practice.

QCD with a single adjoint Dirac fermion is asymptoti-
cally free (and quite far from the conformal window ex-
plored in Refs. [28,29]), and is expected to confine and
spontaneously break its chiral-symmetry. Let us first con-
sider the theory with a chirally symmetric regulator.
Because the fermion representation is real, its global sym-
metry group in the chiral limit is SUð2NfÞ and not

SUðNfÞL � SUðNfÞ (for example, see Refs. [30,31]).

This symmetry is conjectured to break spontaneously to
the flavor group SOð2NfÞ, generating 2N2

f þ Nf � 1

Nambu-Goldstone bosons. ForNf ¼ 1we therefore expect

two massless modes. The lattice theory, with Wilson fer-
mions, respects only the SOð2NfÞ flavor symmetry (which

can be most easily seen by rewriting the action using
Majorana fermions). Chiral symmetry is restored only in
the continuum limit, and requires tuning � appropriately.
We discuss the situation at finite lattice spacing below
when we sketch the phase diagram.

The theory also has a ðZNÞ4 center symmetry, each factor
corresponding to multiplying all the link elementsUx;�0

on

a slice of fixed coordinate x0 in the �0 direction by an
element of ZN . Since the fermions are in the adjoint
representation, they are neutral under this symmetry. We
expect this symmetry to be unbroken for large volumes, as
it is in the pure-gauge theory. The key issue is whether it
remains unbroken in small volumes. As discussed in the
Introduction, analytical arguments in the case of a single
short direction indicate that it will remain unbroken at
small volumes if the boundary conditions on all fields are
periodic. This is in contrast to what happens when the
fermions have antiperiodic boundary conditions, when
we do expect the center symmetry to be broken when
one passes through the finite-temperature deconfinement
transition as the physical length of one of the directions is
reduced.

A. Phase diagram of adjoint lattice QCD with Nf ¼ 1

As far as we know, there have been no lattice studies of
gauge theories with Nf ¼ 1 adjoint fermions, even for

N ¼ 2 or 3. There has been extensive work for Nf ¼ 2,

with N ¼ 2 and 3, both for nonzero temperature (see, e.g.,
Refs. [32,33]) and at zero temperature [28,29]. As dis-
cussed in the Introduction, the latter theories are expected
to be conformal or nearly conformal, and are not likely to
provide useful guidance for the Nf ¼ 1 case. There has

also been much work on the Nf ¼ 1=2, N ¼ 2 theory with

both Wilson fermions (as reviewed in Ref. [34]; see
Ref. [35] for recent progress) and, more recently,
Domain-Wall fermions [25,26]. Here, again, the results
do not obviously apply to Nf ¼ 1 theories, because the

target Nf ¼ 1=2 theory is, in the chiral limit,

supersymmetric.
In fact, it may well be that QCD—physical QCD with

fermions in the fundamental-representation—is the theory
whose dynamics is most similar to that of the Nf ¼ 1

adjoint theory. Assuming so, we make the educated guess
for the phase diagram shown in Fig. 1. Although we are
particularly interested in the large-N limit, we expect this
sketch to hold also for small values of N.
Let us explain the features of this diagram. The solid

(blue) line labeled �cðbÞ, and ending at ð�; bÞ ¼ ð0:125;1Þ
is the ‘‘critical’’ line (or possibly lines, as discussed below)
along which to the fermions attain their minimal mass. The
continuum limit, in which there are light fermions, is
obtained by approaching the end point of this line (in a
way which depends upon the desired fermion masses).
Close enough to the continuum limit (i.e. for large

enough b), the theory in the vicinity of the critical line
can be analyzed using chiral perturbation theory including
lattice artifacts [36]. The analysis is similar to that for
QCD, but must be generalized to the SUð2Þ ! SOð2Þ

b

0.125

0
0

0.25

~0.36

??

?

κ

κc(b)

oo

b
bulk

(κ)

FIG. 1 (color online). Conjectured phase diagram in the �� b
plane for a QCD-like theory with a single Dirac adjoint fermion.
Details are discussed in the text.
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chiral-symmetry-breaking pattern. In fact, the correspond-
ing case for Nf ¼ 2 adjoints [SUð4Þ ! SOð4Þ] has been

worked out in Ref. [37], and the generalization to our case
is straightforward. One finds that, as in QCD, there are two
possibilities: either there is a line of first-order transitions,
at which the two degenerate pseudo-Goldstone ‘‘pions’’
attain their minimal (nonzero) mass, or there are two lines
of second-order transitions, at which the masses of both
pions vanish. Between these second-order lines lies an
Aoki phase [38], in which the SOð2Þ flavor symmetry of
the lattice theory is spontaneously broken, so that one of
the pions is exactly massless, while the other is massive. As
b ! 1, the nonzero pion masses in both scenarios go to
zero linearly with a. In addition, the width of the Aoki
phase, if present, shrinks as a3.

One cannot predict which scenario applies without a
nonperturbative calculation, and the result depends on the
details of the action. The numerical results discussed below
suggest that the transition is first order (and thus that �c is a
single line) for b * 0:1 (which is the smallest value we
use). It is worth stressing that, in either scenario, one can
approach the continuum limit on either side of the transi-
tion(s), i.e. with � < �cðminÞ or � > �cðmaxÞ. The two
sides have identical long-distance physics as a ! 0.

As one moves to stronger coupling, terms of higher
order in a become important, and it is possible that one
changes from a first-order transition to having an Aoki
phase, or more exotic possibilities. Once at very strong
coupling, g2N � 1, one can show that there will be an
Aoki phase, and that �c ! 1=4 when b ! 0. This is be-
cause the analysis of lattice QCD in this limit carried out in
Ref. [39] holds also for the theory with fermions in the
adjoint representation.2 Because of this, we have shown a
region (solid [blue] shading) of Aoki phase for b & 0:1.

For � 	 1
4 there will be additional phase structure (the

Aoki phase ‘‘fingers’’), with additional critical lines along
which the continuum theory has more than one light Dirac
fermion (four or six, depending along which critical line
one takes the continuum). These continuum theories are
not asymptotically free, and are not interesting for our
purposes of connecting to physical QCD. Thus we have
restricted our attention to � < 1

4 .

The other feature shown in Fig. 1 is the approximately
horizontal (red) dashed line punctuated with question
marks. This indicates a possible ‘‘bulk’’ transition, so we

label it bbulkð�Þ. For N 	 5 such a transition is known to be
present at � ¼ 0 (i.e. the pure-gauge theory) and to be
strongly first order (for lower values of N it is a crossover).
We therefore expect that it persists as a first-order transi-
tion line for some distance out into the �� b plane. We
emphasize that this transition is a lattice artifact and so the
bare coupling at which it takes place approaches a nonzero
(and noninfinite) �-dependent value for infinite volume
and infinite N. For example, it occurs for � ¼ 0 at
bbulkð� ¼ 0Þ ’ 0:36 as indicated in the Figure.3 This tran-
sition is also not associated with any symmetry breaking
and so can end anywhere in the (�� b) plane. In the
absence of any data we do not know what happens and
so decorate the dashed line by question marks. In any
event, since the continuum limit is at b ¼ 1, lattice simu-
lations aiming to approach that limit should be made for
b > bbulkð�Þ.

III. THE VOLUME-REDUCED THEORYAND ITS
PHASE DIAGRAM

We now turn to the single-site theory which is the focus
of the present work. It is defined simply as the L ¼ 1
version of the construction in Eq. (2.1), and is the general-
ization of the original EK model obtained by adding ad-
joint fermions. The degrees of freedom in the model are the
four SUðNÞ matrices U�¼1–4, and the 4N2-component

Grassmann variables c and �c . The action of this adjoint
EK (AEK) model is

SAEK ¼ SEK þ �cDred
W c ; (3.1)

SAEK ¼ 2Nb
X
�<�

ReTrU�U�U
y
�U

y
� ; (3.2)

Dred
W ¼ 1� �

X4
�¼1

½ð1� ��ÞUG
� þ ð1þ ��ÞUyG

� �: (3.3)

For the purpose of Monte-Carlo simulations, we formally
integrate over the fermions and evaluate expectation values
with the following path integral:

ZAEK ¼
Z
SUðNÞ

Y4
�¼1

DU� exp½SEK þ log detðDred
W Þ�:

(3.4)
2This holds despite the fact that the symmetry-breaking pattern

is different. For example, one of the pions which becomes
massless is created by the ‘‘diquark’’ operator c TC�5c . For
g2N � 1, the propagator for this diquark has, in a hopping-
parameter expansion, both quarks hopping along the same path,
so that gauge matrices completely cancel from the ‘‘pion’’
propagator, just as for quark-antiquark pair in QCD in this limit.
One can furthermore show that the Dirac-matrix factors are the
same in the two calculations. Thus the propagators in the two
theories are proportional, and so the corresponding pion masses
vanish at the same �.

3The value of bbulkð� ¼ 0Þ was measured, for example, by
hysteresis scans [40]. A result is also given in Ref. [41], but using
the simulations of the ‘‘twisted EK’’ model, a variation of the EK
model that was recently invalidated for large enough values of N
[22,23]. Nonetheless, it is possible that reduction holds for the
values N � 64 used in Ref. [41], and that the estimate for
bbulkð� ¼ 0Þ obtained there is reliable.

NONPERTURBATIVE VOLUME REDUCTION OF LARGE-N . . . PHYSICAL REVIEW D 80, 065031 (2009)

065031-5



The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 �: U� ! �U��
y with � 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U� ! U�z
n� with z ¼ e2�i=N and n� 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u � 1

N

1

NP

X
P

htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured � 1

N

1

6

X
�<�

htrU�U�U
y
�U

y
� iZAEK

(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb; �Þ ¼ uredðb; �Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b� �

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for � ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK 
 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in � can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-

ory, the center symmetry is broken for � ¼ 0, but restored
once � * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when � grows even more,
to values above �1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK � 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4

(Ζ  )Ν
4

b

0.125

0
0

0.25

??

?

κ

κc(b)

oo

b
bulk

? ?

~0.19

(Ζ  )Ν
4

(Ζ  )Ν
4

FIG. 2 (color online). Conjectured phase diagram for the
single-site model in the large-N limit. Details are discussed in
the text.

4For example, this was seen in Ref. [42] at � ¼ 0.
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We stress that we do not know the value of � at which this
line hits the b ¼ 1 axis, but our conjecture is that this
value is smaller than (likely significantly smaller than) � ¼
0:125.

Toward the right-hand side of the plot there is another
solid (black) line which also separates the conjectured
central center-symmetric phase from a shaded symmetry-
broken phase or phases. Here we actually expect a very
complicated phase diagram, based on the fact that there are
regions where the corresponding infinite-volume theory
has multiple light fermions (as discussed above), and the
results of Ref. [14]. Since this is not our region of interest,
we have not tried to fill in the details. What is important
here is the conjecture that this symmetry-broken region lies
(significantly) to the right of the critical line (consistent
with the results for Ref. [14]).

Given these conjectures, we are left with a central
‘‘funnel’’ in which reduction holds, and thus have repro-
duced both the critical ‘‘line’’ �cðbÞ and the possible bulk
transition line from our conjecture for the infinite-volume
theory, Fig. 1. The key question for our numerical inves-
tigation is whether this central funnel, and, in particular, its
upper part (where one can take the continuum limit) is
actually present. We stress again that the precise position
of the boundaries of this funnel are supposed to represent
only the conjecture that there is a generous region on either
side of �c in the symmetry-unbroken phase.

Reduction does not hold in the regions where the ðZNÞ4
is broken. For this reason we have changed the character of
the dashed (red) bbulkð�Þ line outside of the central funnel.
In particular, we are not aware of numerical evidence for a
bulk transition for � ¼ 0 beyond bEK and did not ourselves
observe one. Thus, we end the line away from the b axis.
We stress that it is not a priori known whether there is a
bulk transition at all for any value of �.

In the next sections we study the theory defined by
Eq. (3.4) using nonperturbative Monte-Carlo simulations,
and indeed find a phase diagram similar to that appearing
in Fig. 2.

IV. NONPERTURBATIVE LATTICE STUDIES:
TECHNICAL DETAILS

We study the path integral in Eq. (3.4) using
Monte Carlo simulations. The weight function is

PðUÞ ¼ eSEKðUÞ detDred
W ðUÞ; (4.1)

which is integrated using the SUðNÞHaar measure for each
link:

Q
4
�¼1 dU�. For a single Dirac fermion in the adjoint

representation, detDred
W is real and positive, so that PðUÞ

can be treated as a probability density. The reality of the
determinant follows as usual from �5 hermiticity
[�5D

red
W �5 ¼ ðDred

W Þy]. Positivity follows because the fer-
mion is in a real representation, which allows the action to

be rewritten in terms of two Majorana fermions, each of
which gives a Pfaffian when integrated out. The Pfaffian is
real, though of indeterminate sign, but its square is neces-
sarily positive [34].
To produce the field configurations we use a standard

Metropolis algorithm. Following Cabibbo and Marinari
[43], our proposed changes are obtained by multiplying
the links by matrices living in SUð2Þ subgroups of SUðNÞ.
For each subgroup, we propose five changes, and then run
through the NðN � 1Þ=2 SUð2Þ subgroups in turn. We
repeat this for each of the four links. To calculate the
change in PðUÞ we simply calculate the determinant
anew after each suggested change in the links. The
10NðN � 1Þ proposed changes just described constitute
what we call a ‘‘model update.’’We perform measurements
every five model updates, after a number of initial ‘‘ther-
malization’’ updates. We found that we could attain accep-
tance rates of 50–60%.5

Since the cost of calculating the determinant of an M�
M matrix scales like M3, the cost of each of the SUð2Þ
updates scales like N6, and the overall cost of a model
update scales like N8. This means that, for a fixed number
of model updates, a calculation with N ¼ 15 is 25 times
more expensive than one with N ¼ 10. Our resources for
this calculation were very modest—roughly an average of
four Intel(R) 6700 @ 2.66 GHz CPUs. We did not attempt
to parallelize our code, and since we have a single lattice
site, it is not clear to us if this is possible. On a single CPU,
an SUð10Þ calculation including 50 thermalization model
updates and 100 measurements (550 model updates alto-
gether) took around 3.5 h. We also found that the asymp-
totic N8 scaling held to reasonable approximation (so that
gathering 500 model updates in SUð15Þ takes about three
days, explaining the modest data set we collected for that
gauge group). We note that it may not be necessary to
update all the SUð2Þ subgroups of SUðNÞ in a single model
update—such a procedure is perhaps more suitable for
pure-gauge models whose computational scaling law is a
moderate N3. Nevertheless, because our calculation is the
first of its kind, we aimed to be conservative and to avoid
autocorrelations between successive measurements to the
extent possible.
In the following, all errors have been calculated using

the jackknife procedure. In some measurements, we varied
the bin size and chose a value for which the statistical error
saturated. In other measurements, however, we worked
with a fixed bin size, and in these cases, based on our

5We did so by preparing a list of 800 random SUð2Þ matrices
(and their inverses) such that their traces were Gaussianly
distributed around the unit matrix with a width w that decreased
with increasing b and N. For example, for N ¼ 8, w was �0:5
for b ¼ 0:1, �0:05 for b ¼ 0:30, and �0:01 for b ¼ 1:0.
Compared to SUð8Þ, the width w of SUð15Þ, was decreases by
about 20%. The distribution in the other, angular, directions in
the SUð2Þ manifold were uniform.
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experience with variable bin sizes, we multiplied the re-
sulting statistical error by a factor of 2. This factor is
chosen to be conservative.

We conclude this section by presenting in Tables I and
II, the details of the gauge configurations we have accu-
mulated. We typically used 50 model updates for thermal-
ization before starting measurements.

V. NON-PERTURBATIVE LATTICE STUDIES:
RESULTS

In this section we present the results of our Monte-Carlo
studies and focus on the way the center symmetry is
realized in various regions of the phase diagram. The
results in Secs. VB, VC, VD, and VE are from the runs
in Table I, while those in Sec. V F are from the longer runs
in Table II.

A. Definition of observables

The observables we use to map the phase diagram are
listed below. They were chosen to probe the large number
of possible breaking patterns of the center symmetry (as
described, for example, in Ref. [13]), as well as to detect

phase transitions that do not involve a change in the
realization of the center symmetry.
(1) Plaquette ured as defined in Eq. (3.8).

This observable is not an order parameter for center
symmetry, but allows us to detect transitions that are
unrelated to the center realization. These include a
possible bulk transition at bbulkð�Þ, which would
separate the lattice strongly-coupled phase from
the continuum one (see Fig. 2), and the �cðbÞ line
to which one needs to tune to obtain the minimal
quark mass.

(2) The expectation values of the traces of four link
variables P� � 1

N trU�, and their magnitudes jP�j.
We often refer to these variables as ‘‘Polyakov
loops.’’
The P� are order parameters for the complete break-

ing of the center symmetry, though they are not
sensitive to partial breaking. The jP�j are probes

of large-N factorization: they scale like 1=N if
factorization holds, but like N0 if it breaks down.

(3) The expectation values of the traces of the 12 ‘‘cor-

ner variables’’ M�� � 1
N trU�U� and M�;�� �

1
N trU�U

y
� (with �> �), and their magnitudes

jM�;��j.
These observables were identified in Ref. [24] as
probing a nontrivial form of symmetry breaking
characterized by correlations between the link ma-
trices, U�, in different directions.

(4) For some parameters we also calculate the following
set of ðLþ 1Þ4 traces:

K~n � 1

N
trUn1

1 Un2
2 Un3

3 Un4
4 ;

with n� ¼ 0;�1;�2; . . . ;�L; (5.1)

where U�n � Uyn. We take L ¼ 5 and so calculate
14 641 different averages for each gauge con-
figuration.
Like the M�;��, these traces are order parameters

for intricate symmetry breakdown schemes [such as
ðZNÞ4 ! ZN or ðZNÞ4 ! ðZNÞ3 � ZN=2, etc.].

B. Results for � ¼ 0: Infinitely heavy quarks

We begin by making a connection with the original EK
model (obtained when � ¼ 0), for which the behavior is
known from previous work. This corresponds to moving up
the left-hand axis of Fig. 2. We show in Fig. 3 scatter plots
of the four Polyakov loops for three values of b at N ¼ 10.
The smallest value, b ¼ 10�6, is clearly in the strong-
coupling regime where, as discussed in Sec. III, we expect
the center symmetry to be intact. That this is the case is
shown by the clustering of P� around the origin. As b

increases, the distribution spreads out while remaining
centered on the origin (not shown), until one reaches

TABLE II. Details of longer runs.

Gauge

group b �
Number of

configurations

SUð10Þ 0.35 0.1275, 0.150, 0.155 1000

0.50 0.1275

1.00 0.09, 0.1275

SUð13Þ 1.00 0.09 3700

TABLE I. Details of runs that consisted of 100–400 measure-
ments.

Gauge group b �

SUð8Þ 0.35 0.065–0.22

0.10–0.50 0.001–0.40

1.00 0.05–0.20

10�5–1:00 0.03, 0.04

SUð10Þ 0.30 0.01–0.20

0.35 0.065–0.22

0.40 0.13–0.18

0.40 0.13–0.18

0.50 10�3–0:495
SUð11Þ 0.30 0.03, 0.06

0.50 0.03–0.33

1.00 0.09

SUð13Þ 0.50 0.06–0.155

0.35 0.15–0.20

SUð15Þ 0.50 0.06–0.155

1.00 0.09
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b 
 0:19, at which point center-symmetry breaking is
observed.6 An illustration of the behavior well inside the
symmetry-broken phase is shown in the right two panels,
which are for b ¼ 0:3421 and 0.5. The Polyakov loops are
seen to mainly fluctuate around elements of the center of

SUð10Þ, up to an overall scaling factor, i.e. hP�iZAEK
�

p0e
2in��=10, with p0 
 0:7. For b ¼ 0:3421 there are also

tunneling transitions between different center phases.
Although at finite N one does not have a phase transition
in the single-site model, these figures show that one can
nevertheless observe the putative phase structure even at
moderate values of N. Indeed, we obtained similar results
(not shown) for N ¼ 8.

The nature of the transition is shown in more detail in
Fig. 4, which displays the results of a scan in b at � ¼ 0 for
N ¼ 10.7 There is a rapid rise in the plaquette starting at
b 
 0:19, and a corresponding increase in the average
magnitude of the Polyakov loop. Note that this ‘‘transi-
tion’’ is not related to the bulk phase transition of lattice
gauge theories, for the latter does not break the center
symmetry. We find that, while N ¼ 10 is large enough to
show a clear indication of the phase transition, it is too
small to see a true hysteresis curve (i.e. with a nonzero
range of metastability).

C. Results for � > 0: Dynamical quarks

We now ask what is the effect of increasing � from zero,
i.e. of decreasing the mass of the adjoint quarks from
infinity. Most interesting is to measure this effect for values

of b for which the center symmetry is broken at � ¼ 0. As
an illustration we show in Fig. 5 the scatter of P� in the

complex plane for a range of � values at b ¼ 0:3 and N ¼
10. We observe that symmetry remains broken at � ¼ 0:03,
but appears to be restored for � ¼ 0:06 and above. That the
symmetry is restored at such a small value of � is consis-
tent with the weak-coupling analysis of Ref. [14]. It is
encouraging for our purposes since it indicates that even
very heavy adjoint quarks are sufficient to recover the
reduction that is absent in the EK model.
We find that the restoration of the center symmetry also

holds both for weaker couplings—as in the b ¼ 0:5 data
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FIG. 3 (color online). Scatter plots of the four Polyakov loops for N ¼ 10 and � ¼ 0. The values of the coupling are b ¼ 10�6 (left),
b ¼ 0:3421 (middle), and b ¼ 0:5 (right).
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FIG. 4 (color online). Plot of the average plaquette ([blue]
pluses) and the magnitude of the Polyakov loop P�¼1 ([red]

crosses) at � ¼ 0 as a function of b for N ¼ 10.

6As noted above, this occurs by a cascade of transitions,
analogous to those observed in Refs. [42].

7In this and subsequent scans, the number of thermalization
runs at each value of b was 50, and 100 measurements were
performed. The initial gauge configuration for each value of b
was the final gauge configuration at the preceding value of b.
The first b simulated was that at b ¼ 0, where the initial
configuration had U�¼1–4 ¼ 1.
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shown in Fig. 6—and for larger values of N—as exempli-
fied by the N ¼ 15, b ¼ 0:5 results shown in Fig. 7. (Note
that the first nonzero value of � in the N ¼ 15 plots is 0.06
and not 0.03, unlike in the previous plots.) We observe that
for � 	 0:06 the fluctuations in the Polyakov loops do
decrease as N increases, qualitatively consistent with the
expected 1=N falloff if one has large-N factorization.
Another way to see this is to look at the Monte-Carlo
time history of the Polyakov loops. We present examples
for N ¼ 8, 10, and 15 at b ¼ 0:5 in Fig. 8. We observe that
the P� fluctuate around zero, with an amplitude that de-

creases as N increases.8

So far, our results are consistent with the left-hand part
of the conjectured phase diagram of Fig. 2, i.e. with the
center-symmetry-broken phase ending for small �. To
investigate further, we have done scans in b for fixed
nonzero �. The left panel of Fig. 9 compares, for N ¼
10, the scan of the plaquette for � ¼ 0 (already shown
above) to that for � ¼ 0:0925 (well into the putative
symmetry-restored phase). The right panel shows the cor-

responding scans for jP�¼1j. We see that the would-be

center-breaking transition at b 
 0:19 for � ¼ 0 is re-
placed by a new structure at larger values of b ’
0:28–0:30, and that this new structure is not accompanied
by an increase in jP1j. Thus, although there may be a
transition for � ¼ 0:0925, it is not associated with
center-symmetry breaking. It is in fact not clear from our
study whether there is such a bulk transition at all. In either
case, it is clearly safer to work on the weak-coupling side
of this possible transition when trying to make contact with
the continuum. This does not, however, appear to pose any
difficulty, since our data is consistent with the ZN symme-
try being intact even at b ¼ 0:5 (and, less convincingly, at
b ¼ 1:0 as well—see below).

D. Looking for the chiral point

We now turn our attention to finding the critical line (or
lines), �cðbÞ, that were discussed in Secs. II and III and
appear in both Figs. 1 and 2. To do so we performed scans
for 0 & � & 0:5 at several values of b and N. We begin by
discussing the results of a hysteresis scan (i.e. a scan done
by both increasing and decreasing in �) for SUð8Þ at b ¼
0:35. The results are presented in Fig. 10. The left panel of
the figure shows the plaquette and reveals a very strong
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FIG. 5 (color online). Scatter plots of the four Polyakov loops for b ¼ 0:3 and N ¼ 10. The value of � increases from the top-left
plot to the bottom-right plot in the order 0.01, 0.03, 0.06, 0.11, 0.165, and 0.185.

8The relatively long decorrelation times evident in these plots
suggest that longer runs may be needed for some parameters. We
return to this point in Sec. VF.
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hysteresis, indicative of a first-order transition. The aver-
age magnitude of the Polyakov loops, shown in the right
panel, displays a much weaker hysteresis, with hjP�ji  1

on both sides of the transition. Based on this, and on the
behavior of the scatter plots of the P� and M�� (not

shown), we conclude that this transition does not involve
any breaking of the center-symmetry.

We next show, in Fig. 11, a compilation of all our N ¼ 8
results for b ¼ 0:1–1:0. We observe that, as b increases,
the transition shifts to smaller values of � and the disconti-
nuity in the plaquette decreases. These two features are
qualitatively consistent with expectations for the critical
line �cðbÞ in the first-order scenario discussed in Secs. II
and III. In particular, we expect that the transition should
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FIG. 8 (color online). Monte-Carlo time history of the Polyakov loop P�¼1 for N ¼ 8, 10 (upper panels) and N ¼ 15 (lower panel)
at b ¼ 0:5. The real part of P1 is shown by [red] pluses and the imaginary by [blue] bursts. The values of � are 0.148 in SUð8Þ, and
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interpolate between � ¼ 0:125 at b ¼ 1 and � ¼ 0:25 at
b ¼ 0, and our results are consistent with this expectation.9

We also expect that the transition should weaken rapidly as
b increases, as observed.
It is also important to investigate the N dependence. If,

when N ! 1, there is a first-order transition, we would
expect an increasingly wide region of metastability as N
increases. We have studied this at b ¼ 0:5 for N ¼ 8, 10,
11, 13, and 15, with results shown in Fig. 12. We see only a
very weak dependence on N away from the transition
(indicating that our results for the plaquette are close to
their N ¼ 1 values), while there is some evidence for
increasing metastability as N increases. This is most no-
table for N ¼ 10 ([black] crosses) compared to N ¼ 8
([red] pluses).
If our interpretation is correct, then the pions composed

of adjoint quarks should have a minimal, nonzero mass
along the critical line, and the long-distance physics on
both sides of the transition should be the same. It is beyond
the scope (and resources) of the present calculation to test
these claims directly. Clearly this is an important issue for
further work. In this regard, it is useful to convert our
values of b into the corresponding values of � in a standard
SUð3Þ simulation with Wilson gauge and fermion action.
The relation is � ¼ 2N2b, so that b ¼ 0:35, 0.5, and 1
convert to � ¼ 6:3, 9, and 18, respectively. In pure-gauge
simulations, one enters the weak-coupling regime at
� 
 6, and this crossover value is reduced by the presence
of fermions. Consequently, our calculations at b 	 0:4 are
well inside the weak-coupling region.
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FIG. 10 (color online). Hysteresis scans in � for N ¼ 8 at b ¼ 0:35, for the average plaquette (left panel) and the average magnitude
of the Polyakov loops (right panel). Scans with increasing (decreasing) � are shown using [red] pluses ([blue] crosses).
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9If there is an Aoki phase for small b this transition line would
correspond to the position of the left-hand boundary of this
phase. We have not done detailed studies at small b to elucidate
a possible region of an Aoki phase.
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It is interesting to compare the phase diagram we have
found thus far to that observed for the large-volume Nf ¼
2, N ¼ 2 theory in Ref. [29]. In scans of the plaquette
versus �, Ref. [29] shows a similar first-order transition for
stronger couplings, but also finds that the line of such
transitions ending at the point b ¼ �=8 
 0:25, � 

0:19. This is a very different behavior from that we have
observed, consistent with the underlying physics being
itself quite different.

E. Exploring larger � values

We have also performed some scans at larger values of
�. Here we are outside the regime which is connected by
reduction to physical QCD (which is roughly 0:05 & � &
0:2), but this region is interesting for several reasons. First,
we want to determine the boundaries of the region in which
the center symmetry is unbroken, so that reduction holds.
We also want to make a connection with the one-loop
computation of [14], which found a ZN-symmetry-
breaking transition for � * 1:4. Finally, it is simply inter-
esting in its own right to understand the phase structure of
this single-site model.

What we find is a complicated set of phase transitions,
involving partial breaking of the center symmetry. These

are reminiscent of the transitions found in the one-loop
potential studies of Ref. [13]. We have not fully untangled
the phase structure, and will thus only present a sampling
of our results along with some conjectured interpretations.
As an example, in Fig. 13 we present scatter plots of the

M�;�� observables (defined in Sec. VA), for N ¼ 10 and

b ¼ 0:5. The value of � varies from 0.0001 (where the
theory is essentially pure gauge), through the intermediate
values of � discussed in Sec. VD, up to large values (by
which we mean � * 0:2). The corresponding Polyakov
loop scatter plots are presented in Fig. 14 (note that there
is some overlap with Fig. 6). We observe that, for � & 0:2,
the M�;�� behave similarly to the Polyakov loops: they

show center-symmetry breaking for � ’ 0 [if the links,U�,

have phases close to e2in��=N then the M�;�� have phases

close to e2iðn��n�Þ�=N], but then fluctuate around zero for
intermediate values of �, as exemplified by the results
shown for � ¼ 0:1275. The fluctuations are, however,
much larger for the M�� than for the Polyakov loops.

A new behavior is seen for � * 0:2. As illustrated by the
results at � ¼ 0:245 and 0.275, the M�� show symmetry

breaking (although with tunnelings between ‘‘vacua’’)
while the P� do not. This indicates a mode of center-

symmetry breaking involving the correlation of eigenval-
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ues of links in different directions, while the eigenvalues
themselves remain uniformly distributed. This is the pat-
tern we observed in the quenched EK model [24], and
shows the importance of using order parameters other
than the Polyakov loops.

The onset of this behavior is examined in more detail
[now for SUð11Þ] in Figs. 15 and 16. The first two panels
show the distribution of M�� spreading out, with some of

the them having an almost fixed phase, while the P�

remain close to the origin and show no signs of symmetry
breaking. The bottom two panels in each figure show that,
as � is increased further, all the M�� show a clear

symmetry-breaking pattern, while the P� start to move

away from the origin. This is also seen in the penultimate
panels of Figs. 13 and 14.

By studying the distribution of the individual P� and

M��, we have determined a possible explanation for some

of these scatter plots in terms of the behavior of the
eigenvalues of the link matrices. As an example, consider
the case of N ¼ 10, b ¼ 0:5, and � ¼ 0:275, shown in
Figs. 13 and 14. At long Monte-Carlo time, when all the
M�� are in the ‘‘points’’ of the ‘‘stars,’’ they can be under-

stood semiquantitatively if

U� 
 e2�in�=10diagði; i; i; i; i;�i;�i;�i;�i;�iÞ
� fluctuations; (5.2)

with n1 ¼ n4 ¼ 1 and n2 ¼ n3 ¼ 2. The order of the
diagonal elements in U� is unimportant, but must be the

same for all four links. Note that the matrix in Eq. (5.2)
does have unit determinant as required to be in SUð10Þ, but
is traceless and so leads to vanishing P�. Fluctuations

reduce the magnitude of theM�� from unity down to about

0.75, and lead to the P� spreading out around the origin.

Thus one can understand the behavior for these order
parameters as due to the eigenvalues clumping into two
subsets [thus breaking the symmetry down to ðZ2Þ4], and
the ‘‘locking’’ of the eigenvalues of the different links
(breaking the symmetry further down to Z2). Note that
the precise form of the eigenvalue clumping is dependent
on N. For example, the form in Eq. (5.2) cannot be gener-
alized to odd N, for which one eigenvalue is ‘‘left out.’’
This can be used to understand why the P� in the last two

panels of Fig. 16 (for which N ¼ 11) are not centered on
the origin.
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FIG. 14 (color online). Scatter plots of the four P� for the same data set as in Fig. 13.
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As � is increased further, there is another transition (or
transitions) to a phase (or phases) in which both the M��

and the P� show symmetry breaking (as illustrated by the

last panel of Figs. 13 and 14). We have also observed a
significant dependence on initial conditions in this region.

In summary, there is a complicated phase structure for
� * 0:2, the details of which depend on N. For our pur-
poses, however, the important conclusion is that, in this
region, the center symmetry is broken, and so reduction
fails. Thus we have not attempted a thorough study of this
region.

We close this subsection by comparing our results to
those from the 1-loop calculation of Ref. [14]. The latter
finds that the center symmetry is broken only for � * 1:4, a
much larger value than that we find in the single-site
model. This large difference may simply be due to the
difference in the geometries: a single short direction versus
four short directions. It may also be because Ref. [14] only
estimated energies of simple vacua such as those corre-
sponding to an unbroken ZN symmetry or a completely
broken ZN symmetry. The transition at � ’ 0:04 corre-
sponds to such a breaking, and indeed seems to agree
with the one-loop result. In contrast to this, the transitions

at � * 0:2 involve a more complicated breaking of the
symmetry, which was not studied in [14].

F. High statistics study of center-symmetry realization
for 0:05 & � & 0:2

In this section we perform more stringent tests to check
whether the center symmetry is intact in the physically
interesting regime 0:05 & � & 0:2. One motivation for
doing so comes in part from the examples seen in the
previous subsection. There we saw that simply looking at
the Polyakov loops is insufficient because the center sym-
metry can be only partially broken. Thus it is important to
use a set of order parameters sensitive to a range of differ-
ent patterns of symmetry breaking. Another motivation is
to push the calculation to couplings weaker than b ¼ 0:5,
so as to see if there is any barrier to taking the continuum
limit in the phase in which reduction holds. In other words,
we would like to study whether the central funnel in Fig. 2
continues up to larger b. Finally, we are concerned that the
runs discussed so far might be too short to resolve the
equilibrium state of the theory for some choices of parame-
ters. For example, the time histories shown in Fig. 8 in-
dicate rather long decorrelation times at b ¼ 0:5. One
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FIG. 17 (color online). Scatter plots (left panels) and Monte-Carlo time histories (right panels) of 1000 measurements of P1 (upper
panels) andM2;1 (lower panels), for N ¼ 10, b ¼ 0:35, and � ¼ 0:155. In the right panels, [red] pluses show the real part, while [blue]

crosses show the imaginary part.
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would expect this problem to worsen as b increases, and
indeed we find decorrelation times of Oð50Þ (as estimated
by eye) at b ¼ 1:0. We also find qualitative evidence that
decorrelation times increase as one approaches �c.

In order to attempt to address these concerns we per-
formed several long runs, listed in Table II, consisting of
1000–3500 measurements. We begin with a case in which
the symmetry-breaking pattern should be ‘‘easy’’ to re-
solve based on the results given in previous subsections:
the SUð10Þ theory at b ¼ 0:35 and � ¼ 0:1275. This is
well within the funnel and yet not close to �c. Examples of
the scatter plots and time histories are shown in Fig. 17. It
appears that these runs are long enough to unambiguously
see that P1 andM2;1 (and the other P�� andM��, for which

the plots are similar) are fluctuating around zero. This is
consistent with the conclusion drawn above, namely, that
the center symmetry is intact for these values of b and �.

We now move to weaker coupling. The decorrelation
time increases noticeably at b ¼ 0:5 (not shown), although
the evidence for the absence of symmetry breaking remains
strong. By the time one reaches b ¼ 1:0, however, the
results do not have such a clear-cut interpretation. This is
illustrated in Fig. 18, which shows results at a value of �
chosen to be in roughly similar relation to �c as that used in
Fig. 17, so that the quark masses are roughly comparable.

The scatter plots are not symmetric about the origin, and it
is difficult to tell from these results alone whether this
indicates simply that the run is too short or whether the
large fluctuations in the time histories are in fact tunneling
events between different phases in which the symmetry is
broken. We think the former possibility more likely, but the
latter should be kept in mind at this stage.
One way to differentiate between these two interpreta-

tions is to study how the fluctuations depend on N. If the
symmetry is intact, then hjP�j2i and hjM�;�j2i should

vanish as 1=N2 as N ! 1. If, instead, the symmetry is
broken, they should tend to a finite value, with 1=N2

corrections. We have tried to make this test by comparing
SUð10Þ and SUð13Þ runs at b ¼ 1:0, � ¼ 0:09. An ex-
ample is shown in Fig. 19. The fluctuations do decrease
as N increases, with hjM2

�;�ji dropping from 0.0850(28) to

0.0620(25). If we rely on these two values, then extrapolat-
ing in 1=N2 to N ¼ 1 yields 0.023(11). This is consistent
with no symmetry breaking.
Another option for studying symmetry breaking is to

study expectation values of the operators K~n, defined in
Sec. VA. Since there are a large number (� 104) such
observables, we have to find an efficient way to present the
results. We proceed by determining the signal-to-noise
ratio for each ~n:
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FIG. 18 (color online). As in Fig. 17 but for b ¼ 1:0 and � ¼ 0:1275.
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r ~n ¼ hK~ni
�K~n

; (5.3)

(where �K~n is the error in K~n). If the ðZNÞ4 symmetry is
unbroken, all the expectation values should be consistent
with zero within errors. Thus we expect r ~n to be distributed
approximately as a Gaussian with width �1. We do not
expect an exact Gaussian because we are working at finite
N and because the observables K~n are correlated.
Nevertheless, if there is symmetry breaking, and some of
the observables have nonzero expectation values, we ex-
pect outliers with jr ~nj � 1. Thus we study many possible

realizations of the ðZNÞ4 symmetry by looking at the his-
togram of the r ~n. Note that since K~n is a complex number,
we perform this analysis for both its real and imaginary
part, and denote the corresponding ratio and histograms by
rreal;imag and Hðrreal;imagÞ.
We begin showing in Fig. 20 the histograms HðrrealÞ for

two choices of parameters where we know what to expect.
These are
(i) SUð10Þ at b ¼ 0:35 and � ¼ 0:1275 (1000 measure-

ments), for which all the evidence discussed above
strongly suggests that the ZN symmetry is intact (see,
for example, Fig. 17).
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FIG. 19 (color online). As in Fig. 17, but showing M2;1 only, and for b ¼ 1:0, � ¼ 0:09. Upper and lower panels show, respectively,
results for N ¼ 10 (1000 measurements) and N ¼ 13 (3000 measurements—only every tenth being shown).

−3 −2 −1 0 1 2 3
0

200

400

600

800

1000

1200

r
real

H
(r

re
a
l)

SU(10), b = 0.35, κ = 0.1275, real part

−100 −50 0 50 100
0

5

10

15

r
real

H
(r

re
al

)

SU(10), b = 0.5, κ = 0.495, real part

FIG. 20 (color online). Histograms of the signal-to-noise ratio of the real part of K~n. Left: A case where the center-symmetry is intact
(N ¼ 10, b ¼ 0:35, � ¼ 0:1275). Right: A case where the symmetry is broken (N ¼ 10, b ¼ 0:5, � ¼ 0:495), with the top of the
histogram cutoff.

NONPERTURBATIVE VOLUME REDUCTION OF LARGE-N . . . PHYSICAL REVIEW D 80, 065031 (2009)

065031-19



(ii) SUð10Þ at b ¼ 0:5 and � ¼ 0:495 (100 measure-
ments), where we have strong evidence that the ZN

symmetry is broken (see the bottom-right panels of
Figs. 13 and 14).

For the first choice (left panel) we see the expected
Gaussian-like distribution, with almost all observables
consistent with zero within 2�. By contrast, for the second
choice (right panel), there are many traces whose signal-to-
noise ratio is very large, of Oð100Þ. This is a clear indica-
tion that the symmetry is broken (and the pattern of break-
ing can be deduced by determining for which ~n the signal is
significant).

Now that we have confidence in this method, we apply it
to cases where the symmetry realization is less clear.

Examples of the results are collected in Fig. 21. Here the
top row shows HðrrealÞ at b ¼ 0:35 and N ¼ 10 as
we approach closer to �c (which, from Fig. 11, is at

 0:175), and should be compared to the left panel of
Fig. 20. The middle row of Fig. 21 showsHðrrealÞ at weaker
coupling (b ¼ 1:0, still N ¼ 10) both away from (� ¼
0:09) and close to (� ¼ 0:1275) �c. These are from the
same data sets as those illustrated in the upper panels of
Fig. 19, and all panels of Fig. 18, respectively. Finally, the
bottom row shows HðrrealÞ and HðrimagÞ (left and right

panels) at b ¼ 1:0, � ¼ 0:09, but now at N ¼ 13 (corre-
sponding to the data in the lower panels of Fig. 19).
In none of these cases is there any evidence for outliers,

and we conclude that it is unlikely that the center symmetry
breaks in the funnel region, at least up to b ¼ 1:0. We note
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that this histogram method appears to be a more powerful
tool than looking at individual scatter plots and time
histories.

VI. RESULTS OF PHYSICAL INTEREST

Having found evidence that reduction holds in the inter-
esting region on either side of the putative critical �, we
now make a first attempt at extracting quantities of physi-
cal interest. AsN ! 1, the results we find should hold also
for the large-N infinite-volume gauge theory with one
adjoint quark (as long as one uses the same action and
the same values of b and �). As � approaches �c, the
quarks become light, and their contribution to the dynam-
ics becomes important. Conversely, as � moves away from
�c (towards zero, say), the quarks become heavy (com-
pared to its dynamically generated scale) and the dynamics
approaches that of the pure-gauge theory. The fact that
reduction appears to hold down to small values, � 
 0:05,
where we expect the quarks to be very heavy, indicates that
we may well be able to use reduction to study the pure-
gauge theory using this ‘‘adjoint deformation.’’

What we would like to do is use known results from the
infinite-volume pure-gauge theory to see how close we are
to N ¼ 1.10 Unfortunately, we cannot do any quantitative
comparisons at this stage. For one thing, sincewe are at this
stage unable to measure pion masses, we do not know
where the boundary between light and heavy quarks lies.
And even if we had determined that the quarks are heavy,
so that the long-distance physics was that of the pure-gauge
theory, the presence of a nonzero � would lead to addi-
tional terms in the gauge action, including, for example,
the trace of the plaquette in the adjoint representation. In
other words, reduction would match our single-site model
to a pure-gauge theory with a different gauge action, with
the additional terms entering at Oð�4Þ.

Despite these drawbacks, we think it useful to attempt a
large-N extrapolation for some quantities in order to make
a qualitative comparison to the pure-gauge theory. We do
so for the average plaquette and for the distribution of
eigenvalues of a quenched overlap fermion in the funda-
mental representation. We also attempted to extract the

string tension from the e�A� dependence of Wilson loops,
with A the area. (The loops are calculated using the reduc-
tion prescription of Ref. [2].) We find that the Wilson-loop
expectation values do drop as A increases, but only for a
short window, A < Ac, after which they start to grow. This
growth is presumably due to 1=N corrections. Although we
find that the upper edge of the window, Ac, grows with N,
the window is too small at our values of N to extract a
string tension. This problem could be resolved either by
using larger values of N or by developing variational
techniques to extract the tension at short distances. We
leave this for future studies.

A. Average plaquette

We begin by comparing the values of the plaquette. We
focus on three ðb; �Þ values at which we have good statis-
tical control for N ¼ 8–15: (0.5, 0.09), (0.5, 0.1275), and
(1, 0.09). The results are collected in Table III. We also
include in the table the value for the pure-gauge theory in
the large N limit. For b ¼ 0:5 this is given by [44]11

uð� ¼ 0; b ¼ 0:5Þ ’ 0:7182; (6.1)

while for larger values of b, we use three-loop perturbation
theory (taken from, for example, Ref. [22])

uð� ¼ 0; bÞ !b!1
1� 1

8b
� 0:653 687

128b2
� 0:406 640 6

512b3
þ . . .

(6.2)

¼ 0:8692 . . . at b ¼ 1:0: (6.3)

At b ¼ 1:0 the 1=b3 term contributes about 0.1% to the
plaquette value and so we estimate the error in the result to
be �0:0008.
What we see is that the results at � ¼ 0:09 (for both

values of b) approach the pure-gauge theory value from
above as N ! 1, while that at � ¼ 0:1275 (where the
quark mass is lighter) approaches from below. To see
how close they approach this value, and to study the nature
of the 1=N expansion, we fit our data to

uðNÞ ¼ uð1Þ þ A

Nq ; with q ¼ 1 or 2: (6.4)

TABLE III. Comparison of plaquette expectation values u of large-N pure-gauge theory with those obtained in our single-site
simulations.

b u � SUð8Þ SUð10Þ SUð11Þ SUð13Þ SUð15Þ
0.5 0.718 0.09 0.7460(20) 0.7429(20) 0.7420(12) 0.7388(22) 0.7362(12)

0.5 0.718 0.1275 0.6836(12) 0.6877(7) 0.6959(18) 0.6974(18) 0.6992(16)

1 0.870 0.09 0.883 04(10) 0.8700(4) 0.8798(14) 0.8779(6) 0.8774(8)

10We are not aware of any results for the large-volume gauge
theory with Nf ¼ 1 dynamical adjoint quarks with which to
compare.

11The error on this number is very small and we can safely
assume that it is zero in the discussion below.
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The 1=N2 fit is appropriate if we are in the asymptotic
regime, while the 1=N fit is an attempt to mock up the
behavior if we are far from asymptotia. The resulting
extrapolations are shown in Fig. 22, with fit parameters
given in Table IV. We observe that the linear and quadratic
fits are of comparable quality, indicating that we need a
wider range of N to pin down the appropriate fitting form.
One can perhaps use the difference between these fits as a
crude estimate of the extrapolation uncertainty. The rather
large 	2 values in the second row of the table reflect the
scatter of our data around the fit lines (see Fig. 22) and
might indicate underestimated statistical errors or a com-
petition between multiple terms in the 1=N2 expansion.
As noted above, reduction does not predict that the

extrapolated single-site plaquette values should agree
with those in the pure-gauge theory at infinite volume,
only that they should be close for small �. It is therefore
slightly surprising that we find better agreement for � ¼
0:1275 than for 0.09 at b ¼ 0:5. Further work will be
required to determine the significance of this finding.

B. Dirac spectrum of fundamental fermions

One drawback of the average plaquette is that its value is
dominated by short-distance physics (i.e. gauge fluctua-
tions with wavelengths�1=a). We consider in this section
a quantity that is sensitive to long-distance physics, and
thus serves as a better test of whether our values of N are
large enough to extract long-distance quantities.
The idea, proposed in Ref. [45], is to probe the large-N

theory using the eigenvalue spectrum of valence fermions
in the fundamental representation. As discussed in
Ref. [45], it is legitimate in this context to quench funda-
mental representation fermions in the large-N limit.12 The
specific proposal is to calculate the distribution of the low-
lying eigenvalues of the quenched overlap Dirac operator
and compare them to the predictions of random-matrix
theory (RMT). This constitutes a test that the chiral-sym-
metry-breaking dynamics of large-N QCD are being cor-
rectly reproduced, because the RMT predictions can be
derived from QCD if the eigenvalues are in the so-called
‘‘epsilon-regime’’ and if some other conditions hold [47].
One can furthermore extract a value for the condensate,
h �qqi=N, from this comparison.
This approach is used in Ref. [45] in the context of

partial volume reduction, in which one simulates SUðNÞ
pure-gauge theories in boxes of physical size of Oð1 fmÞ,
which are found to be large enough to satisfy volume
independence [18]. It is argued in Ref. [45] that the eigen-
value densities of the valence Dirac operator of the (par-
tially) reduced theory are legitimate quantities to be
compared with those of RMTas long as N is large enough.
Specifically, one should expect that the smallest eigenval-
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FIG. 22 (color online). Large-N extrapolations of the average
plaquette for ðb; �Þ ¼ ð0:5; 0:09Þ, (0.5, 0.1275), and (1.0, 0.09)
(running from top to bottom). The filled circle [red] at N ¼ 1 is
u, the value in the large-N limit of the infinite-volume pure-
gauge theory.

12See Ref. [46] for further discussion of the conditions under
which such quenching is, and is not, justified.
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ues are described by RMT once NL2 is large enough. This
can be achieved either by increasing L or by increasing N.

A particularly useful quantity considered in Ref. [45]
was the distribution, Pð
Þ, of the ratio between the first and
second eigenvalues of the overlap Dirac operator. This has
the advantage, compared to the distributions of individual
eigenvalues, that the RMT prediction is parameter free (i.e.
is independent of the value of the condensate). Thus it can
be used as a gauge of whetherNL2 is large enough. Indeed,
using this quantity, Ref. [45] found that the measured Pð
Þ
agrees with the RMT prediction on an L ¼ 6 lattice only
for N * 23. In our case we have L ¼ 1 and so we probably
need even larger values of N in order to see the Pð
Þ
asymptote to the its RMT form. Note that this expectation
is justified only for values of � that correspond to adjoint
fermions heavier than the dynamical scale of the gauge
theory. If the adjoint fermions become light, then their
determinant will alter the expected distribution.

We thus calculate Pð
Þ for valence overlap fermions
(using the conventions of Ref. [45], and taking M0 ¼
�1:5). Since the dimension of the Dirac matrix of the
fundamental fermions is modest, 36–60, we can construct
it exactly, without approximating the sign function in-
volved in its definition. The parameters for which we
calculated Pð
Þ were N ¼ 10, b ¼ 0:35 and � ¼ 0:1275,
0.155. These we expect to correspond to relatively heavy
and moderately light fermions, respectively, based solely
on their proximity to �c 
 0:175. We used 1000 gauge

configurations, all of which we found to have zero topo-
logical charge (using the index theorem).13 We present our
results for Pð
Þ in Fig. 23, together with a solid curve that
is the analytic formula of RMT reproduced from Ref. [45].
The disagreement between our data and the RMT pre-

diction is clear. The form of the disagreement is, in fact,
similar to that seen in Ref. [45] for small values of N. This
leads us to conclude our values of N are too small for the
lowest two eigenvalues to be in the epsilon regime. It
would be of considerable interest to extend this calculation
to larger N.
Another obvious step is to perform a comparable study

with a Dirac operator of a fermion in the adjoint represen-
tation. A straightforward generalization of the arguments
in Ref. [45] shows that to be in the epsilon regime now
requiresN2L2 to be large enough, which is easier to satisfy,
and it may be that our modest values of N suffice. One
complication is that our fermion action, which uses the
Wilson-Dirac operator, does not preserve chiral symmetry,
so that we cannot make a direct comparison with RMT
unless we include lattice artifacts. It may be possible to use
the approach of Ref. [48], however, to study the conden-
sate. It also may be possible to use a valence overlap
operator for the adjoint fermions.

TABLE IV. Results of extrapolations of plaquette to N ¼ 1, obtained from fitting the data in Table III to the form Eq. (6.4).

Data set Type of fit uð1Þ A 	2=d:o:f:

b ¼ 0:5, � ¼ 0:09, u ¼ 0:718 Linear 0.7255(32) 0.171(37) 1:45=1
Quadratic 0.7332(17) 0.91(20) 1:1=1

b ¼ 0:5, � ¼ 0:1275, u ¼ 0:718 Linear 0.7183(30) �0:291ð30Þ 12=3
Quadratic 0.7085(16) �1:43ð15Þ 16=3

b ¼ 0:5, � ¼ 0:09, u ¼ 0:870 Linear 0.8700(12) 0.101(16) 0:97=3
Quadratic 0.8744(5) 0.559(77) 0:64=3
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FIG. 23 (color online). The quantity Pð
Þ (see text) for SUð10Þ and b ¼ 0:35 compared to RMT (solid curves). The values of � are
0.1275 (left panel) and 0.155 (right panel).

13We found that a few configurations had jQtopj ¼ 1 if we
changed M0.
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VII. SUMMARY, CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we have taken a step towards exploring
large-N QCD with fermions in two-index representations.
In these theories the number of both gauge and fermionic
degrees of freedom grows as OðN2Þ, so that the latter
contribute to the dynamics even when N ! 1. We do
not study these theories directly, but rather use large-N
equivalences to relate them to a much simpler theory, QCD
with adjoint fermions defined on a single site. These equiv-
alences follow from a combination of orbifold and
orientifold projections [6]. Specifically, we choose to
work with a single Dirac adjoint fermion which, through
these projections, corresponds to a gauge theory with two
Dirac fermions in the antisymmetric representation. For
N ¼ 3 the latter theory becomes physical (3-color) QCD
with two degenerate Dirac fermions in the fundamental
representation, and this makes our study relevant
phenomenologically.

Clearly, for our approach to work it is necessary that the
above-noted equivalences hold. This in turn requires that
the ground state of the reduced theory is symmetric under
the ðZNÞ4 center symmetry of the theory. The present paper
is focused on determining, using Monte-Carlo simulations,
the regime in the parameter space of the single-site theory
within which the center symmetry remains unbroken. Our
simulations were performed with 8 � N � 15 at a variety
of lattice spacings and quark masses. The observables we
measure include order parameters for the breaking of ðZNÞ4
symmetry, and in some instances we gather large data
samples, allowing the calculation of �104 different order
parameters that probe many potential patterns of symmetry
breaking.

We find strong evidence that the center symmetry is
intact in an extended region of the lattice parameter space,
a region that includes the critical line along which we
expect that the fermions have their minimum mass. Our
results for the phase diagram depend very weakly on N,
suggesting that they apply also whenN ! 1. In particular,
the relatively small values of N that we use appear large
enough to observe the first-order transition line at �c,
despite the fact that this becomes a true transition only
when N ! 1. Our results are consistent with the region of
unbroken center symmetry extending toward the contin-
uum limit, so that the phase diagram is consistent with that
conjectured in Fig. 2, although we cannot rule out that this
region shrinks when b > 1.

An important finding is that the center symmetry does
not break until the physical fermion mass becomes very
heavy, likely at the cutoff scale (in approximate agreement
with the analytic estimate Ref. [14]). For example, at b ¼
0:5, where �c 
 0:15, the symmetry is unbroken for � ¼
0:06 (see Figs. 6 and 7), so m ¼ ðZm=aÞ½1=ð2�Þ �
1=ð2�cÞ� 
 ðZm=aÞ � 5. Since we expect Zm �Oð1Þ, the
fermion mass is of Oð1=aÞ. Thus there appears to be an

overlap of the region in which reduction holds and that in
which the long-distance physics of the corresponding
large-volume theory is that of large-N pure-gauge theory.
This finding opens a window to the study of the pure-gauge
theory using reduction, which was the original idea behind
the proposal of Eguchi and Kawai [2]. It seems likely that
what is happening here is that the heavy fermions would, if
integrated out, induce a tower of interactions between
Polyakov loops that is similar to the tower of double-trace
interactions proposed in Ref. [12] to stabilize the center
symmetry.
As already noted, our evidence for the absence of center-

symmetry breaking becomes less strong at the smallest
coupling we consider, b ¼ 1:0. This is an extremely small
coupling, corresponding to � ¼ 18 if N ¼ 3. It is much
smaller than the values for which we envision performing
useful measurements of physical observables (b 
 0:35).
The issues that arise at b ¼ 1:0 are that there are large
fluctuations in Monte-Carlo time histories, and long auto-
correlation times, making it hard to unambiguously deter-
mine the equilibrium state. It is for these couplings that the
use of the �104 order parameters becomes particularly
useful, allowing us to try to tease out evidence of symmetry
breaking. We find none.
A general lesson we have learned is that, when shrinking

more than one Euclidean direction, the center symmetry
sometimes breaks in quite nontrivial ways. For example, in
some parts of the lattice phase diagram we observed
ground states for which the expectation values of the
Polyakov loop are consistent with zero, while other order
parameters, which measure correlations between different
Euclidean directions, have nonzero averages. This is simi-
lar to the behavior we observed in the quenched Eguchi-
Kawai model [24], and shows that it is insufficient to
measure only Polyakov loops (or any power thereof)
when studying center-symmetry breaking.
Of course, finding that reduction holds is only the first

step. Our ultimate aim is to use the single-site theory as a
tool for learning about physical quantities of large-N QCD
with one flavor of adjoint fermions, and large-N QCD with
two flavors of fermions in the antisymmetric representa-
tion. Reduction allows one to calculate expectation values
of Wilson-loops and connected correlation functions of
certain fermionic operators, and thus to determine the
string-tension and certain ‘‘hadron’’ masses, as well as
glueball- �qq mixing, etc. From a practical point of view,
however, the key question is this: What value of N is
needed to obtain results with controlled 1=N corrections?
We have made a first step at answering this question by
looking at two variables—the average plaquette and the
eigenvalue densities of a fundamental-representation mass-
less fermion. The former is not itself a physical quantity, as
it is dominated by ultraviolet fluctuations, but it is simple to
calculate and can give an indication of the 1=N behavior.
While our calculations using N ¼ 8–15 cannot pin
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down the form of the 1=N dependence, it does appear that
the results at N ¼ 15 lie within a few percent of those at
N ¼ 1.

The eigenvalue densities provide a test of whether the
single-site gauge configurations can reproduce the long-
distance physics of chiral-symmetry breaking. In particu-
lar, in their ‘‘epsilon-regime,’’ the low lying eigenvalues of
the Dirac operator have correlated distributions that are
predicted by RMT. We find distributions which differ sig-
nificantly from the RMT predictions, and, based on the
results of Ref. [45], take this as evidence that our values of
N are too small to probe the epsilon regime.

It is important to stress that, although we find that N ¼
8–15 are too small for this particular observable, these
values of N do appear to be sufficient to study the nature
of the phase diagram, which is the main goal of this paper.

Looking forward, the prospects for using reduction as a
quantitative numerical tool clearly depend on developing
or implementing algorithms with a less formidable N
dependence than the N8 scaling of our method. This will
allow us to simulate much larger values of N, and see if the
phase diagram presented in this paper forN � 15 is indeed
indicative of its N ¼ 1 limit. We are considering imple-
menting a hybrid Monte-Carlo. It also is clear that to move
forward one needs greater computing resources. In that
regard, one issue to be faced is the lack of any obvious way
of parallelizing the code. Here the advantage of reduc-

tion—packing as much information as possible into the
link matrices—leads to a computational problem.
A less ambitious direction of further study is to make

more extensive and systematic measurements of observ-
ables on the lattices we already have at hand. We have in
mind, in particular, studying the correlators of hadrons
composed of adjoint-representation fermions. This would
allow us to check our hypothesis that the critical line
corresponds to the minimal mass of the pions. We would
also like to measure the eigenvalue densities for adjoint-
representation fermions. These are expected to enter their
epsilon regime for values of N that are parametrically
smaller than those required in the fundamental fermions
case.
Finally, we recall that using reduction is also of interest

for other values of the number of Dirac flavors. In particu-
lar, for Nf ¼ 1=2, the chiral limit of the theory is related to

the N ¼ 1 SUSY gauge theory, while, for Nf ¼ 2, the

theory is perhaps conformal. If reduction holds for these
cases as well, then it provides a method to study the
large-N limits of these theories.
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