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In this paper we describe algebraic and diagrammatic methods related to the maximally helicity-

violating generating function method for evaluating and exposing the structure of supersymmetric sums

over the states crossing generalized unitarity cuts of multiloop amplitudes in four dimensions. We focus

mainly on cuts of maximally supersymmetric Yang-Mills amplitudes. We provide various concrete

examples, some of which are directly relevant for the calculation of four-loop amplitudes.

Additionally, we discuss some cases with less-than-maximal supersymmetry. The results of these

constructions carry over to generalized cuts of multiloop supergravity amplitudes through use of the

Kawai-Lewellen-Tye relations between gravity and gauge-theory tree amplitudes.
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I. INTRODUCTION

Multiloop scattering amplitudes in maximally super-
symmetric gauge and gravity theories have received con-
siderable attention in recent years for their roles [1–4] in
helping to confirm and utilize Maldacena’s AdS/CFT cor-
respondence [5] and in probing the ultraviolet structure of
supergravity theories [6–8].

In particular, multiloop calculations offer important in-
sight into the possibility that planar N ¼ 4 super-Yang-
Mills (SYM) scattering amplitudes can be resummed to all
loop orders [2–4]. In Ref. [2] a loop iterative structure was
suggested, leading to the detailed BDS conjecture [3] for
planar maximally helicity-violating (MHV) amplitudes to
all loop orders. Alday and Maldacena realized that certain
planar scattering amplitudes at strong coupling may be
evaluated as the regularized area of minimal surfaces in
AdS5 � S5 with special boundary conditions, and for four-
point amplitudes they confirmed the BDS prediction.
Direct evidence suggests that the all-order resummation
holds as well for five-point amplitudes [9]. The structure of
the four- and five-point planar amplitudes is now under-
stood as a consequence [10] of a new symmetry dubbed
‘‘dual conformal invariance’’ [1,11,12], with further gen-
eralizations at tree level [13] and at infinite ’t Hooft cou-
pling [14]. However, beyond five points, the BDS
conjecture requires modification [15–17]. High-loop cal-
culations in N ¼ 4 super-Yang-Mills theory should also
play a useful role in clarifying the structure of subleading
color contributions to the soft anomalous dimension matrix
of gauge theories [18], once the evaluation of the required
nonplanar integrals becomes feasible at three loops and
beyond.

In a parallel development, studies of multiloop ampli-
tudes inN ¼ 8 supergravity [19] have suggested that this
theory may be ultraviolet finite in four dimensions [6–8],
challenging the conventional understanding of the ultra-
violet properties of gravity theories. For a class of terms

accessible by isolating one-loop subamplitudes via gener-
alized unitarity [20–22], the one-loop ‘‘no-triangle’’ prop-
erty ([23–26]) shows that at least a subset of these
cancellations persists to all loop orders [6]. The direct
calculation of the three-loop four-point amplitude ofN ¼
8 supergravity exposes cancellations beyond those needed
for ultraviolet finiteness in D ¼ 4 in all terms contributing
to the amplitude [7,8]. Interestingly, M theory and string
theory have also been used to argue either for the finiteness
of N ¼ 8 supergravity [27], or that divergences are de-
layed through at least nine loops [28,29], though issues
with decoupling towers of massive states [30] may alter
these conclusions. A recent direct field theory study pro-
poses that a divergence may first appear at the five loop
order in D ¼ 4, though this can be softer if additional
unaccounted symmetries are present [31]. If a perturba-
tively ultraviolet-finite pointlike theory of quantum gravity
could be constructed, the underlying mechanism respon-
sible for the required cancellations is expected to have a
fundamental impact on our understanding of gravity.
The recent studies of multiloop amplitudes rely on the

modern unitarity method [32,33] as well as various refine-
ments [12,20–22,34]. In this approach multiloop ampli-
tudes are constructed directly from on-shell tree
amplitudes. This formalism takes advantage of the fact
that tree-level amplitudes are much simpler than individual
Feynman diagrams, as well as makes use of various prop-
erties that hold only on shell. In particular, it provides a
means of using an on-shell superspace—which is much
simpler than its off-shell cousins—in the construction of
loop amplitudes.
Summing over the physical states of propagating fields

is one essential ingredient in higher loop calculations. In
particular, the modern unitarity method uses these sums
over physical on-shell states in the reconstruction of any
loop amplitude in terms of covariant integrals with internal
off-shell lines. In supersymmetric theories the on-shell
states can be organized in supermultiplets dictated by the
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supersymmetry. Systematic approaches to evaluate such
supersymmetric sums—or supersums—have recently
been discussed in Refs. [26,35–37]. As the calculations
reach to ever higher loop orders these sums become more
intricate. It is therefore helpful to expose their structure and
simplify their evaluation as much as possible. In this paper
we describe algebraic and diagrammatic methods which
are helpful in this direction. These methods are the ones
used in the course of computing and confirming the four-
loop four-point amplitude of maximally supersymmetric
Yang-Mills theory, including nonplanar contributions. The
main aspects of the construction of this amplitude, as well
as the explicit results, will be presented elsewhere [38].
(The planar contributions are given in Ref. [1].)

Supersymmetric cancellations were extensively dis-
cussed at one and two loops in Refs. [32,33,39,40] using
a component formalism that exploits supersymmetry Ward
identities [41]. These supersums were relatively simple,
making it straightforward to sum over the contributions
from the supermultiplet in components. The recent calcu-
lations of more complicated amplitudes in Refs. [7–
9,12,17,42] are performed in ways obscuring the system-
atics of the supersums. For example, as explained in
Ref. [12], it is possible to avoid evaluating (sometimes
complicated) supersums in maximally supersymmetric
Yang-Mills theory via the method of maximal cuts, where
kinematics can be chosen to restrict scalars and fermions to
a small (even zero) number of loops. Remarkably, this trick
is sufficient to construct Ansätze for N ¼ 4 super-Yang-
Mills amplitudes. However, any such Ansatz needs to be
confirmed by more direct evaluations incorporating all
particles in the supermultiplet, to ensure that no terms are
dropped. It is therefore necessary to compare the cuts of the
Ansatz with the cuts of the amplitude for more general
kinematic configurations, allowing all states to cross the
cuts. The calculation of supersums is a crucial ingredient in
carrying out this comparison. Moreover, formal studies of
the ultraviolet behavior of multiloop amplitudes of super-
symmetric theories, in particular, of N ¼ 8 supergravity,
are substantially aided by a formalism that exposes the
supersymmetric cancellations.

Nair’s original construction of an on-shell superspace
[43] captured only MHV tree amplitudes inN ¼ 4 super-
Yang-Mills theory; more recent developments extend this
to any helicity and particle configuration. The approach of
[35,36,44,45] makes use of the MHV-vertex expansion
[46] to extend this on-shell superspace to general ampli-
tudes. Another strategy, discussed in Refs. [26,47], makes
use of the Britto, Cachazo, Feng, and Witten (BCFW) on-
shell recursion [48] to extend the MHVon-shell superspace
to general helicity configurations. A new key ingredient of
this approach is a shift involving anticommuting parame-
ters which may be thought of as the supersymmetric ex-
tension of the BCFW shift of space-time momenta. A
recent paper uses shifts of anticommuting parameters to

construct a new super-MHV expansion [49], which we do
not use here. With the unitarity method [32,33,39,40],
superspace expressions for tree amplitudes can be ex-
tended to loop level. One-loop constructions along these
lines were discussed in Refs. [26,35,37], while various
examples of supersums in higher loop cuts, including
four-loop ones, have already been presented in Ref. [36].
The MHV-vertex expansion suggests an inductive struc-

ture for supersymmetric cancellations. Once these cancel-
lations are exposed and understood for cuts with only
MHV or MHV tree amplitudes, more general cuts with
non-MHV amplitudes follow rather simply [36]. Indeed,
the prescription for evaluating these more general cuts
involves summing over MHV contributions with shifts of
certain on-shell intermediate momenta.
To evaluate the supersymmetric sums that appear in

unitarity cuts we introduce complementary algebraic and
diagrammatic approaches. The algebraic approach has the
advantage of exposing supersymmetric cancellations, in
many cases leading to simple expressions. It is a natural
approach for formal proofs. In particular, it allows us to
systematically expose supersymmetric cancellations—
within the context of the unitarity method—sufficient for
exhibiting the well-known [50] all-loop ultraviolet finite-
ness of N ¼ 4 super-Yang-Mills theory. The diagram-
matic approach gives us a means of pictorially tracking
contributions, allowing us to write down the answer di-
rectly by drawing a set of simple diagrams. It also leads to a
simple algorithm for writing down the results for any cut
by sweeping over all possible helicity labels. Since it tracks
contributions of individual states, it can be easily applied to
a variety of cases with fewer supersymmetries. To illustrate
these techniques we present various examples, including
those relevant for evaluating the four-loop four-point am-
plitude of N ¼ 4 super-Yang-Mills theory [38]. We will
also show that these techniques are not restricted to four-
point amplitudes by discussing some higher-point
examples.
One potential difficulty with any four-dimensional ap-

proach is that unitarity cuts are properly evaluated in D
dimensions [51,52], since they rely on a form of dimen-
sional regularization [53] related to dimensional reduction
[54]. Moreover, a frequent goal in multiloop calculations
is the determination of the critical dimension in which
ultraviolet divergences first appear. Consequently, such
calculations often need to be valid away from four dimen-
sions. This requirement complicates the analysis signifi-
cantly, because powerful four-dimensional helicity
methods [55] can no longer be used. Any Ansatz for an
amplitude obtained with intrinsically four-dimensional
methods, such as the ones of the present paper, needs to
be confirmed through D-dimensional calculation. Never-
theless, the D ¼ 4 analysis offers crucial guidance for the
construction of D-dimensional amplitudes. Additionally,
D ¼ 4 methods appear to capture the complete result for
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four-point N ¼ 4 super-Yang-Mills amplitudes with
fewer than five loops [1,7,39,40].

While difficulties appear to arise when extending the
MHV diagram expansion to general N ¼ 8 supergravity
tree amplitudes [35], they will not concern us here. Instead
we rely on the Kawai-Lewellen-Tye (KLT) relations
[56,57], or their reorganization in terms of diagram-by-
diagram relations [58], to obtain the sums over supermul-
tiplets in N ¼ 8 supergravity cuts directly from the cuts
of corresponding N ¼ 4 super-Yang-Mills theory
amplitudes.

This paper is organized as follows. In Sec. II we review
on-shell superspace at tree level and introduce SUð4Þ
R-symmetry index diagrams. In Sec. III we review the
modern unitarity method and present the general structure
of supercuts. In Sec. IV we explain how the supersums can
be evaluated in terms of the determinant of the matrix of
coefficients of a system of linear equations. This section
also contains various examples of cuts of N ¼ 4 super-
Yang-Mills, including those of a five-point amplitude at
four loops. Section V describes supersums in terms of
R-symmetry index diagrams, providing pictorial means
for tracking different contributions. As discussed in
Sec. VI, these diagrams allow us to relate the cuts of
amplitudes with fewer supersymmetries to maximally
supersymmetric ones. They also allow us construct a sim-
ple algorithm for obtaining all contributions to cuts from
purely gluonic ones. Various three- and four-loop examples
are presented in Secs. V and VI. In Sec. VII we outline the
use of the KLT relations to carry over the results for the
sum over states in cuts of N ¼ 4 super-Yang-Mills am-
plitudes to the corresponding ones ofN ¼ 8 supergravity
theory. Our conclusions are presented in Sec. VIII.

II. ON-SHELL SUPERSPACE AT TREE LEVEL

On-shell superspaces are useful tools for probing the
properties of supersymmetric field theories, providing in-
formation on their structure without any complications due
to unphysical degrees of freedom. Here we review the
construction of an on-shell superspace for N ¼ 4 super-
Yang-Mills amplitudes. In its original form, devised by
Nair [43], it described MHV gluon amplitudes and their
supersymmetric partners. While we will depart at times
from Nair’s original construction, the main features will
persist. This same superspace also captures general ampli-
tudes. Indeed, currently two methods exist for constructing
general amplitudes from MHV amplitudes: the MHV-
vertex construction of Cachazo, Svrček, and Witten [46]
and the on-shell recursion relation of BCFW [48]. The
supersymmetric extension of the former approach has
been given in Refs. [35,36,44,45], while that of the latter
approach in Refs. [26,47].

To evaluate the supersum in unitarity cuts we will use an
approach based on MHV vertices, along the lines taken by
Bianchi, Elvang, Freedman, and Kiermaier [35,36]. We

will find that supersums involving only MHV and/or
MHV tree amplitudes have a surprisingly simple structure.
We will also show how the MHV-vertex construction al-
lows us to immediately carry over this simplicity, with only
minor modifications, to more general cuts involving arbi-
trary non-MHV tree amplitudes.
The on-shell superspace of the type we will review here

generalizes easily to MHVand MHV amplitudes in N ¼
8 supergravity. Difficulties however, appear with theMHV-
vertex construction of non-MHV gravity tree amplitudes
because the on-shell recursions used to obtain the expan-
sion [59] can fail to capture all contributions [35]. Such
amplitudes may nevertheless be found without difficulty
through supersymmetric extensions [26] of the on-shell
BCFW recursion relations [48,60], which do carry over
to N ¼ 8 supergravity. However, at present [7,8,40] we
find it advantageous to use the KLT tree-level relations
[56,57] or the recently discovered diagram-by-diagram
relations [58], to obtain N ¼ 8 supergravity unitarity
cuts directly from those of N ¼ 4 super-Yang-Mills
theory.

A. MHV amplitudes in N ¼ 4 super-Yang-Mills

The vector multiplet of the N ¼ 4 supersymmetry
algebra consists of one gluon, four gluinos, and three
complex scalars, all in the adjoint representation of the
gauge group, which here we take to be SUðNcÞ. With all
states in the adjoint representation, any complete tree-level
amplitude can be decomposed as

Atree
n ð1; 2; 3; . . . ; nÞ ¼ gn�2

X
P ð2;3;...;nÞ

Tr½Ta1Ta2Ta3 � � �Tan�

� Atree
n ð1; 2; 3; . . . ; nÞ; (2.1)

where Atree
n are tree-level color-ordered n-leg partial am-

plitudes. The Tai’s are generators of the gauge group and
encode the color of each external leg 1; 2; 3; . . . ; n, with
color group indices ai. The sum runs over all noncyclic
permutations of legs, which is equivalent to all permuta-
tions keeping one leg fixed (here leg 1). Helicities and
polarizations are suppressed. We use the all-outgoing con-
vention for the momenta to define the amplitudes.
All states transform in antisymmetric tensor representa-

tions of the SUð4Þ R-symmetry group such that states with
opposite helicities are in conjugate representations. The
R-symmetry and helicity quantum numbers uniquely spec-
ify all on-shell states:

gþ; faþ; sab; fabc� ; gabcd� ; (2.2)

where g� and f� are, respectively, the positive and nega-
tive helicity gluons and gluinos while sab are scalars. (The
scalars are complex valued and obey a self-duality condi-
tion which will not be relevant here.) These fields are
completely antisymmetric in their displayed R-symmetry
indices—denoted by a, b, c, d—which transform in the
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fundamental representation of SUð4Þ, giving a total of 16
states in the on-shell multiplet.

Alternatively, we can use the dual assignment obtained
by lowering the indices with a properly normalized Levi-
Cività symbol "abcd, giving the fields,

gþabcd; fþabc; sab; f�a ; g�: (2.3)

We will use both representations to describe the ampli-
tudes of N ¼ 4 super-Yang-Mills. For MHV amplitudes
we will mainly use the states with upper indices in
Eq. (2.2), whereas for MHV we will mainly use the states
with lower indices in Eq. (2.3). This is a matter of conve-
nience, and the two sets of states may be interchanged, as
we will briefly discuss later in this section.

We begin by discussing the MHVamplitudes, which we
define as an amplitude with a total of eight (2� 4 distinct)
upper SUð4Þ indices. [In order to respect SUð4Þ invariance,
amplitudes of the fields in Eq. (2.2) must always come with
4m upper indices, where m is an integer. Furthermore
amplitudes with four or zero indices vanish as they are
related by supersymmetry to vanishing [41] amplitudes.]
Some simple examples of MHVamplitudes, which we will
use in Sec. II C, are

ðaÞ: Atree
4 ð1�

gabcd
; 2�

gabcd
; 3þg ; 4þg Þ ¼ i

h1 2i4
h1 2ih2 3ih3 4ih4 1i ;

ðbÞ: Atree
4 ð1�

gabcd
; 2�

fabc
; 3þ

fd
; 4þg Þ ¼ i

h1 2i3h1 3i
h1 2ih2 3ih3 4ih4 1i ;

ðcÞ: Atree
4 ð1�

fabc
; 2�

fabd
; 3scd ; 4

þ
g Þ ¼ i

h1 2i2h1 3ih2 3i
h1 2ih2 3ih3 4ih4 1i ;

(2.4)

where a, b, c, and d are four distinct fundamental SUð4Þ
indices. The overall phases of these amplitudes depend on
conventions. We will fix this ambiguity by demanding that
the phases be consistent with the supersymmetry algebra,
which is automatically enforced when using superspace.
The amplitudes are written in terms of the familiar hol-
omorphic and antiholomorphic spinor products,

hi ji ¼ hijji ¼ �u�ðpiÞuþðpjÞ ¼ "���
�
i �

�
j ;

½i j� ¼ ½ijj� ¼ �uþðpiÞu�ðpjÞ ¼ " _� _�
~� _�
i
~�

_�
j ;

(2.5)

where the ��
i and ~� _�

i are commuting spinors which may be
identified with the positive and negative chirality solutions
jii ¼ uþðpiÞ and ji� ¼ u�ðpiÞ of the massless Dirac equa-
tion and the spinor indices are implicitly summed over.
These products are antisymmetric, hi ji ¼ �hj ii, and
½i j� ¼ �½j i�.

Momenta are related to these spinors via

p�
i �

� _�
� ¼ ��

i
~� _�
i or p�

i �� ¼ jii½ij; (2.6)

and similar formulas hold for the expression of p
�
i ���. We

will often simply write pi¼jii½ij or sometimes p¼jpi½pj.

The proper contractions of momenta pi with spinorial
objects will be implicitly assumed in the remainder of
the paper. Typically, we will denote external momenta by
ki and loop momenta by li.
A subtlety we must deal with is a slight inconsistency in

the standard spinor helicity formalism for massless parti-
cles when a state crosses a cut. In a given cut we will
always have the situation that on one side of a cut line the
momentum is outgoing, but on the other side it is incom-
ing. Thus across a cut we encounter expressions such as
j� ii½ij, which is not properly defined in our all-outgoing
conventions and can lead to incorrect phases. This is
because the spinor j� ii carries momentum �pi, and
thus it has an energy component of opposite sign to that
carried by the spinor ½ij. This problem is due to the fact that
the spinor helicity formalism does not distinguish between
particle and antiparticle spinors, as has been discussed and
corrected in Ref. [61] for the MHV-vertex expansion, and
for BCFW recursion relations with fermions. To deal with
this, we use the analytic continuation rule that the change
of sign of the momentum is realized by the change in sign
of the holomorphic spinor [36],

pi��pi$��
i ����

i ;
~� _�
i � ~� _�

i ;

$j� ii��jii; j� i�� ji�: (2.7)

B. The MHV superspace

The supersymmetry relations between the different
MHV amplitudes may be encoded in an on-shell super-
space, which conveniently packages all amplitudes into a
single object—the generating function or superamplitude.
Each term in the superamplitude corresponds to a regular
component scattering amplitude. Depending upon the de-
tailed formulation of the superspace, scattering amplitudes
of gluons, fermions, and scalars are then formally extracted
either by the application of Grassmann-valued derivatives
[36], or, equivalently, by multiplying with the appropriate
wave functions and integrating over all Grassmann varia-
bles [43,62]. Effectively, these operations amount to select-
ing the component amplitude with the desired external
states.
The MHV generating function (or superamplitude) is

defined as

AMHV
n ð1; 2; . . . ; nÞ � iQ

n
j¼1hjðjþ 1Þi�

ð8Þ
�Xn
j¼1

��
j �

a
j

�
;

(2.8)

where the leg label nþ 1 is identified with the leg label 1,
and �a

j are 4n Grassmann odd variables labeled by leg j

and SUð4Þ R-symmetry index a. As indicated by the cyclic
denominator, this amplitude is color ordered [i.e., it is the
kinematic coefficient of a particular color trace in
Eq. (2.1)], even though the numerator possesses full cross-
ing symmetry having encoded all possible MHV helicity
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and particle assignments. We suppress the delta-function

factor ð2�Þ4�ð4ÞðPipiÞ ¼ ð2�Þ4�ð4ÞðPi�i
~�iÞ responsible

for enforcing the overall momentum conservation.
The eightfold Grassmann delta function in (2.8) is a

product of pairs of delta functions, each pair being asso-
ciated with one of the possible values of the SUð4Þ
R-symmetry index:

�ð8Þ
�Xn
i¼1

��
i �

a
i

�
¼ Y4

a¼1

�ð2Þ
�Xn
i¼1

��
i �

a
i

�
: (2.9)

This expression can be further expanded,

�ð8Þ
�Xn
i¼1

��
i �

a
i

�
¼ Y4

a¼1

Xn
i<j

hi ji�a
i �

a
j ; (2.10)

using the usual property of Grassmann delta functions that
�ð�Þ ¼ �. Each monomial in � in the superamplitude
corresponds to a different MHV amplitude. In this form it
is clear that all terms indeed have eight upper SUð4Þ
indices, as expected for an MHV amplitude.

Similarly, one may define an on-shell MHV superspace,
whose Grassmann parameters are ~�, in which the MHV
superamplitude takes a form analogous to (2.8):

AMHV
n ð1; 2; . . . ; nÞ � ið�1ÞnQ

n
j¼1½jðjþ 1Þ��

ð8Þ
�Xn
j¼1

~� _�
j ~�ja

�

¼ ið�1ÞnQ
n
j¼1½jðjþ 1Þ�

Y4
a¼1

Xn
i<j

½ij�~�ia ~�ja:

(2.11)

The SUð4Þ indices are now lowered, which implies that the
component MHV amplitudes are built from the external
states in (2.3) with a total of eight lower indices.

We note that the arguments of the MHV delta functions
are the supermomenta Qa, and for MHV are similarly the

conjugate supermomenta ~Qa,

Q�a ¼ X
i

��
i �

a
i ;

~Q _�
a ¼ X

i

~� _�
i ~�ia; (2.12)

where the index i runs over all the external legs of the
amplitude. Thus the purpose of the delta functions is to
enforce the supermomentum conservation constraint in the
respective superspaces. For later purposes we define the
individual supermomenta of the external legs,

qai ¼ jii�a
i ; ~qia ¼ ~�ia½ij: (2.13)

The two superspaces can be related. Following Ref. [36]
we can rewrite the MHV superamplitudes in the MHV
superspace (or � superspace) via a Grassmann Fourier
transform. For this purpose we define [36] the operator,

F̂� �
Z �Y

i;a

d~�ia

�
exp

�X
b;j

�b
j ~�jb

�
�; (2.14)

which realizes this Fourier transform. Then, following

[36], the MHV superamplitude in the � superspace can
be written as

F̂AMHV
n ð1; 2; . . . ; nÞ ¼ ið�1ÞnQ

n
i¼1½iðiþ 1Þ�

� Y4
a¼1

Xn
i<j

½i j�@�a
i
@�a

j
�a
1�

a
2 � � ��a

n:

(2.15)

From this perspective, the Grassmann Fourier transform is
then easily expressed as the rule,

½i j�~�ia ~�ja!F̂ �a
1 � � ��a

i�1½ij�a
iþ1 � � ��a

j�1jj��a
jþ1 � � ��a

n:

(2.16)

Here the spinors ½ij and jj� are understood as being con-
tracted after they are brought next to each other by anti-
commuting them past the various � factors. While the
spinors are generally taken as Grassmann even, for the
purposes of this rule it is convenient to treat them as
Grassmann odd.
However, in the above Fourier transformed MHV am-

plitude the notion of the numerator as a supermomentum
conservation constraint has been obscured. This can be
somewhat cured using a second alternative presentation
of the MHV superamplitude in which we consider an

integral representation of the �ð8Þð ~QÞ,

AMHV
n ð1; 2; . . . ; nÞ ¼ ið�1ÞnQ

n
j¼1½jðjþ 1Þ�

�
Z Y4

a¼1

d2!a
Yn
i¼1

expð~�ia
~� _�
i !

a
_�Þ;

(2.17)

where !a
_� are Grassmann odd integration parameters,

d2!a ¼ d!a
_1
d!a

_2
. The action of the Grassmann Fourier

transform (2.14) yields immediately [37] a product over
one-dimensional Grassmann delta functions, one for each
external leg:

F̂AMHV
n ð1; 2; . . . ; nÞ ¼ ið�1ÞnQ

n
j¼1½jðjþ 1Þ�

Y4
a¼1

Z
d2!a

�Yn
i¼1

�ð�a
i � ~� _�

i !
a
_�Þ: (2.18)

While somewhat obfuscated, for later purposes it is im-
portant to note the right-hand side of this equation is
proportional to the �-space supermomentum conservation

constraint �ð8ÞðQÞ for n > 3. This relation may be exposed
by taking an appropriate linear combination [37] of the
arguments of the delta functions:
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Xn
i¼1

��
i ð�a

i � ~� _�
i !

a
_�Þ ¼

Xn
i¼1

ð��
i �

a
i � ð��

i
~� _�
i Þ!a

_�Þ

¼ Xn
i¼1

��
i �

a
i ; (2.19)

upon using the momentum conservation constraintP
i�

�
i
~� _�
i ¼ 0. [For n ¼ 3 the Fourier transformed MHV

amplitude is not proportional to �ð8ÞðQÞ. Even so, this
amplitude still conserves supermomentum and is invariant
under Q supersymmetry [37].] While these manipulations
may be explicitly carried out at the expense of introducing
a Jacobian factor, it is frequently more convenient not to
do so. Indeed, we will more often work directly with
Eq. (2.18).

C. Diagrammatic representation of MHV
superamplitude

As mentioned, we are interested in simplifying the
evaluation of sums over the members of the N ¼ 4 mul-
tiplet and uncovering their structure. For this purpose we
introduce a diagrammatic approach for capturing the
superspace properties of MHVamplitudes. These diagrams
will be in one-to-one correspondence with the contribu-
tions to any given cut amplitude, allowing us to map out the
structure of its supersum. We will give rules for translating
the diagrams into algebraic results, including those for the
Grassmann parameters needed to obtain the correct relative
signs. While constructed for the maximally supersymmet-
ric Yang-Mills theory in four dimensions, the ideas behind
this method extend to theories with reduced supersymme-
try (see Sec. VIA), being particularly well suited for study-
ing deformations of N ¼ 4 super-Yang-Mills theory.

Inspecting the eightfold Grassmann delta function, as
given in Eq. (2.10), we recognize that the basic building
block of the MHV amplitude numerators is the spinor
product of supermomenta,

hqai qaj i � �a
i hi ji�a

j : (2.20)

For each SUð4Þ index, the delta function in Eq. (2.10) is
simply the sum over all such products. We represent the
supermomentum product graphically by a shaded (blue)
line connecting points i and j, as in Fig. 1(a). We will call
this object the ‘‘index line.’’ In addition to the Grassmann
delta function, color-ordered MHV amplitudes also have
another important structure, the cyclic spinor string in the
denominator,

ðh1 2ih2 3ih3 4ih4 5i � � � hn 1iÞ�1: (2.21)

This object has the same order as the trace of color-group

generators and can be thought of as being in one-to-one
correspondence with this color structure. The spinor prod-
ucts in the denominator of MHVamplitudes will be repre-
sented by solid (black) lines without end-point dots shown
in Fig. 1(b). The cyclicity of the MHV denominator im-
plies that these lines form closed loops, except for the small
gaps that we take to represent external states. It is conve-
nient to draw the diagrams in a form reminiscent of string
theory world sheets, as displayed in Fig. 2. The main role of
the solid (black) lines will be to span the background, or
canvas, on which the shaded (blue) SUð4Þ index lines are
drawn. The presentation of amplitudes in this world-sheet-
like fashion provides the necessary room to draw the index
lines without cluttering the figures. These diagrams—
which we will call ‘‘index diagrams’’—capture the spinor
structures of MHV tree amplitudes along with the relative
signs encoded by the superspace.
Given an MHV tree n-point amplitude with specified

external states, the rules for drawing the SUð4Þ index
diagram are simple: First draw the n solid (black) lines
representing the cyclic spinor string of the MHVamplitude
denominator. Leave n gaps between these lines to represent
the external states, or legs. Label these legs with the
appropriate momentum, helicity, and SUð4Þ indices. If
the same SUð4Þ index appears on external legs they should
be connected by a shaded (blue) line with end-point dots.
This completes the diagram.
Consider, for example, the tree amplitudes in Eq. (2.4),

whose corresponding diagrams are shown in Fig. 2. The
‘‘þ’’ and ‘‘�’’ labels on the external states indicate the
helicities, while the black-and-white-inverted ‘‘þ’’ and
‘‘�’’ labels internal to the diagram indicate whether it is
an MHVor MHV amplitude, respectively. We will refer to
this property of being either MHV or MHV as an ampli-
tude’s holomorphicity, as MHV amplitudes are built from
holomorphic �� spinors and MHV amplitudes are con-

structed from antiholomorphic ~� _� spinors. From the above
construction it follows that the index lines in the diagrams
of Fig. 2 are in one-to-one correspondence to components
in the MHV superamplitude, including the Grassmann
parameters. Translating from the figures to analytic ex-
pressions using the rules of Fig. 1, we can easily write
down these component amplitudes,

FIG. 1 (color online). (a) For an MHV amplitude the shaded
(blue) ‘‘index line’’ connecting leg i to leg j represents hqai qaj i.
The two end points (and line) carry the same SUð4Þ index. (b) A
solid (black) line without end-point dots represents a spinor
product in the denominator.

BERN et al. PHYSICAL REVIEW D 80, 065029 (2009)

065029-6



ðaÞ: hg1234� ð1Þg1234� ð2Þgþð3Þgþð4Þi

¼ i

Q
4
a¼1hqa1 qa2i

h1 2ih2 3ih3 4ih4 1i ;

ðbÞ: hgabcd� ð1Þfabc� ð2Þfdþð3Þgþð4Þi

¼ i
hqa1 qa2ihqb1 qb2ihqc1 qc2ihqd1 qd3i

h1 2ih2 3ih3 4ih4 1i ;

ðcÞ: hfabc� ð1Þfabd� ð2Þscdð3Þgþð4Þi

¼ i
hqa1 qa2ihqb1 qb2ihqc1 qc3ihqd2 qd3i

h1 2ih2 3ih3 4ih4 1i ;

(2.22)

where we have labeled the color-ordered amplitudes (in-
cluding Grassmann parameters) using a ‘‘correlator’’ no-
tation on the left-hand side. Repeated indices are not
summed over their values; rather, their values are fixed
and correspond to the particular choice of SUð4Þ labels
identifying the external states. For the amplitude to be
nonvanishing, the labels a, b, c, and d must be distinct.

Diagrams tracking the SUð4Þ indices for MHV ampli-
tudes are similar. As a simple example, consider the same
amplitudes as above, but reinterpreted as MHV ampli-
tudes—for four-point amplitudes (but no others) this is
always possible. In the MHV form the amplitudes are

ðaÞ: hg�ð1Þg�ð2Þgþ1234ð3Þgþ1234ð4Þi

¼ i

Q
4
a¼1½~q3a ~q4a�

½1 2�½2 3�½3 4�½4 1� ;

ðbÞ: hg�ð1Þf�d ð2Þfþabcð3Þgþabcdð4Þi

¼ i
½~q3a ~q4a�½~q3b ~q4b�½~q3c ~q4c�½~q2d ~q4d�

½1 2�½2 3�½3 4�½4 1� ;

ðcÞ: hf�d ð1Þf�c ð2Þsabð3Þgþabcdð4Þi

¼ i
½~q3a ~q4a�½~q3b ~q4b�½~q2c ~q4c�½~q1d ~q4d�

½1 2�½2 3�½3 4�½4 1� ;

(2.23)

where ~qia are the conjugate supermomenta defined in
Eq. (2.13). The index diagrams corresponding to these
expressions are displayed in Fig. 3. Now the lines are
interpreted in terms of conjugate or antiholomorphic spin-
ors and Grassmann parameters. As mentioned above, this
is indicated by the black-and-white-inverted ‘‘�’’ label on
each MHV diagram.
If we wish to work entirely in the � superspace for both

MHV and MHV amplitudes, we must map the ~� parame-

ters to �’s using the Grassmann Fourier transform F̂ in
Eq. (2.14). This transformation is conveniently captured by
the rule in Eq. (2.16), giving

FIG. 3 (color online). The same amplitudes as in Fig. 2, now in theMHV representation. The shaded (blue) lines connecting leg i to
leg j represent a factor of ~�ia½i j�~�ja respectively, and solid (black) lines represents ½i j��1. The white ‘‘�’’ label on black background

indicates that the amplitude is antiholomorphic, or MHV.

FIG. 2 (color online). Examples of SUð4Þ index diagrams for specifying numerator factors of MHV tree amplitudes. (a), (b), and (c)
correspond to the amplitudes in Eq. (2.22). The shaded (blue) lines connecting leg i to leg j represent a factor of �a

i hi ji�a
j respectively,

and solid (black) lines represents hi ji�1. The white ‘‘þ’’ label on black background indicates that the amplitude is holomorphic, or
MHV.
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ðaÞ: F̂hg�ð1Þg�ð2Þgþ1234ð3Þgþ1234ð4Þi

¼ i

Q
4
a¼1 �

a
1�

a
2½34�

½1 2�½2 3�½3 4�½4 1� ;

ðbÞ: F̂hg�ð1Þf�d ð2Þfþabcð3Þgþabcdð4Þi

¼ i
�a
1�

a
2½3 4��b

1�
b
2½3 4��c

1�
c
2½3 4��d

1�
d
3½4 2�

½1 2�½2 3�½3 4�½4 1� ;

ðcÞ: F̂hf�d ð1Þf�c ð2Þsabð3Þgþabcdð4Þi

¼ i
�a
1�

a
2½3 4��b

1�
b
2½3 4��c

1�
c
3½4 2��d

2�
d
3½1 4�

½1 2�½2 3�½3 4�½4 1� :

(2.24)

While perhaps less obvious for the time being, the utility
of the index diagrams will become apparent in Sec. V,
where they will allow a transparent bookkeeping of the
helicity states in unitarity cuts of multiloop (super)
amplitudes.

D. MHV superrules for non-MHV superamplitudes

The MHV-vertex construction generates non-MHV am-
plitudes from the MHV ones via a set of simple diagram-
matic rules. Their validity has been proven in various ways,
including the use of on-shell recursion [63] and by realiz-
ing the MHV-vertex rules as the Feynman rules of a
Lagrangian [64,65]. The former approach was recently
shown to hold, with certain modifications, for all ampli-
tudes ofN ¼ 4 super-Yang-Mills theory [45], proving the
validity of the MHV-vertex construction for the complete
theory. The latter approach was also extended [66] to the
complete N ¼ 4 Lagrangian by carrying out an N ¼ 4
supersymmetrization of the MHV Lagrangian of Ref. [64].

The n-point NmMHV gauge-theory superamplitude
(where the ‘‘N’’ stands for ‘‘next to’’) contains gluon
amplitudes with (mþ 2) negative helicity gluons. One
begins its construction by drawing all tree graphs with
(mþ 1) vertices, on which the external n legs are distrib-
uted in all possible inequivalent ways while maintaining
the color order. Examples of these graph topologies are
shown in Fig. 4.

To each vertex one associates an MHV superamplitude
(2.8). As in the bosonic MHV rules, the holomorphic

spinor �P associated to an internal leg is constructed
from the corresponding off-shell momentum P using an
arbitrary (but the same for all graphs) null reference anti-
holomorphic spinor 	 _�,

�P� � P� _�	
_�: (2.25)

Alternatively, the holomorphic spinor �P ¼ jP[i can be
defined in terms of a ‘‘null projection’’ of P, given by
[67,68]

P[ ¼ P� P2

2	 � P	; (2.26)

where 	� is a null reference vector. In this form it is clear
that the momenta of every vertex are on shell; thus, at this
stage, the expression corresponding to each graph is a
simple product of (mþ 1) well-defined on-shell tree super-
amplitudes. (The analogous construction for gravity am-
plitudes is more complicated due to the fact that MHV
supergravity amplitudes are not holomorphic [59].)
To each internal line connecting two vertices one asso-

ciates a superpropagator which consists of the product
between a standard scalar Feynman propagator i=P2 and
a factor which equates the fermionic coordinates � of the
internal line in the two vertices connected by it. The
structure of the propagator depends on the precise defini-
tion of the superspace, but such details are not important
for the following. Upon application of the precise rules for
assembling the MHV-vertex diagrams, the expression for
the NmMHV superamplitude is given by

ANmMHV
n ¼ im

X
all graphs

Z �Ym
j¼1

d4�j

P2
j

�
AMHV

ð1Þ AMHV
ð2Þ � � �

�AMHV
ðmÞ AMHV

ðmþ1Þ ; (2.27)

where the integral is over the 4m internal Grassmann
parameters (d4�j �

Q
4
a¼1 d�

a
j ) associated with the inter-

nal legs, and each Pj is the (off-shell) momentum of the jth

internal leg of the graph. The MHV superamplitudes ap-
pearing in the product correspond to the (mþ 1) vertices of
the graph. The momentum and � dependence of the MHV
superamplitudes is suppressed here. We note, however, that
the null projection of each internal momentum P[

i and the

MHV NMHV N2MHV N3MHV N3MHV

FIG. 4. The MHV-vertex construction builds non-MHV superamplitudes from MHV superamplitudes. The blobs are MHV super-
amplitudes, and the dots signify an arbitrary number of external legs, of which a few are drawn explicitly.
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Grassmann variable �a
i appear twice, in the form,

� � �AMHV
ðjÞ ðP[

i ; �
a
i Þ � � �AMHV

ðkÞ ð�P[
i ; �

a
i Þ � � � : (2.28)

Each integration
R
d4�i in Eq. (2.27) selects the con-

figurations with exactly four distinct � variables
�1
i �

2
i �

3
i �

4
i on each of the internal lines. Since a particular

�a
i can originate from either of two MHV amplitudes, as

per Eq. (2.28), there are 24 possibilities that may give
nonvanishing contributions. These contributions corre-
spond to the 16 states in the N ¼ 4 multiplet, making it
clear that the application of

R
d4�i indeed yields the super-

sum. However, for a given choice of external states, each
term corresponding to a distinct graph in (2.27) receives
nonzero contributions from exactly one state for each
internal leg.

Note that as far as sewing of amplitudes is concerned, it
makes no difference whether an intermediate state is put on
shell due to a cut or due to the MHV-vertex expansion. This
observation, implying that sewing of general amplitudes
proceeds by integrating over common � variables, will

play an important role in our discussion of cuts of loop
amplitudes.
We now illustrate the index diagrams, introduced in the

previous section, for the MHV-vertex expansion of an
NMHVexample. Since the index diagrams represent com-
ponent amplitudes these diagrams clarify the details of the
N ¼ 4 state sum. First we note that according to Eq.
(2.27) an NmMHV amplitude is a polynomial in � of
degree 8ðmþ 1Þ � 4m ¼ 8þ 4m, since there are (mþ
1) MHV amplitudes—which by definition contain eight
�’s with upper SUð4Þ indices—and the Grassmann inte-
gration removes 4m of them. Thus, an NMHV amplitude
must have 12 (3� 4 distinct) upper SUð4Þ indices.
Let us consider the seven-point amplitude

hgabcd� ð1Þgþð2Þfabc� ð3Þfdþð4Þsabð5Þgþð6Þscdð7Þi which is
of this form. There are a total of nine nonvanishing dia-
grams, of which two are displayed as index diagrams in
Fig. 5, illustrating the sewing of gluonic and fermionic
states, respectively. Summing over the diagrams gives us
the amplitude

hgabcd� ð1Þgþð2Þfabc� ð3Þfdþð4Þsabð5Þgþð6Þscdð7Þi
¼
Z

d4�P[
567
hgabcd� ð1Þgþð2Þfabc� ð3Þfdþð4ÞgþðP[

567Þi
i

ðP567Þ2
hgabcd� ð�P[

567Þsabð5Þgþð6Þscdð7Þi

þ
Z

d4�P[
123
hfdþð4Þsabð5Þgþð6Þscdð7Þfabc� ðP[

123Þi
i

ðP123Þ2
hfdþð�P[

123Þgabcd� ð1Þgþð2Þfabc� ð3Þi

þ � � �

¼ �i
hqa1 qa3ihqb1 qb3ihqc1 qc3ihqd1 qd4i
h1 2ih2 3ih3 4ih4P[

567ihP[
567 1i

1

ðP567Þ2
� hP[

567 q
a
5ihP[

567 q
b
5ihP[

567 q
c
7ihP[

567 q
d
7i

hP[
567 5ih5 6ih6 7ih7P[

567i

þ i
hP[

123 q
a
5ihP[

123 q
b
5ihP[

123 q
c
7ihqd4 qd7i

h4 5ih5 6ih6 7ih7P[
123ihP[

123 4i
1

ðP123Þ2
hqa1 qa3ihqb1 qb3ihqc1 qc3ihP[

123 q
d
1i

hP[
123 1ih1 2ih2 3ih3P[

123i
þ � � � ; (2.29)

where

Pijl ¼ ki þ kj þ kl; hP[ qai i ¼ hP[ ii�a
i ; (2.30)

and we suppress all but the contributions of the two dia-

grams in Fig. 5. In the last equality we carried out the
Grassmann integration, which here only serves to convert
the internal four powers of � to factors of�1. When using
the MHV diagrams expansion in unitarity cuts of loop

FIG. 5 (color online). The index lines for two out of the nine diagrams of the MHV-vertex expansion for the amplitude
hgabcd� ð1Þgþð2Þfabc� ð3Þfdþð4Þsabð5Þgþð6Þscdð7Þi. The dashed vertical (red) lines signify that the intermediate states are on shell. The
integration

R
d4� will force exactly four SUð4Þ index lines to end (or start) on the intermediate on-shell state.
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amplitudes, as we will see in Sec. IV, it is generally
convenient to delay carrying out the Grassmann integra-
tions until the complete cut is assembled.

We note that it is convenient to collect the various
NmMHV tree superamplitudes into a single generating
function,

A tree ¼ AMHV þANMHV þAN2MHV þ � � �
þANðn�4ÞMHV; (2.31)

where n is the number of external legs, and the sum
terminates with the MHV amplitude, here written as an

Nðn�4ÞMHV amplitude in � superspace. The number of
terms in this sum is n� 3 for n � 4. The three-point case
should be treated separately since it contains two terms,
MHV and MHV, which cannot be supported on the same
kinematics.

III. EVALUATION OF LOOP AMPLITUDES USING
THE UNITARITY METHOD

The direct evaluation of generalized unitarity cuts of
N ¼ 4 super-Yang-Mills scattering amplitudes requires
summing over all possible intermediate on-shell states of
the theory. Various strategies for carrying out such sums
over states have recently been discussed in
Refs. [26,36,37]. Here we review our current approach,
which is closely related to the generating function ideas of
Ref. [35,36]. Additionally, we present an analysis of the
structure of the resulting factors and expose various uni-
versal features.

A. Modern unitarity method

The modern unitarity method gives us a means for
systematically constructing multiloop amplitudes for
massless theories. This method and its various refinements
have been described in some detail in Refs. [12,20–22,32–
34,39,40], so here we will mainly review points salient to
the sums over all intermediate states appearing in maxi-
mally supersymmetric theories.

The construction starts with an ansatz for the amplitude
in terms of loop momentum integrals. We require that the
numerator of each integral is a polynomial in the loop and
external momenta subject to certain constraints, such as the

maximum number of factors of loop momenta that can
appear. The construction of such an Ansatz is simplest for
theN ¼ 4 super-Yang-Mills four-point amplitudes where
it turns out that the ratio between the loop integrand and the
tree amplitudes is a rational function solely of Lorentz
invariant scalar products [1,12,39]. For higher-point am-
plitudes similar ratios necessarily contain either spinor
products or Levi-Cività tensors, as is visible even at one
loop [32].
The arbitrary coefficients appearing in the Ansatz are

systematically constrained by comparing generalized cuts
of the Ansatz to cuts of the loop amplitude. Particularly
useful are cuts composed of m tree amplitudes of form,

X
states

Atree
ð1Þ A

tree
ð2Þ A

tree
ð3Þ � � �Atree

ðmÞ ; (3.1)

evaluated using kinematic configurations that place all cut
momenta on shell, l2i ¼ 0. Cuts which break up loop
amplitudes into products of tree amplitudes are generally
the simplest to work with to determine an amplitude,
although one can also use lower loop amplitudes in the
cuts as well. In special cases, such as when there is a four-
point subamplitude, this can be advantageous [38]. In
Fig. 6, we display a few unitarity cuts relevant to four
loops. If cuts of the Ansatz cannot be made consistent
with the cuts of the amplitude, then it is, of course, neces-
sary to enlarge the Ansatz.
The reconstruction of an amplitude from a single cut

configuration is typically ambiguous as the numerator may
be freely modified by adding terms which vanish on the cut
in question. Consider, for example, a particular two-
particle cut with cut momenta labeled l1 and l2. No ex-
pressions proportional to l21 ¼ 0 and l22 ¼ 0 are constrained
by this particular cut. Such terms are instead constrained
by other cuts. After information from all cuts is included,
the only remaining ambiguities are terms which are free of
cuts in every channel. In the full amplitude these ambigu-
ities add up to zero, representing the freedom to reexpress
the amplitude into different algebraically equivalent forms.
Using this freedom one can find representations with dif-
ferent desirable properties, such as manifest symmetries or
explicit power counting [7,8].

FIG. 6. Some examples of generalized cuts at four loops. Every exposed line is cut and satisfies on-shell conditions. Diagrams (b)
and (c) are near-maximal cuts. In four dimensions only MHVorMHV tree amplitudes appear in cuts (a)–(c) while in cut (d) non-MHV
tree amplitudes appear.
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For multiloop calculations, generally it is best to organ-
ize the evaluation of the cuts following the method of
maximal cuts [12]. In this procedure we start from gener-
alized cuts [20–22] with the maximum number of cut
propagators and then systematically reduce the number
of cut propagators [12]. This allows us to isolate the miss-
ing pieces of the amplitude, as well as reduce the computa-
tional complexity of each cut. A related procedure is the
‘‘leading-singularity’’ technique, valid for maximally
supersymmetric amplitudes [34,42]. These leading singu-
larities, which include additional hidden singularities, have
been suggested to determine any maximally supersymmet-
ric amplitude [26].

At one loop, all singular and finite terms in amplitudes of
massless supersymmetric theories are determined com-
pletely by their four-dimensional cuts [33]. Unfor-
tunately, no such property has been demonstrated at higher
loops, although there is evidence that it holds for four-point
amplitudes in this theory through five loops [1,7,12]. We
do not expect that it will continue for higher-point ampli-
tudes. Indeed, we know that for two-loop six-point ampli-
tudes, terms which vanish inD ¼ 4 do appear [17]. Even at
four points, Gram determinants which vanish in four di-
mensions, but not in D dimensions, could appear at higher
loop orders.

At present, a D-dimensional evaluation of cuts is re-
quired to guarantee that integrand contributions which
vanish in four dimensions are not dropped.
D-dimensional cuts [51] make calculations significantly
more difficult, because powerful four-dimensional spinor
methods [55] can no longer be used. (Recently, however, a
helicitylike formalism in six dimensions has been given
[69].) Some of this additional complexity is avoided by
performing internal-state sums using the (simpler) gauge
supermultiplet of D ¼ 10, N ¼ 1 super-Yang-Mills the-
ory instead of the D ¼ 4,N ¼ 4 multiplet. In any case, it
is usually much simpler to verify an Ansatz constructed
using the simpler four-dimensional analysis than to con-
struct the amplitude directly from its D-dimensional cuts.

For simple four-dimensional cuts, the sum over states in
Eq. (3.1) can easily be evaluated in components, making
use of supersymmetry Ward identities [41], as discussed in
Ref. [40]. In some cases, when maximal or nearly maximal
numbers of propagators are cut, it is possible to choose
‘‘singlet’’ kinematics which force all or nearly all particles
propagating in the loops to be gluons in theN ¼ 4 super-
Yang-Mills theory [12]. However, for more general situ-
ations, we desire a systematic means for evaluating super-
symmetric cuts, such as the generating function approach
of Refs. [35,36].

B. General structure of a supercut

Using superamplitudes, integration over the � parame-
ters of the cut legs represents the sum over states crossing
the cuts in Eq. (3.1). The generalized supercut is given by

C ¼
Z �Yk

i¼1

d4�i

�
Atree

ð1Þ A
tree
ð2Þ A

tree
ð3Þ � � �Atree

ðmÞ ; (3.2)

whereAtree
ðjÞ are generating functions (2.31) connected by k

on-shell cut legs. The supercut incorporates all internal and
external helicities and particles of theN ¼ 4multiplet. In
most cases it is convenient to restrict this cut by choosing
external configurations, e.g. external MHVorMHV sectors
(or even external helicities), etc. In many cases it is also
convenient to expand out each Atree into its NmMHV
components and consider each term–consisting of a prod-
uct of such amplitudes—as a separate contribution.Wewill
focus our analysis on such single terms, since as we will
see they form naturally distinct contributions, each being
an SUð4Þ invariant [37] expression. As these contributions
correspond to internal quantities they must be summed
over. We note that although in this discussion we restrict
to cuts containing only trees, it can sometimes be advanta-
geous to consider cuts containing also four- and five-point
loop amplitudes, since they satisfy the same supersymme-
try relations as the tree-level amplitudes.
If all tree amplitudes in the supercut have fewer than six

legs then each supercut contribution is of the form,

Z �Yk
i¼1

d4�i

�
AMHV

ð1Þ ���AMHV
ðm0Þ Â

MHV
ðm0þ1Þ ���ÂMHV

ðmÞ ; (3.3)

where ÂMHV ¼ F̂AMHV uses the Grassmann Fourier

transform F̂ in Eq. (2.14). For cuts where there are tree
amplitudes with more than five legs present, some cut
contributions include non-MHV tree amplitudes. For these
we apply the MHV-vertex expansion (2.27), which reduces
these more complicated cases down to a sum of similar
expressions as Eq. (3.3) with only MHV and MHV ampli-
tudes (and additional propagators).
Certain properties of the N ¼ 4 super-Yang-Mills cuts

can be inferred from the structure of generalized cuts and
the manifest R symmetry and supersymmetry of tree-level
superamplitudes. First we note that a cut contribution that
corresponds to a product of only MHV tree amplitudes
consists of a single term of the following numerator struc-
ture:

Z �Y
i

d4�i

�Y
I

�Y4
a¼1

�ð2ÞðQa
I Þ
�

¼ Y4
a¼1

�Z �Y
i

d�a
i

�Y
I

�ð2ÞðQa
I Þ
�
; (3.4)

where we have made it explicit that the product over the
SUð4Þ indices can be commuted past both the product over
internal cut legs i and the product over tree amplitudes
labeled by I. Here Qa

I ¼
P

j�j�
a
j is the total supermomen-

tum of superamplitude AI, where j runs over all legs of
AI. For convenience we have also suppressed the spinor
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index. From the right-hand side of Eq. (3.4), we conclude
that the numerator factor arising from the supersum of a cut
contribution composed of only MHVamplitudes is simply
the fourth power of the numerator factor arising from
treating the index in �a as taking on only a single value.

A cut contribution constructed from only MHV and
MHV tree amplitudes has similar structure, though the
details are slightly different. Using the fermionic Fourier
transform operator (2.14) any n-pointMHV tree amplitude
can manifestly be written as a product over four identical
factors, each depending on only one value of the
R-symmetry index,

Y4
a¼1

Z �Yn
j

d~�jae
�a
j ~�ja

�
�ð2Þ

�Xn
j¼1

~�j ~�
a
j

�
: (3.5)

Consequently, just as for cut contributions constructed
solely from MHV tree amplitudes, for the cases where
only MHV and MHV tree amplitudes appear in a cut, the
end result is that the fourth power of some combination of
spinor products appears in the numerator. This feature will
play an important role in Sec. V, simplifying the index
diagrams that track the R-symmetry indices.

The super-MHV vertex expansion generalizes this struc-
ture to generic cuts ofN ¼ 4 loop amplitudes. As already
mentioned, any non-MHV tree superamplitude can be ex-
panded as a sum of products of MHV superamplitudes. If
we insert this expansion into a generalized cut, we obtain a
sum of terms where the structure of each term is the same
as a cut contribution composed purely of MHVamplitudes.
All that changes is that the momenta carried by some
spinors are shifted according to Eq. (2.26), and some
internal propagators are made explicit. We immediately
deduce that the numerator of each term is given by a fourth
power of the numerator factor arising when treating the
index of �a as having a single value. This general obser-
vation is consistent with results found in Ref. [36].

The structure of the constraints due to supersymmetry
may be further disentangled. It is not difficult to see that the
cut of any N ¼ 4 super-Yang-Mills multiloop amplitude
is proportional to the overall supermomentum conservation
constraint on the external supermomenta. Similar observa-
tions have been used in a related context in
Refs. [37,45,70]. This property is a consequence of super-
symmetry being preserved by the sewing, which is indeed
manifest on the cut, as we now show. Consider an arbitrary
generalized cut constructed entirely from tree-level ampli-
tudes; using the MHV-vertex superrules, this cut may be
further decomposed into a sum of products of MHV tree
amplitudes. Each term in this sum contains a product of
factors of the type (2.9), one for each MHV amplitude in
the product. Using the identity �ðAÞ�ðBÞ ¼ �ðAþ BÞ�ðBÞ
each such product of delta functions may be reorganized by
adding to the argument of one of them the arguments of all
the other delta functions:

Ym
I¼1

�ð8ÞðQa
I Þ ¼ �ð8Þ

�Xm
I¼1

Qa
I

�Ym
I¼2

�ð8ÞðQa
I Þ; (3.6)

where m is the number of MHV tree amplitudes—includ-
ing those from a single graph of each MHV-vertex expan-
sion. In the conventions (2.7) in which a change of the sign
of the four-momentum pi translates to a change of sign of
the holomorphic spinor �i, and therefore also in qai ¼
�i�

a
i , we immediately see that in the first delta function

all qai corresponding to internal lines occurs pairwise with
opposite sign, and thus cancels, leaving only external
variables,

�ð8Þ
�Xm
I¼1

Qa
I

�
¼ �ð8Þ

�X
i2E

�i�
a
i

�
; (3.7)

where E denotes the set of external legs of the loop ampli-
tude whose cut one is computing. Thus, this delta function
depends only on the external momentum configuration and
is therefore common to all terms appearing in this cut. The
generalized cuts involving only tree amplitudes are suffi-
cient for reconstructing the complete loop amplitude [21];
therefore it is clear that the superamplitude and all of its

cuts are proportional to �ð8ÞðQa
EÞ, assuming four-

dimensional kinematics.
As can be seen from Eqs. (2.18) and (2.19), the discus-

sion above, showing supermomentum conservation, goes
through unchanged for cuts containing n-point tree-level
MHV amplitudes with n � 4. This includes all cuts with
real momenta. For n ¼ 3, from Ref. [37], we see that the
supermomentum conservation constraint of three-point
amplitudes may be obtained from their fermionic con-
straint upon multiplication by a spinor corresponding to
one of the external lines. Using this observation, it is then
straightforward to show that for n ¼ 3 Eqs. (3.6) and (3.7)
continue to hold.
The explicit presence of the overall supermomentum

conservation constraint Eq. (3.7) is sufficient to exhibit
the finiteness [50] of N ¼ 4 super-Yang-Mills theory.
Since, as we argued, the same overall delta function ap-
pears in all cuts, it follows that the complete amplitude also
has it as an overall factor. In fact, there is a strong similarity
between the superficial power counting that results from
this and the super-Feynman diagrams of an off-shellN ¼ 2
superspace. Indeed, the count corresponds to what we
would obtain from the Feynman rules of a superspace
form of the MHV Lagrangian [66] which manifestly pre-
serves half of the supersymmetries.
More concretely, for any renormalizable gauge theory

with no more than one power of loop momentum at each
vertex, the superficial degree of divergence is

ds ¼ 4� Eþ ðD� 4ÞL� p; (3.8)

where L is the number of loops, D the dimension, E the
number of external legs, and p the number of powers of
momentum that can be algebraically extracted from the
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integrals as external momenta. For each power of numera-
tor loop momentum that can be converted to an external
momentum, the superficial degree is reduced by one unit.
Taking D ¼ 4 and p ¼ 4, corresponding to the four
powers of external momentum implicit in the overall delta
function (3.7), we see that ds < 0 for all loops and legs.
This also implies that N ¼ 4 super-Yang-Mills ampli-
tudes cannot contain any subdivergences as all previous
loop orders are finite. It then follows inductively that the
negative superficial degree of divergence, for all loop
amplitudes, is sufficient to demonstrate the cancellations
needed for all order finiteness. We note that although this
displays the finiteness ofN ¼ 4 super-Yang-Mills theory,
not all cancellations are manifest, and there are additional
ones reducing the degree of divergence beyond those
needed for finiteness [12,40,71].

A similar analysis can be carried out for N ¼ 8 super-
gravity; in this case the two-derivative coupling leads to a
superficial degree of divergence which monotonically in-
creases with the loop order. Without additional mecha-
nisms for taming its ultraviolet behavior, this would lead
to the conclusion that the theory is ultraviolet divergent. As
discussed in Refs. [6–8] direct evidence to all loop orders
indeed points to the existence of much stronger ultraviolet
cancellations.

IV. THE SUPERSUM AS A SYSTEM OF LINEAR
EQUATIONS

We now address the question of how to best carry out the
evaluation of multiple fermionic integrals, which can be-
come tedious for complicated multiloop cuts. An approach
to organizing this calculation, discussed in the following
sections, is to devise effective diagrammatic rules for
carrying out these integrals. Another complementary ap-
proach, discussed in this section, relies on the observation
that the fermionic delta functions may be interpreted as a
system of linear equations determining the integration
variables (i.e. the variables � corresponding to the cut
lines) in terms of the variables � associated with the
external lines of the amplitude. From this standpoint, the
integral over the internal �’s may be carried out by directly
solving an appropriately chosen system of equations and
evaluating the remaining supersymmetry constraints on the
solutions of this system. While the relation between the
fermionic integrals and the sum over intermediate states in
the cuts is quite transparent, as we will see in later sections,
it is rather obscure to identify the contribution of one
particular particle configuration crossing the cut in the
solution of the linear system.

A. Cuts involving MHV and MHV-vertex expanded
trees

Simple counting shows that after the overall supermo-
mentum conservation constraint is extracted, the number of
equations appearing in cuts of MHVamplitudes equals the

number of integration variables. For such cuts the result of
the Grassmann integration is then just the determinant of
the matrix of coefficients of that linear system. The same
counting shows that the number of fermionic constraints
appearing in cuts of NmMHV amplitudes is larger than the
number of integration variables. One way to evaluate the
integral is to determine the integration variables by solving
some judiciously chosen subset of the supermomentum
constraints and substitute the result into the remaining
fermionic delta functions. Care must be taken in selecting
the constraints being solved, as an arbitrary choice may
obscure the symmetries of the amplitude. One approach is
to take the average over all possible subsets of constraints
determining all internal fermionic variables. Another gen-
eral strategy is to select the fermionic constraints with as
few external momenta as possible. Since the integration
variables are determined as the ratio of determinants, all
identities based on over-antisymmetrization of Lorentz
indices, such as Schouten’s identity, are accounted for
automatically, generally yielding simple expressions.
To illustrate this approach let us consider the example,

shown in Fig. 7, of the supercut of the one-loop n-point
MHV superamplitude

CFig: 7 ¼
Z

d4�l1

Z
d4�l2A

MHVð�l1; m1; . . . ; m2;�l2Þ
�AMHVðl2; m2 þ 1; . . . ; m1 � 1; l1Þ: (4.1)

The only contribution to this cut is where both tree super-
amplitudes are MHV; together they contain the two delta
functions,

�ð8Þ
�
���

l1
�a
l1
� ��

l2
�a
l2
þ Xm2

i¼m1

��
i �

a
i

�

� �ð8Þ
�
��
l1
�a
l1
þ ��

l2
�a
l2
þ Xm1�1

i¼m2þ1

��
i �

a
i

�
: (4.2)

Adding the argument of the first delta function to the
second one, as discussed in (3.6), exposes the overall
supermomentum conservation

FIG. 7 (color online). Supercut of a one-loop n-point MHV
amplitude. The white ‘‘þ’’ labels on the black background
signify that these blobs are holomorphic vertices, or MHV
superamplitudes. The dashed (red) line marks the cut, enforcing
that momenta crossing the cut are on shell.
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�ð8Þ
�
���

l1
�a
l1
� ��

l2
�a
l2
þ Xm2

i¼m1

��
i �

a
i

�

� �ð8Þ
� Xm1�1

i¼m2þ1

��
i �

a
i þ

Xm2

i¼m1

��
i �

a
i

�
; (4.3)

then, the value of the fermionic integral in Eq. (4.1) is the
determinant of the matrix of coefficients of the following
system of linear equations:

��
l1
�a
l1
þ ��

l2
�a
l2
¼ Xm2

i¼m1

��
i �

a
i ; (4.4)

interpreted as a system of equations for �a
l1
and �a

l2
; its

determinant is

J ¼ det4
���������1

l1
�1
l2

�2
l1

�2
l2

��������¼ hl1l2i4: (4.5)

Thus, the resulting cut superamplitude is just

C Fig:7¼��ð8Þ
�Xn
i¼1

��
i �

a
i

�
hl1l2i4

� 1

hm2l2ihl2l1ihl1m1iQm2�1
i¼m1

hiðiþ1Þi

� 1

hðm1�1Þl1ihl1l2ihl2ðm2þ1ÞiQm1�2
i¼m2þ1hiðiþ1Þi :

(4.6)

Extracting the gluon component we immediately recover
the results of Ref. [32], which had been obtained by using
supersymmetry Ward identities [41] and explicitly sum-
ming over states crossing the cut.

Let us now illustrate the interplay between supersum
calculations and the super-MHV vertex expansion. The
three-particle cut of the two-loop four-gluon amplitude
provides the simplest example in this direction, as it con-
tains an MHV tree-level amplitude which may be ex-
panded in terms of MHV vertices, as shown in Fig. 8. We
will describe in detail the supercut contribution in Fig. 8(a)
and quote the result for the other ones in the figure. Besides
the contributions shown in Fig. 8 there are additional
contributions which sum to the complex conjugate of
these, ignoring an overall four-point tree superamplitude
factor.
The general strategy is to explicitly write down the

constraints for a single value of the R-symmetry index
and then raise the final result to the fourth power, as
discussed in Sec. III B. We find for Fig. 8(a) the following
three supermomentum constraints at each of the three
MHV vertices:

�ð2Þð��
1�

a
1 þ ��

2�
a
2 � ��

l1
�a
l1
� ��

l2
�a
l2
� ��

l3
�a
l3
Þ

� �ð2Þð��
3�

a
3 þ ��

P1
�a
P1

þ ��
l2
�a
l2
þ ��

l3
�a
l3
Þ

� �ð2Þð��
4�

a
4 þ ��

l1
�a
l1
� ��

P1
�a
P1
Þ: (4.7)

As before, we first isolate the overall supermomentum
conservation constraint by adding to the argument of the
first delta function the arguments of the second and third
ones1 and noticing the cancellation of all spinors corre-
sponding to the internal lines. The remaining system of
four equations involving the fermionic variables for the
internal lines are the arguments of the second and third

FIG. 8 (color online). A three-particle supercut for the MHV four-gluon amplitude. This cut contribution contains one MHVand one
NMHV superamplitude. The five-point NMHVamplitude is actuallyMHV but it is expanded using the MHV superrules. The thick line
labeled by Pmarks the internal propagator. Five additional contributions—not shown here—correspond to legs 1 and 2 belonging to an
MHV amplitude and legs 3 and 4 to an MHV amplitude.

1This is just one choice and the same result can be obtained by
adding the arguments of any two delta functions to the argument
of the third one.
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delta functions in Eq. (4.7),

���
P1
�a
P1

� ��
l2
�a
l2
� ��

l3
�a
l3
¼ ��

3�
a
3 ;

þ��
P1
�a
P1

� ��
l1
�a
l1
¼ ��

4�
a
4 : (4.8)

Its matrix of coefficients is

���
P1

0 ���
l2

���
l3þ��

P1
���

l1
0 0

 !
; (4.9)

where each spinor ��
j should be thought of as a submatrix

with two rows and one column. The determinant of this
matrix is just ðhl1P[

1 ihl2l3iÞ. After restoring the four iden-
tical factors we thus find that the supersum evaluates to

ðhl1P[
1 ihl2l3iÞ4�ð8Þð��

1�
a
1 þ ��

2�
a
2 þ ��

3�
a
3 þ ��

4�
a
4Þ:
(4.10)

In obtaining this simple form, the explicit application of
Schouten’s identity was not required.2

Carrying out the same steps for the other four compo-
nents in Figs. 8(b)–8(e) gives us the complete expression
for this cut contribution,

CFig: 8 ¼ �ð8Þð��
1�

a
1 þ ��

2�
a
2 þ ��

3�
a
3 þ ��

4�
a
4Þ
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h12ih2l3ihl3l2ihl2l1ihl11i
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1

hl2l3ihl33ih3P[
1 ihP[

1 l2i
1

P2
1

1

h4l1ihl1P[
1 ihP[

1 4i
� ðhl1P[

1 ihl2l3iÞ4 þ
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2 l3ihl33ih3P[

2 i
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P2
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1

hl2P[
2 ihP[

2 4ih4l1ihl1l2i
ðhl3P[

2 ihl1l2iÞ4 þ
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hl33ih34ih4P[
3 ihP[

3 l3i
1

P2
3

� 1

hP[
3 l1ihl1l2ihl2P[

3 i
ðhl3P[

3 ihl1l2iÞ4 þ
1

hl2l3ihl3P[
4 ihP[

4 l2i
1

P2
4

1

hl1P[
4 ihP[

4 3ih34ih4l1i
ðhl1P[

4 ihl2l3iÞ4
�
; (4.11)

where

P1 ¼ k4 þ l1; P2 ¼ k3 þ l3;

P3 ¼ l1 þ l2; P4 ¼ l2 þ l3;
(4.12)

and P[ is defined in Eq. (2.26). Figure 8(e) gives a vanish-
ing contribution. The dependence on the reference vector 	
cancels out in Eq. (4.11), as is simple to verify numerically.
This expression, together with the five additional contri-
butions (not shown in Fig. 8) arising from legs 1 and 2
belonging to an MHV amplitude and legs 3 and 4 to an
MHVamplitude, numerically agrees with the three-particle
cut of the known planar two-loop four-point amplitude
[39,40].

B. Cuts with both MHV and MHV trees

While the result obtained above is correct, the complex-
ity of Eq. (4.11) is somewhat unsettling. This complexity
comes from expanding the MHV amplitude in MHV dia-
grams. For generic non-MHV diagrams this strategy is
useful, but for MHV amplitudes there is no need to do
so. Indeed previous evaluations of the above cut [36,39,40]
without making use of the MHV expansion give simpler
forms. In the same spirit, it is sometimes convenient to use
theMHV representation of four-point amplitudes. As illus-
trated in Fig. 9, we therefore reconsider the previous
example shown in Fig. 8, but without expanding the
MHV amplitude in MHV amplitudes.

The relevant fermionic integral (where we again keep
explicitly a single R-symmetry index and raise the result to
the fourth power) isZ
d�a

l1
d�a

l2
d�a

l3
d2!a�ð2Þð��

1�
a
1 þ ��

2�
a
2 � ��
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� ��
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� ��
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Þ�ð�a
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� ~� _�
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� ~� _�

l2
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_�Þ
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� ~� _�

l3
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3 � ~� _�

3!
a
_�Þ�ð�a

4 � ~� _�
4!

a
_�Þ:
(4.13)

Here !a
_� are the auxiliary integration variables in

Eq. (2.18). Adding the arguments of the delta functions
on the second line, with the appropriate weights, to the
argument of the delta function on the first line exposes the
overall supermomentum conservation. We are then left
with

�ð2Þð��
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a
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a
2 þ ��

3�
a
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d2!a�ð�a
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� ~� _�
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� ~� _�

l2
!a

_�Þ�ð�a
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� �ð�a
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FIG. 9 (color online). The same three-particle cut contribution
as in Fig. 8, but where the right-hand sideMHV amplitude is not
expanded using the MHV rules. The ‘‘þ’’ label signifies a
holomorphic vertex, or MHV superamplitude, and the ‘‘�’’ label
signifies a antiholomorphic vertex, or MHV superamplitude.

2The same result may be obtained by explicitly solving the
system of constraints by expressing the equations in terms of
spinor inner products; however, repeated use of Schouten’s
identity is required in this case.
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The matrix of coefficients of the surviving system of con-
straints can be easily read off,

1 0 0 �~�
_1
l1

�~�
_2
l1

0 1 0 �~�
_1
l2

�~�
_2
l2

0 0 1 �~�
_1
l3

�~�
_2
l3

0 0 0 �~�
_1
3 �~�

_2
3

0 0 0 �~�
_1
4 �~�

_2
4

0
BBBBBBB@

1
CCCCCCCA: (4.15)

Taking its determinant, raising it to the fourth power, and
restoring the remaining factors in the tree-level superam-
plitudes gives the supercut contribution,

CFig: 9 ¼ �ð8Þ
�X4
i¼1

��
i �

a
i

�
½34�4 1

h12ih2l3ihl3l2ihl2l1ihl11i

� 1

½34�½4l1�½l1l2�½l2l3�½l33� : (4.16)

This numerically matches Eq. (4.11), again giving the
proper contribution to the cut four-gluon amplitude at
two loops [39,40].

This calculation illustrates a general feature of super-
sums: if an MHV vertex appearing in a supercut has two
external legs attached to it, say p and k, such as legs 3 and 4
in the example above, then apart from the overall super-
momentum conservation, the supercut contribution is also
proportional to the bracket product of those two momenta,
i.e. it contains a numerator factor,

�ð8Þ
�X
i2E

��
i �

a
i

�
½pk�4: (4.17)

As in Eq. (3.7), E denotes the set of external legs. This
feature is related to the soft ultraviolet properties of N ¼
4 super-Yang-Mills theory.

The MHV superamplitudes can also be used in the cuts
in conjunction with the MHV-vertex rules. Indeed, any on-
shell four-point amplitude may be interpreted either as
MHV or MHV amplitudes as can be seen by directly
evaluating the ! integral in Eq. (2.18) for n ¼ 4:

F̂AMHV
4 ¼ i�ð8Þ

�X4
i¼1

��
i �

a
i

� ½34�4
h12i4½12�½23�½34�½41�

¼ i�ð8Þ
�X4
i¼1

��
i �

a
i

�
1

h12ih23ih34ih41i : (4.18)

Depending on context, choosing one interpretation of the
four-point amplitude over the other can lead to more
factors of loop momenta in supersums being replaced by
factors of external momenta thus making manifest more of
the supersymmetric cancellations. We will comment on an
example in this direction at the end of Sec. IVC.

C. Cuts of higher-point superamplitudes

The above techniques are by no means restricted to four-
point amplitudes. To illustrate this, consider the supercut of
the MHV four-loop five-point amplitude shown in Fig. 10.
For the displayed cut topology, these are the three inde-
pendent nonvanishing assignments of MHVor MHV con-
figurations that contribute to an external MHV
configuration. (Changing the MHV to an MHV label on
the lone four-point amplitude is not an independent choice,
as the two cases are equivalent.)
For the cut contribution in Fig. 10(a) the Jacobian of the

system of constraints is

JFig: 10ðaÞ ¼ ðhl1l2ihl3l6i½12�Þ4; (4.19)

leading to the following result for the supercut:

C Fig: 10ðaÞ ¼ ��ð8Þ
�X5
i¼1

��
i �

a
i

�
ðhl1l2ihl3l6i½12�Þ4

� 1

h3 4ih4 l3ihl3 l2ihl2 l1ihl1 4i
� 1

hl1 l2ihl2 l6ihl6 l5ihl5 l1i
� 1

h5 l5ihl5 l4ihl4 l6ihl6 l3ihl3 5i
� 1

½1 2�½2 l7�½l7 l4�½l4 l5�½l5 1� : (4.20)

Similarly, the Jacobian for the system of constraints
remaining, after reconstructing the overall supermomen-
tum conservation, for the cut contributions in Figs. 10(b)
and 10(c), is

JFig: 10ðbÞ ¼ hl1 l2i4ðhl7 l4i½l4 5� þ hl7 l5i½l5 5�Þ4
¼ hl1 l2i4ðhl7 1i½1 5� þ hl7 2i½2 5�Þ4;

JFig: 10ðcÞ ¼ ðhl4l5ihl6l7i½34�Þ4:
(4.21)

The complete contribution to the cut for these configura-

FIG. 10 (color online). A generalized cut for a four-loop five-point MHV superamplitude having three cut contributions (a), (b), and
(c), corresponding to three independent choices of holomophicity of the tree amplitude comprising the cut.
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tions is given by multiplying these Jacobians by the appro-
priate spinor denominators and the overall supermomen-
tum delta function. In the supersums corresponding to
Figs. 10(a) and 10(c) we note the presence of bracket
products of external momenta attached to an MHV tree
amplitude; this illustrates a general property described in
Sec. IVB. It is also worth pointing out that if we reassign
the four-point tree superamplitude AMHV

4 ðl1; l2;�l6;�l7Þ
in Fig. 10(a) to be MHV, then the Jacobian becomes

JFig: 10ðaÞ ¼ ðhl3jk3 þ k4jl7�½12�Þ4, so additional powers of
external momenta come out for this contribution.

V. SUPERSUMS AS SUð4Þ INDEX DIAGRAMS

The algebraic approach of the previous section is quite
effective for the calculation of N ¼ 4 supersums, as it
elegantly avoids the bookkeeping of individual states
crossing the cuts. However, it can be advantageous to
follow these contributions. In this section we will discuss
a complementary approach using a pictorial representation
of supercuts in terms of the index diagrams introduced in
Sec. II C.

A. Mixed superspace

As we have already seen, in the unitarity cuts it is
convenient to use both MHV and MHV amplitudes.
However the need to Fourier transform the amplitudes
defined in ~� superspace to � superspace is sometimes
inconvenient. Therefore we will derive here sewing rules
for superamplitudes where � and ~� are on an equal foot-
ing, which will then motivate the rules for the sewing of
index diagrams.
Consider an internal leg i connecting two on-shell super-

amplitudes, left AL and right AR in an arbitrary cut. As
discussed in Sec. III B, in the MHV � superspace the
supersum over the states propagating through this leg is
realized by the Grassmann integral,Z Y4

a¼1

d�a
iALAR: (5.1)

In Sec. III B we showed that each SUð4Þ index can be
considered independently for tree amplitudes as well as
in supersums of cuts. Therefore, it is sufficient to consider a
single index supersum of three cases: the internal leg i
connects amplitudes of type (a) MHVand MHV, (b)MHV
and MHV, and (c) MHV and MHV,

ðaÞ:
Z

d�a
iA

MHV
L AMHV

R ;

ðbÞ:
Z

d�a
i

�Z
d~�iae

�a
i ~�iaAMHV

L

��Z
d~�iae

�a
i ~�iaAMHV

R

�
¼
Z

d~�iaAMHV
L ð~�iaÞAMHV

R ð�~�iaÞ;

ðcÞ:
Z

d�a
iA

MHV
L

�Z
d~�iae

�a
i ~�iaAMHV

R

�
¼
Z

d�a
i d~�iae

�a
i ~�iaAMHV

L AMHV
R ;

(5.2)

where a is taken to be a fixed SUð4Þ R-symmetry index. On
the left-hand side of cases (b) and (c) we have applied the
Grassmann Fourier transform to the MHV amplitudes, in
order have a well-defined supersum. Note that case (b) can
be interpreted as a supersum in ~� superspace, where the
~�ia has flipped sign inside AMHV

R as is shown explicitly.
The sign flip happens because the �a

i integral produces a
delta function �ð~�L

ia þ ~�R
iaÞ enforcing this, where the la-

bels L and R are added to clarify which amplitude they
originate from. Case (c) is more straightforward to simplify
and it becomes a mixed supersum correlating the � and ~�
parameters.

Equation (5.2) motivates the definition of mixed �-~�
superspace operators for performing the supersum. In the
three cases we have

MHV -MHV: Îai;þþ �
Z

d�a
i ;

MHV-MHV: Îai;�� �
Z

d~�ia;

MHV-MHV: Îai;þ� �
Z

d�a
i d~�iae

�a
i ~�ia ;

(5.3)

where the þ and � labels are shorthand for MHV and
MHV, respectively.
In terms of these operators, the sum over all members of

the N ¼ 4 multiplet, in mixed superspace, is determined
by the action of the operator,

Î ¼ Y4
a¼1

� Y
i2internal

Îai;casei

�
; (5.4)

on the cut. Here the label ‘‘casei’’ labels the three cases
(þþ, �� , þ� ) given in Eq. (5.3). Although the indi-
vidual factors may be Grassmann odd, the ordering of the
internal legs is irrelevant after the SUð4Þ index product is
carried out. (Various orderings differ only in an overall
sign, which drops out in this final product.)
In addition to the mixed supersum operator, a sign rule

for sewing ~�ia across a cut is required by the sign flip that
appears in case (b) in Eq. (5.2). For incoming momenta,
p�i ¼ �pi, we define the superamplitudes to be functions
of �a�i and ~��ia, where

�a�i ! �a
i ; ~��ia ! �~�ia: (5.5)

This sign rule is also necessary in order to have conjugate
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supermomenta ~�ia½ij transform correctly under sign flips
of the momentum direction. Although case (c) in Eq. (5.2)
was considered without this rule it can be shown to be
consistent with the mixed supersum operator Eq. (5.4) up
to an overall sign which drops out in the SUð4Þ index
product.

Having defined the mixed superspace state sum, let us
consider the actions of the three types of sewing operators.
We note that the only objects in the product ALAR that
survive the supersum integrations of Eq. (5.3), for leg i and
index a, are those terms proportional to

ðaÞ: jii�a
i ¼ qai ; ðbÞ: ~�ia½ij ¼ ~qia;

ðcÞ: jii�a
i ~�ia½ij or 1;

(5.6)

where (a), (b), and (c) refer to the aforementioned cases,
and where the ‘‘1’’ in case (c) denotes an absence of both

~�ia and �a
i . Furthermore, we note that since Îai;þ� is a

Grassmann even operator we can immediately carry out the
integration of case (c),

ðcÞ: jii½ij ¼ pi or 1: (5.7)

However this has to be done with some care, as will be
discussed in Sec. VC 2, where a precise rule will be given.

Interpreting the supermomenta of Eq. (5.6) and mo-
menta of Eq. (5.7) as parts of SUð4Þ index lines, gives us
the pictorial rules displayed in Fig. 11 for the transition
condition of an index line across a cut. For an MHV-MHV
transition the index line ends (or starts) at the cut, corre-
sponding to the insertion of a supermomentum jii�a

i .
Similarly, for an MHV-MHV transition, the index line
ends (or starts) at the cut, corresponding to the insertion
of a conjugate supermomentum ~�ia½ij. In contrast, for an
MHV-MHV transition, the index lines are continuous
across a cut. This can happen in two ways, either the two
lines on each side meet at the cut, or there is no index line
on leg i on either side of the cut. The latter option corre-
sponds to the trivial insertion of a unit factor. The former

option can be interpreted as either an insertion of a product
between a supermomentum and its conjugate jii�a

i ~�ia½ij as
in Eq. (5.6) (c), or it can be interpreted as an insertion of
momentum jii½ij according to Eq. (5.7), as displayed in
Fig. 11(c). These two interpretations will give rise to two
different sets of rules for carrying out the supersum (see
Sec. VC). In both cases the SUð4Þ index-line diagrams will
be identical.

B. One-loop warm-up

We start with a simple one-loop example to pictorially
illustrate the state sum of a N ¼ 4 cut. We will postpone
the analytic evaluation of index diagrams to the following
section.
Consider the one-loop cut of Fig. 12. Reading off the

index lines that end on external legs, this cut corresponds to

the purely gluonic amplitude A1-loop
4 ð1þ; 2�; 3�; 4þÞ. The

left side of the cut is chosen to be MHV and right side is
MHV, which means that the SUð4Þ index lines must be
continuous through the cut. The different diagrams in the
top of Fig. 12 correspond to the different states in theN ¼
4 gauge supermultiplet. There are five such diagrams
although only three are shown, the two hidden in the
ellipsis are horizontal flips of the first two shown. The
combinatoric factors in front of each diagram are the
distinct ways of obtaining the same diagram, tracking the
SUð4Þ labels. As shown in the figure, the sum over the
diagrams can be interpreted as a product over the four
SUð4Þ indices, depicted as a fourth power. This is consis-
tent with the general result discussed in Sec. IV: summing
over the states crossing a cut composed of a product of
MHVandMHV tree amplitudes is a sum of terms raised to
the fourth power. In the diagrammatic language of index
lines this also leads to the simplification which allows us to
consider each of the four SUð4Þ index-line factors inde-
pendently. Thus in the remaining part of this paper all
index diagrams will be drawn for only a single SUð4Þ
index.
Interestingly, the index diagrams follow a ‘‘sum over

paths’’ principle analogous to the one of quantum mechan-
ics. In our one-loop example, a single continuous index
line has two possible allowed paths, crossing the cut
through either the upper or lower internal leg. Thus, there
are two terms for each index in the state sum or a total of 24

for the four index lines. For cuts which factorize into
adjacent MHV amplitudes or adjacent MHV amplitudes,
the index lines are discontinuous, or the ‘‘paths’’ are bro-
ken into several pieces, as explained in the previous sec-
tion. See the following sections for explicit examples of
this.
More generally, for external gluon amplitudes the struc-

ture discussed in the above one-loop example is quite
generic for any configuration of MHV and MHV tree
amplitudes appearing in a cut. With external gluons the
four SUð4Þ index lines all start on the same legs, allowing

FIG. 11 (color online). Rules for index lines crossing a cut leg
i carrying momentum pi. If both sides of the cut are (a) MHVor
both are (b) MHV then the index line ends at the cut. This is
equivalent to the insertion of a supermomentum jii�a

i in the
MHV case, or conjugate supermomentum ~�ia½ij in the MHV
case. If one side is MHVand the other MHV then the index line
is continuous across the cut and corresponds to the insertion of
jii�a

i ~�ia½ij, or as illustrated, the insertion of the cut momentum
jii½ij, as discussed in Sec. VC. Dashed (red) lines mark cuts,
solid (blue) lines denote SUð4Þ index lines, and plus or minus
labels denote whether an amplitude on a given side of a cut is
MHV or MHV. The arrows indicate the momentum direction.
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us to treat each of the lines identically. If some of the
external particles are scalars or fermions then the SUð4Þ
index lines can start at different external legs, but in any
case, each of the four SUð4Þ index lines can be treated
independently. As discussed in Sec. II, if a non-MHV tree
amplitude appears we simply insert its expansion in terms
of MHV or MHV amplitudes into the cut, effectively
reducing the evaluation of the relevant supersums to the
discussion above.

C. Rules for converting diagrams to spinor expressions

As explained in Sec. II C, each index line drawn for an
MHV tree amplitude (in a cut) corresponds to a factor
hqai qaj i, and for an MHV tree amplitude it corresponds to

a factor ½~qia ~qja�. Since both hqai qaj i and ½~qia ~qja� are

Grassmann even as well as symmetric under the exchange
i $ j it may seem to be a straightforward task to convert
the index diagrams to analytic expressions. However, in
practice there are different strategies for converting the
Grassmann-valued numerators to spinor expressions, two
of which we describe here. First we note that since the
index diagrams have preselected the terms that survive in
the supersum, the application of any supersum operator on
an index diagram serves only to convert the product of �’s
and ~�’s to a �1 factor, which can be achieved by simple
replacements rules. The two alternative replacement rules
follow.

1. Rule 1: Sign assignment in �-only superspace

One option, which will avoid the slightly more compli-

cated MHV-MHV transition operator Îai;þ�, is to make use

of the Fourier transform and work only in � superspace. [It
also does not require the ~� sign flip for incoming momenta
given in Eq. (5.5).] We Fourier transform all the ½~qia ~qja�
factors according to the rule in Eq. (2.16),

½~qia ~qja�!F̂ �a
1 � � ��a

i�1½ij�a
iþ1 � � ��a

j�1jj��a
jþ1 � � ��a

m ;

(5.8)

where 1; . . . ; m are the legs of the particular MHV ampli-
tude that the ½~qia ~qja� factor belongs to. Recall that in this

rule the positions of ½ij and jj� count giving additional
signs as they are pushed past the �’s. Also note that for an
odd number of legs m the Fourier transform maps the
Grassmann even object ½~qia ~qja� to a Grassmann odd ob-

ject; thus care has to be taken to not alter the position of
½~qia ~qja� relative to the position of, say, ½~qib ~qjb� in the cut

expression.
After the Fourier transform, every term in the cut will

contain exactly the same product of �’s, albeit in different
orderings. For each term and each SUð4Þ index this product
can be converted to a � sign by the replacement,

�a
i1
�a
i2
� � ��a

in�1
�a
in
! signature½i1i2 � � � in�1in�; (5.9)

where the signature function gives the signature of the
permutation of the legs relative to a canonical ordering,
and here n is the number of internal legs plus the number of
the external �’s.3 This rule is particularly easy to automate.
We will illustrate this rule by an example. Consider the

index diagrams in Fig. 13, which correspond to a particular
contribution to a two-loop cut with gluonic external states.
For a single SUð4Þ index there are three contributions (a),
(b), and (c), two of which are shown. Reading off the
numerator factors from the shaded (blue) index lines we
have

FIG. 12 (color online). A unitarity cut of the four-gluon amplitude A
1-loop
4 ð1þ; 2�; 3�; 4þÞ, involving one MHV and one MHV

superamplitude. The top left diagram represents a gluon loop, the top central diagram represents the four contributions in a fermion
loop, and the top right diagram represents the six scalar state contributions. The ellipsis denotes that four more fermion-loop and one
more gluon-loop contributions are suppressed. The bottom diagram illustrates that the 16 contributions may be resummed, and that
each index line may be treated independently. The circle in each diagram is a one-loop ‘‘hole’’ and the dashed line marks the cut. The
fourth power over the index lines should be interpreted as a product over the four SUð4Þ indices.

3The choice of canonical ordering is not important since any
two choices differ by an overall sign which drops out in the
product over the four SUð4Þ indices.
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ðaÞ: ð�4h4 6i�6Þð�3h3 5i�5Þð½1j�2j6��7�8Þ
! h4 6ih3 5i½1 6�;

ðbÞ: ð�5h�5 4i�4Þð�7h7 3i�3Þð½1j�2�6j7��8Þ
! h5 4ih7 3i½1 7�;

ðcÞ: ð�5h�5 4i�4Þð�8h8 3i�3Þð½1j�2�6�7j8�Þ
! h5 4ih8 3i½1 8�;

(5.10)

where we have suppressed the SUð4Þ index since we con-
sider only a single component. To get to the right-hand side
we first rearrange the �’s using the rule (2.16) that the
spinors anticommute with the �’s, and then remove them
after arranging them into a chosen canonical order
�2�3�4�5�6�7�8. Leg 5 also carries a negative sign since
it is an incoming label in (b) and (c); this sign must be
properly extracted following Eq. (2.7). For external gluons
each of the four SUð4Þ indices gives identical results,
leading to the following numerator factor for the cut con-
tribution:

ðh4 6ih3 5i½1 6� þ h5 4ih7 3i½1 7� þ h5 4ih8 3i½1 8�Þ4:
(5.11)

2. Rule 2: Sign assignment in a mixed �-~� superspace

Alternatively, we can construct a rule that treats � and ~�
on equal footing. With this rule we must strictly impose the
sign rule Eq. (5.5) that flips the sign of ~�i as well as
conjugate supermomenta ~qi under momentum direction
flips i ! �i. The mixed-superspace sign rules are based
on the observation in Sec. VA that the MHV-MHV tran-

sition operator Îai;þ� can be immediately applied to the cut

to remove all Grassmann parameters associated with inter-
nal lines on the border between MHV and MHV ampli-
tudes. However, it must be donewith some care, as is easily
illustrated by an example. Consider the two ways of re-
moving the �a

i ~�ia factor,

hqaj qai i½~qia ~qka� ! �a
j hj ii½i k�~�ka;

½~qka ~qia�hqai qaj i ! ~�ka½k i�hi ji�a
j :

(5.12)

The two left-hand sides are clearly equal, but the two right-
hand sides differ by signs since �a

j anticommute with ~�ka.

However, if we instead think of �’s and ~�’s as living in two
different mutually commuting Grassmann spaces, then the
sign inconsistency in Eq. (5.12) is resolved. Although
unconventional, this construction gives us a consistent
treatment of the sign of the index-line contributions. We
will not go further into the details of proving that this
assertion is valid.4 Instead we will state the final rules.
The rules that convert the index lines to spinor products,

while treating � and ~� on equal footing are as follows: For
each unbroken index line, write down the corresponding
spinor string (using momenta) following either direction of
the line. Multiply with appropriate Grassmann odd pa-
rameters at the end points of the line, as shown in
Fig. 11. Use the sign rules of Eqs. (2.7) and (5.5) to deal
with the case of incoming momenta (or supermomenta).
Now since each term in the cut has exactly the same index-
line end points (due to the spinor weight carried by these
points), every term will be multiplied by the same product
of �’s and ~�’s, albeit in different orderings. The sign map
for each term is then

�a
i1
�a
i2
� � ��a

il
~�j1a

~�j2a
� � � ~�jma

! signature½i1i2 � � � il� signature½j1j2 � � � jm�; (5.13)

where the�’s commute with the ~�’s, l is the number of legs
on an MHV-MHV border plus the number of external �’s,
and m is the number of legs at an MHV-MHV border plus
the number of external ~�’s.

FIG. 13 (color online). Examples of contributions to a unitarity cut of a six-point two-loop NMHV amplitude drawn as index-line
diagrams for a single SUð4Þ index. Two routings (a) and (b) of the index lines are shown; routing (c) referred to in the main text is
similar to (b), but where the longer index line, attached to legs 1 and 3, passes through cut leg 8 rather than cut leg 7. Note that only legs
necessary for the subsequent discussion are labeled.

4A proof can be constructed based on the observation that any
term in the cut can be written so that the � and ~� parameters are
manifestly separated with the overall sign of the term unaffected.
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An important special case is if the index lines form a
closed loop. Then there are no Grassmann parameters
present, only spinors enter, or momenta in the form of a
chiral trace, as shown in Fig. 14. The proper prescription
for this case is to insert an explicit factor ð�1Þ for each
closed index loop. This corresponds to the standard pre-
scription for fermion loops, and thus it reflects the fermi-
onic nature of the index lines.

To see how the mixed superspace works consider again
the example in Fig. 13. We read off the diagrams, giving

ðaÞ: ð~�1½1j6j4i�4Þð�3h3 5i�5Þ ! �½1j6j4ih3 5i;
ðbÞ: ð~�1½1j7j3i�3Þð�5h�5 4i�4Þ ! ½1j7j3ih5 4i;
ðcÞ: ð~�1½1j8j3i�3Þð�5h�5 4i�4Þ ! ½1j8j3ih5 4i;

(5.14)

where ½ijjjki � hi ji½j k�. As discussed above, we com-
mute the ~� past the �’s, and place them in the canonical
order �3�4�5 ~�1, after which they are removed. The result
is equivalent to the first rule, but perhaps is simpler to carry
out manually.

D. Supersum simplifications

In contrast to the algebraic approach of Sec. IV, the
index-diagram approach typically gives results that may

be further simplified. In particular, in order to fully expose
cancellations of powers of loop momenta due to supersym-
metry, rearrangements using momentum conservation and
Schouten’s identity are generally necessary. Two typical
situations where momentum conservation allows us to pull
out powers of loop momenta as external momenta are
displayed in Fig. 15. Using the mixed-superspace rules
(rule 2), the index lines correspond to

ðaÞ: �ihijl1jj�~�j þ �ihijl2jj�~�j þ �ihijl3jj�~�j

¼ �ihijl1 þ l2 þ l3jj�~�j;

ðbÞ: � hl1 l2i½l2 l1� � hl2 l3i½l3 l2� � hl1 l3i½l3 l1�
¼ �ðl1 þ l2 þ l3Þ2;

(5.15)

where the R-symmetry indices have been suppressed, and
where the negative signs are due to the rule of Fig. 14 for
closed index-line loops. In both cases we have a vertical cut
which runs from one side of a diagram to the other; there-
fore the loop momentum sum corresponds to the external
momentum K ¼ l1 þ l2 þ l3 crossing the cut, by momen-
tum conservation.
Another important manipulation follows from

Schouten’s identity displayed pictorially in Fig. 16.
Reading off the index diagrams we have

h�q1 q3ih�q2 q4i þ hq1 q4ihq2 q3i ¼ h�q1 q2ihq3 q4i;
(5.16)

in terms of supermomentum spinor products (2.20). This
can be written in a symmetric form. Extracting the signs
from the incoming supermomenta (2.7) gives

hq1 q3ihq2 q4i þ hq1 q4ihq2 q3i þ hq1 q2ihq3 q4i ¼ 0;

(5.17)

which expresses Schouten’s identity as the statement that
hq1 q2ihq3 q4i symmetrized over all legs vanishes. (From
this it also follows that all spinor strings involving 2n > 2
supermomenta vanish upon symmetrization.) In terms of
regular bosonic spinor products, this is equivalent to the

FIG. 15 (color online). Two examples of momentum conservation identities, allowing us to convert loop momenta to external
momenta. In (a) we have three index lines that can be summed up to �ihijl1 þ l2 þ l3jj�~�j. Because the vertical cut crosses the entire

diagram the sum of loop momenta can be reexpressed in terms of external momentum K ¼ l1 þ l2 þ l3. Similarly, for (b) the sum over
index lines gives �2l1 � l2 � 2l2 � l3 � 2l1 � l3 ¼ �K2.

FIG. 14 (color online). According to the mixed-superspace
sign rules (‘‘rule 2’’) a closed loop of index lines corresponds
to a (chiral) trace of only momenta, no supermomenta, with an
explicit insertion of a negative sign, reflecting the fermionic
nature of index lines. [For clarity the momenta are here directed
so that no implicit sign comes out of the spinors according to the
sign rules Eq. (2.7).]
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usual Schouten’s identity where the antisymmetrization of
the spinor strings vanishes. We note that although the
orginal index lines start and end on legs within a single
tree amplitude, after an application of Schouten’s identity
in Fig. 16, they can begin and end on legs of different tree
amplitudes in the cuts.

Besides the basic identity more complicated versions
may be needed. For example, for the configuration in
Fig. 17, we have the identity,

hq1 q4ihq2 q5ihq3 q6i þ h�q1 q5ih�q2 q6ih�q3 q4i
¼ hq4 q5ih�q1 q2ihq3 q6i þ h�q1 q5ihq4 q6ih�q2 q3i;

(5.18)

which is obtained by a composition of two applications of
Schouten’s identity.

We note that the identities presented in this section
remain valid under conjugation h i $ ½ �, q $ ~q, � $ ~�,
and MHV $ MHV.

E. Three-loop examples

To illustrate the use of the index diagrams in a nontrivial
example consider the cut of the three-loop four-point am-
plitude shown in Figs. 18(a) and 19(a) in terms of MHV
andMHV tree amplitudes. We have taken the external legs
to be gluons with helicity assignments ð1�; 2�; 3þ; 4þÞ
allowing all possible states of the N ¼ 4 theory to circu-
late in the loops. In this case there are two distinct con-
figurations of MHV and MHV tree amplitudes in the cuts
separated into the two figures. As mentioned in Sec. II C,

the four-point trees can be chosen to be either holomorphic
or antiholomorphic, so flipping the identification of four-
point trees from MHV to MHV does not lead to distinct
contributions.
Consider first the configuration in Fig. 18, where two of

the tree amplitudes composing the cut are MHVand one is
MHV. We have

CFig: 18 ¼ X
states

AMHV
5 ð3þ; 4þ; l3; l2; l1Þ

� AMHV
5 ð1�;�l5;�l4;�l2;�l3Þ

� AMHV
4 ð2�;�l1; l4; l5Þ

¼ i
fig: 18 1

½3 4�½4 l3�½l3 l2�½l2 l1�½l1 3�
� 1

h1 l5ihl5 l4ihl4 l2ihl2 l3ihl3 1i
� 1

h2 l1ihl1 l4ihl4 l5ihl5 2i ; (5.19)

where the numerator result of the supersum contained in

Fig: 18 can be obtained from the index diagrams in Fig. 18.
The routings (b) and (c) are the only possibilities for a
single SUð4Þ index. This can be worked out following the
rules that index lines, corresponding to physical states, are
discontinuous between two MHVamplitudes and continu-
ous between MHV and MHV amplitudes. Furthermore,
every MHV and MHV tree amplitude contains exactly
one index line per SUð4Þ index. Each line must properly
attach to the external assignment of SUð4Þ indices (in this
case the helicity of the external gluons). Using either set of
rules for reading the diagrams in Sec. VC gives the single-
index-line numerator,

� ½~q3 ~q4�hql4 q2ihq1 ql5i � ½~q3 ~q4�hql5 q2ihq1 ql4i
¼ ½~q3 ~q4�hq1 q2ihql4 ql5i: (5.20)

The right-hand side corresponds to Fig. 18(d) which is
obtained from Figs. 18(b) and 18(c) after applying the
pictorial Schouten’s identity in Fig. 16. Dropping the
Grassmann parameters and raising the result to fourth
power immediately yields


Fig: 18 ¼ ½3 4�4h1 2i4hl4 l5i4: (5.21)

FIG. 17 (color online). Pictorial representation of more complicated applications of Schouten’s identity.

FIG. 16 (color online). A pictorial representation of
Schouten’s identity. All index lines carry the same suppressed
SUð4Þ index. [Note that the supermomentum qi flips sign ac-
cording to Eq. (2.7) depending on which side of the dashed (red)
cut line the shaded (blue) index line extends.]
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The other distinct contribution of holomorphicity of tree
amplitudes in Fig. 19, while somewhat more complicated,
is quite similar. For this contribution we have

CFig: 19 ¼ X
states

AMHV
5 ð3þ; 4þ; l3; l2; l1Þ

� AMHV
5 ð1�;�l5;�l4;�l2;�l3Þ

� AMHV
4 ð2�;�l1; l4; l5Þ

¼ i
fig: 19 1

h3 4ih4 l3ihl3 l2ihl2 l1ihl1 3i
� 1

½1 l5�½l5 l4�½l4 l2�½l2 l3�½l3 1�
� 1

½2 l1�½l1 l4�½l4 l5�½l5 2� : (5.22)

The result of the state sum is contained in the factor 
Fig: 19

and can be read off from the index lines in Fig. 19. Using
the mixed-superspace rules (rule 2), the five diagrams in

Figs. 19(b)–19(f) yield a numerator factor,

� hl2 l3i½l3 l2�½~ql4 ~ql5� � ~�l4
½l4jl1l2jl5�~�l5

� ~�l4
½l4jl2l1jl5�~�l5

� ~�l4
½l4jl1l3jl5�~�l5

� ~�l4
½l4jl3l1jl5�~�l5

¼ �ðhl2 l3i½l3 l2� þ hl1 l2i½l2 l1� þ hl1 l3i½l3 l1�Þ½~ql4 ~ql5�
¼ �ðl1 þ l2 þ l3Þ2½~ql4 ~ql5� ¼ �s½~ql4 ~ql5�: (5.23)

The second line in this equation is obtained by applying the
pictorial Schouten’s identity displayed in Fig. 16 to the
second and third contributions in Fig. 19, as well as to the
fourth and fifth. This gives the second line corresponding
to the diagrams displayed in Fig. 20. The result on the last
line of Eq. (5.23) follows from momentum conservation
ðl1 þ l2 þ l3Þ2 ¼ ðk1 þ k2Þ2 ¼ s. Stripping the anticom-
muting parameters and raising the result to the fourth
power gives us the desired numerator,


Fig: 19 ¼ s4½l4 l5�4: (5.24)

FIG. 19 (color online). The same cut topology as in Fig. 18, but for the other independent configuration of tree amplitudes.

FIG. 18 (color online). A contribution of a three-loop cut (a) in terms of index diagrams (b) and (c) tracking only a single SUð4Þ
index. (d) follows from applying Schouten’s identity given in Fig. 16 to (b) and (c). The index lines in (b) and (c) all begin and end on
legs of the same tree amplitude, but as in (d), after application of Schouten’s identity, an index line can connect legs of different tree
amplitudes. The other independent configuration of holomorphicity of the tree amplitudes for this cut is given in Fig. 19.
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This displays a cancellation of a total of eight powers of
loop momenta from the numerator of the cut.

Rather remarkably, we see that after dividing out the
four-point tree amplitude, the two contributions (5.21) and
(5.23) corresponding to Figs. 18 and 19 are complex con-
jugates of each other

CFig: 19ðbÞ

Atree
4

¼
�
CFig: 18ðaÞ

Atree
4

�	
: (5.25)

The tree amplitude in this equation is given [see Eq. (2.4)]
by

Atree
4 ð1�; 2�; 3þ; 4þÞ ¼ i

h1 2i4
h1 2ih2 3ih3 4ih4 1i

¼ i
½3 4�4

½1 2�½2 3�½3 4�½4 1� ; (5.26)

which are the MHV and MHV forms of the four-gluon
amplitude. To make the relation (5.25) manifest, on the left
side we use the MHV form of the tree amplitude while on
the right side we use the MHV form. Thus, after removing
an overall factor of the tree amplitude the two contributions
add up to a real expression. A consequence of this obser-
vation is that the cut can be expressed entirely in terms of
scalar products of momenta multiplied by an overall factor
of the tree amplitude. (Terms containing the Levi-Cività
tensor cancel.) For amplitudes other than four-point ones,
this property no longer holds [33].

VI. TRACKING CONTRIBUTIONS

The R-symmetry index-diagram approach allows us to
track the contributions of individual states in four-
dimensional cuts. This observation has some interesting
consequences. In particular, as we outline below, we can
give rules for constructing cuts of amplitudes in various
theories with fewer supersymmetries. We also use this
observation to obtain rules for finding the contributions
of the complete N ¼ 4 supermultiplet starting from the
easily enumerated purely gluonic contributions. We illus-
trate this with some nontrivial four-loop examples, relevant

to the construction of the complete four-loop four-point
amplitude of the N ¼ 4 theory [38].

A. Cases with fewer supersymmetries

Certain theories with reduced supersymmetry may be
constructed simply by truncating the spectrum of theN ¼
4 theory. As discussed in Sec. V the supersums contribut-
ing to cuts of amplitudes with external gluons are always
the fourth power of a sum of terms

ðAþ Bþ Cþ . . .ÞN ; N ¼ 4; (6.1)

where the summands A; B; C; . . . represent the possible
spinorial numerator factors encoded by the SUð4Þ index
diagrams. They correspond to the possible paths, or rout-
ings, of an index line, after all �’s and ~�’s have been
removed. After expanding (6.1), the terms are in one-to-
one correspondence to individual particles and helicity
configurations. In particular, index lines routed in groups
of four correspond to purely gluonic states and give the
numerator terms A4; B4; C4; . . .—a fact which we exploit
below in Sec. VIB. Combinations where the four index
lines follow different routings give rise to the cross terms in
the product (6.1). These terms correspond to cases where
scalar and fermion fields of the supermultiplet propagate,
e.g. terms such as A3B or A2B2 arise from fermion and
scalar states in the loops (see Fig. 12 for explicit examples).
Precise tracking of the matter fields through the cuts is
dictated by the index-line diagrams.
For a few theories which are closely related to N ¼ 4

super-Yang-Mills theory it is possible to write down closed
form expressions for the cuts of their scattering amplitudes
in terms of the N ¼ 4 cuts. This is a consequence of the
fact that the N ¼ 4 vector multiplet decomposes in a
direct sum of representations of N < 4 supersymmetry
algebras. By systematically dropping contributions follow-
ing their R charges, we obtain cuts of amplitudes in theo-
ries with reduced supersymmetry and a field content which
is a subset of that of N ¼ 4 SYM.
Starting from the N ¼ 4 spectrum we may eliminate

one N ¼ 2 hypermultiplet to obtain the spectrum of the

FIG. 20 (color online). Simplified results after applying Schouten’s identity. (a) is just (b) of Fig. 19, while (b) is obtained by
combining (c) and (d) of Fig. 19 via the pictorial Schouten’s identity in Fig. 16. Similarly, (c) comes from combining (e) and (f) of
Fig. 19. This form exposes supersymmetric cancellation, allowing us to extract factors depending only on external momenta from each
cut numerator.
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pureN ¼ 2 super-Yang-Mills theory. This can be done by
expressing the representations of the SUð4Þ R symmetry in
representations of an SUð2Þ � SUð2Þ �Uð1Þ subgroup
and restricting to states transforming trivially under one
SUð2Þ factor. Without loss of generality, this may be taken
to act on indices 3 and 4; this truncation breaks SUð4Þ
down to SUð2Þ, giving the following states:

gþ; faþ; sab; s34; fb34� ; gab34� ;

(6.2)

here a, b ¼ 1 or 2 are the SUð2Þ R-symmetry indices.
Although indices 3 and 4 no longer play the role of group
indices, we keep them as labels to distinguish the states and
to keep notation uniform with the N ¼ 4 case. As ex-
pected, there are two fermions which, on-shell, correspond
to four states faþ and fb34� . The two scalar fields are com-
plex conjugates ðs34Þ	 ¼ s12; thus the counting of on-shell
states is consistent with the N ¼ 2 gauge multiplet.

In terms of the index diagrams this truncation implies
that we should keep only those diagrams where indices 3
and 4 are grouped together. For external gluons, this gives
the following cut numerator:

ðAþ Bþ Cþ � � �Þ2ðA2 þ B2 þ C2 þ � � �Þ; (6.3)

where A, B, and C represent the same terms as in Eq. (6.1),
and the squares A2, B2, and C2 are a consequence of the
above requirement that two indices are always grouped
together in the diagrams.

In the same spirit, by dropping one chiral multiplet from
theN ¼ 2 spectrum we obtain the on-shellN ¼ 1 gauge
supermultiplet,

gþ; faþ; f234� ; ga234� : (6.4)

By requiring that the fields transform trivially in the 2, 3,
and 4 directions we remove all scalars and all but one
fermion. Although this also fixes the index a ¼ 1 we
keep the label a ‘‘covariant’’ as a reminder that it should
be treated differently from the others.

This truncation is reflected at the level of index diagrams
as three lines, corresponding to three indices taking the
values 2, 3, and 4, always being grouped together, while
the remaining line is allowed to have an independent
routing. For external gluons, the resulting cut numerator
factor is then

ðAþ Bþ Cþ � � �ÞðA3 þ B3 þ C3 þ � � �Þ: (6.5)

By truncating away all fields carrying R charges, the
N ¼ 4 theory is reduced to pure (N ¼ 0) Yang-Mills
theory. The cut numerators may then be identified with
those index diagrams in which all four index lines follow
the same path. This eliminates all contributions from

‘‘matter’’ fields and yields the numerator

ðA4 þ B4 þ C4 þ � � �Þ: (6.6)

The above formulas for cut numerators can be summa-
rized in a single closed form,

ðAþBþCþ �� �ÞN � ðA4�N þB4�N þC4�N þ �� �Þ;
N < 4; (6.7)

which holds for N ¼ 0, 1, 2, and 3, where the N ¼ 3
case is identical to the N ¼ 4 super-Yang-Mills case in
Eq. (6.1). This is in line with the well-known on-shell
equivalence of the N ¼ 3 and N ¼ 4 super-Yang-Mills
theories [72]. In Eq. (6.7) the first factor represents the
supersymmetric summation over index lines with N in-
dependent R-symmetry indices; the second factor corre-
sponds to the controlled truncation of index diagrams, so
that 4�N indices are always grouped together. This
formula is consistent with one-loop expressions for cuts
found in, e.g., Refs. [25,33]
In fact, the above closed form for the cut numerator

implies that the amplitudes of these theories can be as-
sembled into generating functions. We illustrate this by
introducing such generating functions for the MHV tree
amplitudes for the minimal gauge multiplets of N < 4
super-Yang-Mills theory,

AMHV
n ð1; 2; . . . ; nÞ ¼ iQ

n
j¼1hjðjþ 1Þi

�YN
a¼1

�ð2ÞðQaÞ
�

�
�Xn
i<j

hi ji4�N
Y4

a¼Nþ1

�a
i �

a
j

�
;

(6.8)

with N counting the number of supersymmetries, Qa ¼P
n
i¼1 �i�

a
i , and n � 3. Each monomial in the superampli-

tude corresponds to an MHVamplitude, where the external
states match the spectra of the respective supersymmetric
theory. By keeping all four �a for each leg, we have a
uniform bookkeeping device for amplitudes in any theory
obtainable by truncating the spectrum of the N ¼ 4 the-
ory. Through the MHVexpansion, this generalizes as well
to the non-MHV amplitudes of these theories.
As a consistency check we have confirmed that the

amplitudes grouped in the generating functions, for each
value of N , form a closed set under factorization, thus
ensuring that internal states in these amplitudes are in the
spectrum of external states. Equipped with the generating
functions we may follow Ref. [35] and use supersymmetry
to validate the interactions. The explicit supermomentum
constraints in Eq. (6.8) ensure that superamplitudes are
annihilated by the supercharges, Qa with a ¼ 1; . . . ;N .
This property is sufficient to link all MHV amplitudes in
the generating function (6.8) to the gluonic Park-Taylor
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amplitudes by supersymmetry, and ensures correct
couplings.

Interestingly, following the discussion in Sec. III B, from
supermomentum conservation, the cut of any N < 4
super-Yang-Mills multiloop superamplitudeAn is propor-
tional to the overall supermomentum conservation con-
straint,

YN
a¼1

�ð2ÞðQaÞ: (6.9)

As for theN ¼ 4 theory, the fact that this structure factors
out in all cuts implies that complete on-shell loop ampli-
tudes also contain a factor of the overall supermomentum
conservation constraint.

The considerations outlined here can be generalized to
other theories and particle spectra. An example in this
direction are orbifolds of N ¼ 4 SYM. While the spectra
of such theories are still obtained by truncation of the
N ¼ 4 spectrum, the fact that the gauge group is inter-
twined nontrivially with the truncation makes this general-
ization nontrivial. It has been shown [73] that planar
scattering amplitudes in the orbifolded theory are, up to
trivial numerical factors, the same as those of the parent
theory, to all orders in perturbation theory. Nonplanar
amplitudes are, however, different. The fact that supersum
calculations do not depend on whether amplitudes are
planar or not hints that a closer relation might exist be-
tween the amplitudes of the orbifolded and parent theory
even at the nonplanar level.

Considerations similar to those discussed above also
hold for supergravity, where one can write down generat-
ing functions for the MHV and MHV sectors for N < 8
starting from the N ¼ 8 generating function given in
Refs. [35,36]. Furthermore, one can write down generating
functions for more general nonsupersymmetric matter con-
tent. One interesting example is dictated by the set of index
diagrams with even numbers of index lines routed identi-
cally, giving a bosonic state sum,

ðA2 þ B2 þ C2 þ � � �Þ2; (6.10)

corresponding to a theory of gluons and scalars arising
from the dimensional reduction of pure Yang-Mills theory
from six to four dimensions. The amplitudes of this theory
thus also possess a generating function description. It
should also be possible to extend these considerations to
theories not obtainable from N ¼ 4 super-Yang-Mills
theory by truncation.

B. A simple algorithm for evaluatingN ¼ 4 supersums

Consider now a generalized cut which breaks an n-gluon
amplitude of N ¼ 4 super-Yang-Mills theory at L loops
into a product of tree amplitudes. As discussed above, the

purely gluonic contributions are represented in index dia-
grammatic language by grouping all index lines into sets of
four following identical paths through the diagrams. The
key observation is that the purely gluonic diagrams cover
all possible paths. This allows us to use the enumeration of
only gluonic helicity configurations in the cuts to obtain the
contributions of all other states. The relative signs between
terms are then determined by dressing with anticommuting
parameters as discussed in Sec. V.
The simplified rules for obtaining the N ¼ 4 super-

Yang-Mills numerators of the n-gluon amplitudes from the
purely gluonic cases are as follows:
(i) Identify all nonvanishing purely gluonic helicity

choices. If the cut contains a tree amplitude which
is neither MHV nor MHV, expand it in MHV verti-
ces as discussed in Sec. IVA. Each helicity choice
then belongs to one independent configuration of
holomorphicity of MHV and MHV tree amplitudes.
(Recall that at four points, the MHV and MHV tree
amplitudes are equivalent and should be treated as
dependent.) Each independent configuration of hol-
omorphicity will form a distinct contribution, which
is summed over at the end.

(ii) For each independent choice of holomorphicity,
form the sum over all gluonic helicity configurations,
assigning one power of �ihi ji�j for MHV ampli-

tudes with negative helicity legs i and j and one
power of ~�i½i j�~�j for MHV amplitudes with posi-

tive helicity legs i and j.
(iii) Apply the Fourier transform rule (2.16) and anticom-

mute the �i and ½ij to a standard ordering, picking up
relative signs between terms in the sum.

(iv) After removing the common factor of the anticom-
muting parameters ordered in a standard form, raise
the sum to the fourth power.

(v) The denominator for a given configuration of MHV
and MHV tree amplitudes in the cuts is the product
of denominators for each tree amplitude, as well as
any propagators from MHV expansions.

(vi) Sum over the contributions of the independent
choices of holomorphicity.

C. Four-loop examples

To give an illustration of the above rules, we consider
supersums in the evaluation of some nontrivial cuts of four-
loop amplitudes. First consider the planar generalized cut

of the four-loop amplitude A4-loop
4 ð1�; 2�; 3þ; 4þÞ shown in

Fig. 21. There are two distinct configurations of MHVand
MHV tree amplitudes. Figure 21(a) is a singlet helicity
configuration. The helicity configuration of the internal
lines is uniquely fixed once the external lines are specified.
Thus, according to our rules only a single term appears in
the sum raised to the fourth power. The value of Fig. 21(a)
is then
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CFig: 21ðaÞ ¼ AMHV
5 ð1�; 2�; lþ3 ; lþ2 ; lþ1 ÞAMHV

4 ð�l�3 ;�lþ4 ;�lþ5 ;�l�7 ÞAMHV
4 ð�l�1 ;�l�2 ; l

þ
7 ;�lþ6 ÞAMHV

5 ð3þ; 4þ; l�6 ; l�5 ; l�4 Þ

¼ � h1 2i4
h1 2ih2 l3ihl3 l2ihl2 l1ihl1 1i

hl3 l7i4
hl3 l4ihl4 l5ihl5 l7ihl7 l3i

hl2 l1i4
hl1 l2ihl2 l7ihl7 l6ihl6 l1i

½3 4�4
½3 4�½4 l6�½l6 l5�½l5 l4�½l4 3� :

(6.11)

This result is valid for all the gauge multiplet of N 
 4 supersymmetric theories, since only gluons contribute here.
Now consider the more complicated case in Fig. 21(b) involving nonsinglet contributions. We have

CFig: 21ðbÞ ¼ X
states

AMHV
5 ð1�; 2�; l3; l2; l1ÞAMHV

4 ð�l3;�l4;�l5;�l7ÞAMHV
4 ð�l1;�l2; l7;�l6ÞAMHV

5 ð3þ; 4þ; l6; l5; l4Þ

¼ �
Fig: 21ðbÞ 1

½1 2�½2 l3�½l3 l2�½l2 l1�½l1 1�
1

½l3 l4�½l4 l5�½l5 l7�½l7 l3�
1

½l1 l2�½l2 l7�½l7 l6�½l6 l1�
� 1

h3 4ih4 l6ihl6 l5ihl5 l4ihl4 3i ; (6.12)

where 
Fig: 21ðbÞ accounts for the sum over the multiplet. There are a total of eight distinct purely gluonic helicity
configurations, obtained by listing out the nonvanishing possibilities which maintain the holomorphicity of Fig. 21(b).
Using the rules in the previous section, the gluonic numerator factors can be converted to eight primitive contributions,

A ¼ hl4 l5i½l4 l5�½l2 l7�½l1 l3�; B ¼ hl4 l5i½l4 l5�½l7 l1�½l2 l3�; C ¼ hl4 l6i½l4 l7�½l2 l6�½l1 l3�;
D ¼ hl4 l6i½l4 l7�½l6 l1�½l2 l3�; E ¼ hl5 l6i½l5 l7�½l2 l6�½l1 l3�; F ¼ hl5 l6i½l5 l7�½l6 l1�½l2 l3�;
G ¼ hl4 l6i½l2 l1�½l3 l4�½l6 l7�; H ¼ hl5 l6i½l2 l1�½l3 l5�½l6 l7�:

(6.13)

The sum over these eight terms exhibits the supersymmet-
ric cancellations after using Schouten’s identity and mo-
mentum conservation,

Aþ Bþ CþDþ Eþ FþGþH ¼ s½l1 l2�½l7 l3�;
(6.14)

where s ¼ ðk1 þ k2Þ2. We may then assemble the super-
sum for N < 4 following the discussion in Sec. VIA;
using Eq. (6.7) we obtain


Fig: 21ðbÞ ¼ ðs½l1 l2�½l7 l3�ÞN ðA4�N þ B4�N þ C4�N

þD4�N þ E4�N þ F4�N

þG4�N þH4�N Þ; (6.15)

which is valid for the minimal N ¼ 0, 1, 2, and 3 super-
symmetric gauge multiplets. The case N ¼ 3 is equiva-
lent to N ¼ 4,


Fig: 21ðbÞ
N¼4 ¼ s4½l1 l2�4½l7 l3�4: (6.16)

As for the N ¼ 4 three-loop example in Sec. VE, the
N ¼ 4 case (but not N 
 2) exhibits the property that
the two contributions in Fig. 21 are complex conjugates
after dividing by an overall factor of the tree amplitude,

iC
Fig: 21ðbÞ
N¼4

Atree
4

¼
�
iCFig: 21ðaÞ

Atree
4

�	
; (6.17)

where the i is inserted to correct for an overall phase that
depends on the loop order.
As a nonplanar example, consider the cut depicted in

Fig. 22. As far as the supersums are concerned the planarity
or nonplanarity of the cut is of little consequence, with the
only difference appearing in the spinor denominators
which are identical for all terms in the sum. This is an
especially useful cut because it checks a large number of

FIG. 21 (color online). An example of a four-loop planar cut. (a) gives the singlet helicity configuration, where only a single gluonic
helicity configuration contributes. (b) gives nonsinglet helicity configurations where all particles in the N ¼ 4 multiplet contribute.
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contributions to the four-loop amplitude, including the
most complicated nonplanar integrals. As for previous
examples, it turns out that there are two distinct choices
of holomorphicity, corresponding to Figs. 22(a) and 22(b),
since any helicity configuration falls into one of these two
classes. In the first class (a) we have seven distinct gluonic
helicity choices. In the second class (b) we have eight
distinct gluonic helicity choices.

We write down the target expression from the cuts using
the above rules. For Fig. 22(a) we have the cut contribution

CFig: 22ðaÞ ¼ X
states

AMHV
5 ð1�; l6; l2; l1; 4þÞ

� AMHV
5 ð�l1; l4;�l2; l3; l5Þ

� AMHV
4 ð�l4;�l3; 2

�;�l7Þ
� AMHV

4 ð�l5;�l6; l7; 3
þÞ; (6.18)

where the N ¼ 4 supersum factor is



Fig:22ðaÞ
N¼4 ¼ðhl1 l4i½l1 4�½l4 l7�½3l6�þhl1 l3i½l1 4�½l3 l7�

�½3l6�þhl2 l3i½l24�½l3 l7�½3l6�
þhl2 l4i½l2 4�½l4 l7�½3l6�þhl3 l5i½l3 l7�½l53�½4l6�
þhl4 l5i½l4 l7�½l53�½4l6�þhl4 l3i½l3 l4�½4l6�½3l7�Þ4:

(6.19)

By making repeated use of Schouten’s identity this sim-
plifies to



Fig: 22ðaÞ
N¼4 ¼ ðh1 2i½l7 2�½l6 3�½1 4�Þ4: (6.20)

For Fig. 22(b) we have the contribution,

CFig: 22ðbÞ ¼ X
states

AMHV
5 ð1�; l6; l2; l1; 4þÞ

� AMHV
5 ð�l1; l4;�l2; l3; l5Þ

� AMHV
4 ð�l4;�l3; 2

�;�l7Þ
� AMHV

4 ð�l5;�l6; l7; 3
þÞ: (6.21)

In this case the N ¼ 4 factor from summing over the
states crossing the cuts is



Fig:22ðbÞ
N¼4 ¼ðh1 l6i½l5 l3�½l4 l7�½3 l6�þh1l1i½l1 l4�½l3 l7�

�½l5 3�þh1 l2i½l3 l7�½l4 l2�½3 l5�þh1 l1i½l1 l3�
�½l4 l7�½3 l5�þh1 l2i½l2 l3�½l4 l7�½3 l5�
þh1 l6i½l3 l7�½l4 l5�½3 l6�þh1 l1i½l1 l5�½l3 l4�½3l7�
þh1 l2i½l2 l5�½l3 l4�½3 l7�Þ4: (6.22)

After repeatedly applying Schouten’s identity we obtain



Fig: 22ðbÞ
N¼4 ¼ ðh1 2i½2 3�½l3 l4�½l5 l7�Þ4: (6.23)

Although not manifest in the form we present here, the
two contributions to the cut in Eqs. (6.18) and (6.21) satisfy
a complex conjugation relation similar to the one in
Eq. (6.17). To obtain the nonplanar cuts for the N < 4
supersymmetric theories, we match the numerator forms in
Eqs. (6.19) and (6.22) to Eq. (6.1) and use the form in
Eq. (6.7) to replace the numerators with the appropriate
ones.

VII. FROM N ¼ 4 SUPER-YANG-MILLS THEORY
TO N ¼ 8 SUPERGRAVITY

Many of the tools presented in previous sections, which
were derived from the on-shell superspace of N ¼ 4
super-Yang-Mills, carry directly over to N ¼ 8 super-
gravity. For cuts that factorize loop amplitudes into only
MHV and MHV tree amplitudes, the methods of the pre-
vious sections can be generalized to N ¼ 8 supergravity

by replacing �ð8ÞðQaÞ ! �ð16ÞðQaÞ, and by suitably replac-
ing the other factors in the amplitudes with the crossing
symmetric gravity expressions. In this case the
R-symmetry index runs up to eight. However, at present
the existence of a complete set of MHVexpansion rules for
gravity has not been fully established [35]. As such, there
are many gravity cuts that cannot be handled directly by
relying on an MHV expansion. One may use the BCFW
recursion form of the tree-level superamplitudes in the
unitarity cuts, but this has not been studied systematically
beyond one loop [26,74]. Furthermore, the issue of four-
dimensional cuts being insufficient for reconstructing the
D-dimensional amplitude is more pressing in the case of
gravity. The presence of twice as many powers of momenta
in the numerators of gravity diagrams, compared to gauge
theory, offers more possibilities for expressions that vanish
in four dimensions, but not in D dimensions, to appear in
the cuts. An example of such an object is the Gram deter-
minant detðpi � pjÞ, with at least five independent momenta

(including loop momenta).
A method that effectively tackles both of these problems

is described in Refs. [7,40]: the tree-level KLT relations
can be used to relate cuts of N ¼ 8 supergravity to sums
of products of cuts N ¼ 4 super-Yang-Mills theory, with

FIG. 22. A nontrivial nonplanar cut at four loops. Cuts (a) and
(b) represent the two distinct contributions to the cuts. As
discussed in the text, using the rules developed here it is
straightforward to write down the expression corresponding to
these diagrams. All visible legs are on shell.
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additional kinematic factors. Since the KLT relations are
valid inD dimensions, the gravity cuts determined through
their use will automatically be valid in arbitrary dimen-
sions if the corresponding Yang-Mills cuts are.

Schematically, the KLT relations are of the form

Mtree
n ¼ X

i;j

gijA
ðiÞ
n AðjÞ

n ; (7.1)

where Mtree
n is an n-point N ¼ 8 supergravity amplitude,

and the AðiÞ
n are color-stripped n-point tree amplitudes in

N ¼ 4 super-Yang-Mills theory labeled by an index i,
implicitly incorporating all labels appearing in the ampli-
tudes. The gij are polynomials in kinematic invariants

slm ¼ ðkl þ kmÞ2 of degree (n� 3). The precise form of
the relations for any number of external legs may be found
in Ref. [23]. While their derivation from the (super)gravity
Lagrangian remains obscure, it was recently shown that the
KLT relations are equivalent to relations between numera-
tor factors of individual tree diagrams [58].

Generalized unitarity cuts in N ¼ 8 supergravity are
constructed, in much the same way as in N ¼ 4 SYM, as
products of tree-level amplitudes. Because the N ¼ 8
supergravity multiplet is the tensor product of two N ¼
4 super-Yang-Mills vector multiplets, when applying the
KLT relations, the supersymmetric sums appearing in the
cuts for supergravity amplitudes can be reexpressed as two
copies of supersymmetric sums for Yang-Mills amplitudes.
For example, for a cut that breaks the amplitude into two
tree amplitudes we have [40]

ML-loop
n jcut ¼

X
N¼8

Mtree
n1 Mtree

n2

¼ X
N¼8

�X
i;j

gijA
ðiÞ
n1A

ðjÞ
n1

��X
k;l

gklA
ðkÞ
n2 A

ðlÞ
n2

�

¼ X
i;j;k;l

gijgkl

� X
N¼4

AðiÞ
n1A

ðkÞ
n2

�� X
N¼4

AðjÞ
n1A

ðlÞ
n2

�
;

(7.2)

where the
P

N¼4A
ðiÞ
n1A

ðkÞ
n2 are color-stripped cuts ofN ¼ 4

super-Yang-Mills amplitudes. Any cut which decomposes
a loop amplitude into a product of trees works similarly.
Thus, instead of evaluating the supergravity cuts starting
from D-dimensional supergravity tree amplitudes, it is
generally more efficient to assemble them from simpler
cuts of the Yang-Mills amplitude via the KLT relations [8].

Since the KLT relations also hold for gravity theories
with fewer supersymmetries than the maximal number, the
gauge-theory discussion in Sec. VIA can be carried over to
gravity as well. Whenever a gravity theory is the low-
energy limit of a string theory, we are guaranteed that the
KLT relations will hold; this includes the vast number of
heterotic string constructions [75]. The relations appear to
apply even more generally than dictated by the heterotic
string constructions [57]. In general, the KLT construction

may give undesirable states in the tensor product, such as a
dilaton and antisymmetric tensor in the N ¼ 0 case; to
remove their contributions additional projections would be
required.

VIII. CONCLUSIONS

In this paper we described techniques for evaluating
sums over the multiplet of states appearing in the four-
dimensional generalized unitarity cuts of multiloop super-
Yang-Mills amplitudes. We used these techniques to ex-
pose general features of the cut amplitudes.
Our approach for evaluating the supersums in cuts is

inspired by the one of Bianchi, Elvang, Kiermaier, and
Freedman [35,36] and based on the MHVexpansion of tree
amplitudes [44–46]. Here we reorganized the contributions
in two ways: first, as a linear system of algebraic equations,
and, in the second, in terms of diagrams tracking the flow
of SUð4Þ R-symmetry indices. An important advantage of
the algebraic approach is that simplifications based on
Schouten’s identity are obtained automatically. This is a
natural approach for carrying out formal derivations of
properties of amplitudes. On the other hand, the diagram-
matic approach makes it straightforward to construct re-
sults by drawing simple diagrams and leads to an easily
programmable algorithm for evaluating supersums by
sweeping over possible purely gluonic configurations.
The expressions obtained this way can be further simplified
through use of Schouten’s identity and momentum conser-
vation; we described graphical rules for carrying out such
manipulations, whose effect is to improve the power count
by replacing some of the numerator loop momenta of cuts
with external momenta.
We also used the index-diagram approach to construct a

generating function for certain theories with less-than-
maximal supersymmetry. This is straightforward because
the index-diagram approach tracks the contributions of
individual configurations of states in the cuts. This allowed
us to give simple rules determining the contributions of
various gauge multiplets to cuts. It should be possible to
further generalize these considerations to supersymmetric
theories with arbitrary matter content.
In general, completely determining the integrand of

amplitudes requires the evaluation of unitarity cuts in an
arbitrary number of dimensions. In particular, use of di-
mensional regularization to control infrared or ultraviolet
singularities implies that the amplitudes cannot be eval-
uated in strictly four dimensions. Nevertheless, in practical
calculations, four-dimensional cuts provide invaluable
guidance for constructing an Ansatz, whose cuts can be
verified through the more complicatedD dimensional cuts.
The efficient and systematic evaluation of supermultiplet
sums in arbitrary dimensions remains an important open
problem. One obstacle arises from the strong dependence
of on-shell superspaces on the specific dimensionality of
space-time, making it difficult to treat all dimensions in a
unified way. Another difficulty is the absence of a formal-
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ism as efficient as four-dimensional spinor helicity in
general dimensions. Recent progress toward solving the
latter problem is given in Ref. [69], where a six-
dimensional helicitylike formalism is constructed.

The KLT [56–58] relations allow us to rewrite any
product of tree-level amplitudes in N ¼ 8 supergravity
representing the generalized cut of some multiloop ampli-
tude directly in terms of double products of cuts ofN ¼ 4
super-Yang-Mills amplitudes [40]. This allows us to im-
mediately carry over to N ¼ 8 supergravity N ¼ 4
super-Yang-Mills evaluations of supersums. Higher loop
studies of N ¼ 8 supergravity should help shed further
light on the recent proposal that N ¼ 8 supergravity may
be a perturbatively finite theory of quantum gravity
[6,7,27].

In summary, the techniques presented here clarify the
structure of unitarity cuts in supersymmetric theories.
These should be helpful in future studies of the properties
of multiloop amplitudes via the unitarity method. In par-
ticular these methods are important parts of the construc-
tion of the four-loop four-point nonplanar amplitudes of
N ¼ 4 super-Yang-Mills theory [38], which will probe
the multiloop infrared and ultraviolet structures of gauge
theories, and aid in the construction of the corresponding

N ¼ 8 supergravity amplitudes. These amplitudes will
allow for a definitive determination of the four-loop ultra-
violet behavior of the two maximally supersymmetric
theories in various dimensions.
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