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Based on the strong coupling expansion we obtain effective three-dimensional models for the Polyakov

loop in finite temperature G2 gluodynamics. The Svetitsky-Jaffe conjecture relates the resulting continu-

ous spin models with G2 gluodynamics near phase transition points. In the present work we analyze the

effective theory in leading order with the help of a generalized mean-field approximation and with

detailed Monte Carlo simulations. In addition we derive a Potts-type discrete spin model by restricting the

characters of the Polyakov loops to the three extremal points of the fundamental domain of G2. Both the

continuous and discrete effective models show a rich phase structure with a ferromagnetic, symmetric and

several antiferromagnetic phases. The phase diagram contains first and second order transition lines and

tricritical points. The modified mean-field predictions compare very well with the results of our

simulations.
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I. INTRODUCTION

For many good reasons G2 gluodynamics has attracted
much attention recently. For example, the 14-dimensional
exceptional group G2 has a trivial center, in contrast to the
usually studied SUðNÞ gauge groups. Indeed it is the small-
est simple and simply connected compact Lie group with
this property. Thus G2 gluodynamics is useful to better
understand the relevance of the center symmetry for con-
finement [1]. Actually a nontrivial center is needed in
several proposed scenarios for confinement and hence G2

gluodynamics can be used to test these proposals. It has
been convincingly demonstrated that the theory shows a
first order finite temperature transition without order pa-
rameter from a confining to a deconfining phase which can
be explained by center vortices [2]. In this context con-
finement refers to confinement at intermediate scales,
where a Casimir scaling of string tensions has been re-
ported [3]. But on large scales, deep in the infrared, strings
break due to gluon production and the static interquark
potential becomes flat [4]. Recently it has been demon-
strated that chiral symmetry is broken at low temperatures
and is restored at high temperatures at the thermodynamic
phase transition [5].

G2 gluodynamics has an intriguing connection to SUð3Þ
gauge theory. When one couples a scalar field in the seven-
dimensional fundamental representation to the gauge field
one can break the G2 gauge symmetry to the SUð3Þ gauge
symmetry of strong interaction. With increasing hopping
parameter � the resulting Yang-Mills-Higgs theory inter-
polates smoothly betweenG2 gluodynamics without center
symmetry and SUð3Þ gluodynamics with Z3 center sym-
metry. For intermediate values of the hopping parameter

the theory mimics SUð3Þ gauge theory with dynamical
quarks and the masses of these ‘‘quarks’’ increase with
increasing hopping parameter. In G2 gluodynamics the
Polyakov loop is no longer an order parameter in the strict
sense. Despite this fact it still serves as an approximate
order parameter separating the confined from the decon-
fined phase (see Fig. 1) with a rapid change at the phase
transition point.
According to the conjecture by Svetitsky and Yaffe [6,7]

the dynamics at the finite temperature confinement-
deconfinement transition of a dþ 1-dimensional pure
gauge theory can be described by effective spin models
in d dimensions. Studies of gauge groups Spð2Þ and Spð3Þ
[8] show that the transition of the corresponding spin
model does not predict the order of the transition of the
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FIG. 1. Expectation value of the traced Polyakov loop in the
fundamental seven-dimensional representation in G2 gluody-
namics on a 163 � 6 lattice as obtained via hybrid
Monte Carlo sampling. The phase transition is located for the
Wilson action at a critical �c � 9:765.
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full gauge theory, at least if the spin variables take their
values in the center of the gauge group G. However, if one
derives the discrete spin model from the effective
Polyakov-loop models (derived from the strong coupling
expansion), as it is done in this paper, then the spin vari-
ables carry rank ðGÞ þ 1 different values. Only for a sec-
ond order transition of the gauge theory are the critical
exponents predicted by the spin model. Based on our ear-
lier results on finite temperature SUð2Þ and SUð3Þ gluody-
namics [9–13] there are strong indications that the effective
models derived and analyzed in the present work are in-
deed sufficient to accurately describe the dynamics of
Polyakov loops, although the transition in G2 is first order.
In this case the Polyakov-loop expectation values can be
recovered from refined spin models. The direct connection
between the effective spin models and G2 gluodynamics is
postponed to a forthcoming publication.

In Sec. II we review kinematic aspects of G2 and the
main implications for G2 gluodynamics. Afterwards in
Sec. III the strong coupling expansion for the effective
Polyakov-loop action is explained and, in particular, the
effective theory in leading order is introduced. In Sec. IV
we investigate the properties of the effective model first by
a classical analysis, then by a modified mean-field approxi-
mation and finally by extensive Monte Carlo simulations.
Reducing the continuous spin degrees further to the dis-
crete spins situated at the 3 edges of the fundamental
domain of G2 we end up with a deformed Potts-type spin
model whose phase diagram is explored in Sec. V.

II. THE GROUP G2

G2 is the smallest of the five exceptional simple Lie
groups and can be viewed as a subgroup of SOð7Þ subject
to seven independent cubic constraints for the seven-
dimensional matrices g representing SOð7Þ [14]:

Tabc ¼ Tdefgdagebgfc: (1)

Here T is a total antisymmetric tensor given by

T127 ¼ T154 ¼ T163 ¼ T235 ¼ T264 ¼ T374 ¼ T576 ¼ 1:

(2)

The constraints (1) for the group elements reduce the 21
generators of SOð7Þ to 14 generators of the group G2 with
rank 2. Its fundamental representations are the defining
seven-dimensional and the adjoint 14-dimensional repre-
sentation with Dynkin labels

ð7Þ ¼ ½1; 0�; ð14Þ ¼ ½0; 1�: (3)

G2 has a trivial center and its Weyl group is the dihedral
group D6 of order 12. Additionally G2 is connected to
SUð3Þ through the embedding of SUð3Þ as a subgroup of
G2 according to [15]

G2=SUð3Þ � SOð7Þ=SOð6Þ � S6: (4)

Sowhen the S6 part ofG2 is frozen out
1 we end up at SUð3Þ

gauge theory.
In effective theories for the gauge invariant (traced)

Polyakov loops in the fundamental representations we
are aiming at, only the reduced Haar measure is needed.
Based on [16] this measure can be given for a parametri-
zation of the conjugacy classes either by angular variables
or alternatively by the fundamental characters,

d� / J2d’1d’2 ¼ Jd�7d�14: (5)

The density J2 can be expressed in terms of the fundamen-
tal characters,

J2 ¼ ð4�3
7 � �2

7 � 2�7 � 10�7�14 þ 7� 10�14 � �2
14Þ

� ð7� �2
7 � 2�7 þ 4�14Þ; (6)

where the characters are given in terms of (particularly
chosen) angular variables ’1;2 as

�7 ¼ 1þ 2cosð’1Þþ 2cosð’2Þþ 2cosð’1þ’2Þ;
�14 ¼ 2ð1þ cosð’1Þþ cosð’1�’2Þþ cosð’2Þ

þ cosð’1þ’2Þþ cosð2’1þ’2Þþ cosð’1þ 2’2ÞÞ:
(7)

The boundary of the fundamental domain is determined by
J ¼ 0 and thus is parametrized by the three curves (see
Fig. 2)

�14 ¼ 1

4
ð�7 þ 1Þ2 � 2;

�14 ¼ �5ð�7 þ 1Þ � 2ð�7 þ 2Þ3=2:
(8)

Note that the reduced G2 Haar measure is maximal not at
the origin but for ð�7; �14Þ ¼ ð�1=5;�2=5Þ. The funda-
mental domain has no symmetries at all and this expresses
the fact that the center of G2 is trivial.

Representation theory and implications for
confinement

In the pioneering work [14] the confining properties of
G2 have been discussed and compared to those of SUð3Þ.
Quarks and antiquarks in SUð3Þ transform under the fun-
damental representations 3 and �3 such that their charges
can only be screened by particles with nonvanishing 3-
ality, especially not by gluons. This explains why in the
confining phase of SUð3Þ gluodynamics the static inter-
quark potential is linearly rising up to arbitrary long dis-
tances. As a consequence the free energy of a single quark
gets infinite and the Polyakov-loop expectation value van-
ishes. Hence the Polyakov loop discriminates the confining
from the deconfining phase and at the same time serves as
order parameter for the Z3 center symmetry.

1This is possible when a fundamental Higgs field is coupled to
the gauge field [1].
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To better understand G2 gluodynamics we recall the
decomposition of tensor products into irreducible repre-
sentations,

ð7Þ � ð7Þ ¼ ð1Þ � ð7Þ � ð14Þ � ð27Þ
ð7Þ � ð7Þ � ð7Þ ¼ ð1Þ � 4 	 ð7Þ � 2 	 ð14Þ � 3 	 ð27Þ

� 2 	 ð64Þ � ð77Þ
ð14Þ � ð14Þ ¼ ð1Þ � ð14Þ � ð27Þ � ð77Þ � ð770Þ

ð14Þ � ð14Þ � ð14Þ ¼ ð1Þ � ð7Þ � 5 	 ð14Þ � 3 	 ð27Þ
� 2 	 ð64Þ � 	 	 	 (9)

with Dynkin labels

ð1Þ ¼ ½0; 0�; ð27Þ ¼ ½2; 0�; ð64Þ ¼ ½1; 1�;
ð77Þ ¼ ½3; 0�; ð770Þ ¼ ½0; 2�: (10)

The quarks in G2 transform under the seven-dimensional
fundamental representation, gluons under the 14-
dimensional fundamental (and at the same time adjoint)
representation. From (13) we see that similarly as in SUð3Þ
two or three quarks can build a color singlet (meson or
baryon, respectively). In G2 gluodynamics three center-
blind dynamical gluons can screen the color charge of a
single quark,

ð7Þ � ð14Þ � ð14Þ � ð14Þ ¼ ð1Þ � 	 	 	 : (11)

Thus the flux tube between two static quarks can break due
to gluon production and the Polyakov loop does not vanish
even in the confining phase [1]. This shows that the
Polyakov loop can at best be an approximate order pa-
rameter (see Fig. 1) which changes rapidly at the phase
transition and is small (but nonzero) in the confining phase.
To characterize confinement we can no longer refer to a
nonvanishing asymptotic string tension and vanishing
Polyakov loop. Instead we define confinement as the ab-

sence of free color charges in the physical spectrum. In the
confining phase the interquark potential rises linearly at
intermediate scales [2,3].

III. EFFECTIVE THEORIES AND THE STRONG
COUPLING EXPANSION

Based on a conjecture relating finite temperature SUðNÞ
gluodynamics in dþ 1 dimensions at the critical point
with a ZN spin model in d dimensions [6,7], there have
been extended studies to compare correlation functions of
both systems for SUð2Þ [10–12] and SUð3Þ gluodynamics
[9,13], either by using Schwinger-Dyson equations or de-
mon methods [17,18]. The strong coupling expansion for
the distribution of the inhomogeneous Polyakov loops was
taken as ansatz for the (exponentiated) effective Polyakov-
loop action. This way effective models for SUð3Þ gluody-
namics have been derived in [9]. Here we sketch how one
arrives at the analogous results for G2 and obtain the
effective continuous spin model in leading order.
Starting with the lattice Wilson action

SW ¼ �
X
h

�
1� 1

NC

Re trUh

�
; �¼ 2NC

a4g2
; NC ¼ 7;

(12)

a strong coupling expansion (for small �) is performed to
arrive at an effective theory for the local Polyakov loops.
To do that one inserts a group valued delta function into the
path integral,

Z ¼
Z

DU expð�SW½U�Þ

¼
Z

DP
Z

DU�

�
Px;

YNt

�¼1

U�;x

�
expð�SW½U�Þ



Z

DP expð�Seff½P �Þ: (13)

HereDP denotes the product of reduced Haar measures on
the sites of the spatial lattice. We do not need the full Haar
measure of G2 since the effective action Seff only depends
on the gauge invariant content of the local Polyakov loop.
In compact form the strong coupling expansion is then

given by

Seff½P � ¼ X
r

X
R1...Rr

X
‘1...‘r

c‘1...‘rR1...Rr
ð�ÞYr

i¼1

SRi;‘i ¼
X
i

�iSi

(14)

with the basic building blocks

SR;‘ 
 �RðP xÞ��
RðP yÞ þ c:c:; ‘ 
 hxyi: (15)

Here r counts the number of link operators contributing at

each order. The coefficients c‘1...‘rR1...Rr
couple the operators

SRi;‘i sitting at nearest neighbor links ‘i 
 hxi; yii in rep-

resentation Ri. The effective action hence describes a
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FIG. 2. Fundamental domain of G2. Darker regions indicate a
bigger Haar measure.
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network of link operators that are collected into (possibly
disconnected) ‘‘polymers’’ contributing with ‘‘weight’’

c‘1...‘rR1...Rr
. The resulting ‘‘operators’’ (Polyakov-loop mono-

mials) are dimensionless and there is no natural ordering
scheme at hand. Our chosen truncation is based on the
strong coupling expansion in powers of � which is closely
related to the dimension of the corresponding group rep-
resentations and the distance across which the Polyakov
loops are coupled. In the strong coupling expansion trun-
cated at Oð�kNtÞ one has r � k and the additional restric-
tion jR1j þ 	 	 	 þ jRrj< k with jRj 
 p1 þ p2 for a
given representation R of G2 with Dynkin labels
½p1; p2�. The leading order terms only contain interactions
between nearest neighbors hxyi and the two fundamental
representations.

For SUð3Þ the characters of the two fundamental repre-
sentations are complex conjugate of each other such that
the effective Polyakov-loop action contains just one term
in leading order. In G2 this situation changes and we find
two independent contributions in leading order. We refer to
the corresponding model containing the two fundamental
representations as fundamental model. Its action is explic-
itly given by

Seff ¼ �7

X
hxyi

�7ðP xÞ�7ðP yÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

S7

þ �14

X
hxyi

�14ðP xÞ�14ðP yÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S14

;

(16)

where the couplings �7 and �14 are indexed by the dimen-
sion of the involved representation. In next-to leading order
there exist six additional terms with nearest neighbor in-
teractions. Their explicit forms are dictated by representa-
tion theory (13)

S27 ¼
X
hxyi

�27ðP xÞ�27ðP yÞ;

S770 ¼
X
hxyi

�770 ðP xÞ�770 ðP yÞ;

S64 ¼
X
hxyi

�64ðP xÞ�64ðP yÞ;

S7;7 ¼
X
hxyi

ð�7ðP xÞ�7ðP yÞÞ2;

S14;14 ¼
X
hxyi

ð�14ðP xÞ�14ðP yÞÞ2;

S7;14 ¼
X
hxyi

�7ðP xÞ�7ðP yÞ�14ðP xÞ�14ðP yÞ:

(17)

It the remainder of this work we shall neglect the next-lo
leading order terms and concentrate on the fundamental
model (16).

IV. THE FUNDAMENTAL MODEL

For the fundamental effective model (16) we shall lo-
calize the symmetric, ferromagnetic and antiferromagnetic
phases with coexistence lines in order to find the region in
the space of couplings �7, �14 where a connection to G2

gluodynamics can be established.

A. Classical analysis

For strong couplings the fluctuations of the Polyakov
loops are suppressed and the spin system behaves almost
classically. Thus for large j�7j and j�14j we may compute
the phase diagram by minimizing the classical action.
Anticipating that there are antiferromagnetic phases we
introduce the odd and even sublattices

�o ¼ fxjx1 þ x2 þ x3 oddg and

�e ¼ fxjx1 þ x2 þ x3 eveng:
(18)

On each sublattice the Polyakov loop is assumed to have a
constant value and the two values are denoted by P o and
P e, respectively. We denote the corresponding characters
in the fundamental domain of G2 by

�e ¼ �7;e

�14;e

� �
¼ �7

�14

� �
ðP eÞ and

�o ¼ �7;o

�14;o

� �
¼ �7

�14

� �
ðP oÞ:

(19)

With this assumption and notation the action of the funda-
mental model (16) reads

Seff ¼ V�T
eK�o with K ¼ 3

�7 0
0 �14

� �
: (20)

To localize the different phases we may assume that the
Polyakov loop on one sublattice, say �o, is equal to the
group-identity with maximal characters, �7;o ¼ 7 and

�14;o ¼ 14. For given couplings �7 and �14 the correspond-

ing thermodynamic phase is then determined by that
Polyakov loop on �e for which the linear function
7�7�7;e þ 14�14�14;e is minimal. If the minimizing char-

acters are the same on both sublattices then the phase is
ferromagnetic, else it is antiferromagnetic. The minimum
of the linear function is attained for �e on one of the three
corners of the fundamental domain in Fig. 2 or on the curve
connecting the corners ð�1;�2ÞT and ð7; 14ÞT. Depending
on the sign of �7 and the slope � 
 �14=�7 one finds the
following phases:
(i) For �7 > 0 and � <�1=2 or for �7 < 0 and � >

�1=8 we find the ferromagnetic phase F with �T
e ¼

ð7; 14Þ.
(ii) For �7 > 0 and � > 1=14 we find a antiferromag-

netic phase AF1 with �T
e ¼ ð�1;�2Þ.

(iii) For �7 > 0 and �1=2< �< 1=14 we find a second
antiferromagnetic phase AF2 with �T

e ¼ ð�2; 5Þ.
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(iv) For �7 < 0 and � <�1=8 the characters �T
e ¼

ð�1� 1=�; 1=ð2�Þ2 � 2Þ change continuously
from (7, 14) to ð�1;�2Þ along the connecting
boundary curve of the fundamental domain. This
transition phase is denoted by F ! AF1.

The phase portrait is depicted in Fig. 3 where we also
included the expected symmetric phase for weak cou-
plings. Since in a symmetric phase entropy wins over
energy it cannot be seen in any classical analysis.

B. Mean-field analysis

The classical analysis is refined by a modified mean-
field approximation in which one allows for inhomogene-
ous mean fields. First we recall the main aspects of the
method. Here we are interested in expectation values of the
form

hAi ¼ 1

Z

Z
DP expð�Seff½P �ÞA½P �;

DP 
 Y
x

d�ðP xÞ;
(21)

where the gauge invariant function AðP Þ depends on the
Polyakov loop via the fundamental characters �7ðP Þ and
�14ðP Þ and d� is the reduced Haar measure of G2. The
equilibrium probability measure DP expð�SeffÞ=Z is the
unique minimum to the variational problem

inf
p
hSeff þ lnpip; (22)

where the p-indexed expectation value is calculated with
the integration measure p½P �DP , whose probability den-
sity p is to be varied. Expectation values of observables can
then be computed as

hAip ¼
Z

DPp½P �A½P �: (23)

In this scope a Monte Carlo simulation is just the approxi-
mation of the probability density p½P � / expð�Seff½P �Þ
with a finite set of configurations which give p½P � �
N�1

MC �PNMC

t¼1 �ðP � P tÞ, where P t is the configuration

in the t’th Monte Carlo step and NMC is the number of
Monte Carlo steps.
In a variational approach the mean-field approximation

amounts to the restriction of the admissible densities p to
product form

p½P � ! Y
x

pxðP xÞ: (24)

Then expectation values factorize and the computation can
be done site by site. Because of the translational invariance
of the action one may believe, that the minimizing density
is translational invariant, pxðP Þ ¼ pðP Þ. However, this
assumption is only justified for the symmetric and ferro-
magnetic phases with constant mean fields.
Anticipating the existence of additional antiferromag-

netic phases we partition the lattice into its even and odd
sublattices, as we did in the classical analysis, and allow for
different densities on the sublattices,

pxðP xÞ ¼
�
peðP xÞ :x 2 �e

poðP xÞ :x 2 �o
(25)

The classical analysis is then recovered by allowing only
�-type point-measures for pe;o. In the modified mean-field

analysis we allow for all pe;o in the variational principle

with prescribed mean fields ��e and ��o on the even and odd
sublattices. The effective potential u is then obtained by
computing

uð ��e; ��oÞ ¼ 1

V
inf
p
hSeff þ lnpip; (26)

subject to the following four constraints for the admitted
densities pe and po:

h�ie;o ¼ ��e;o: (27)

The one-site expectation values h. . .ie;o are calculated with

pe;od�. To actually compute the minimizing densities one

needs the expectation value of the action and entropy, given
by

hSeffip ¼ V ��T
eK ��o; hlnpip ¼ V

2
hlnpeie þ V

2
hlnpoio;

(28)

where K is the matrix given in (20). On each sublattice the
variational problem is solved by a density p / expðj 	
�ðP ÞÞ with two Lagrangian multipliers j ¼ ðj7; j14Þ. The
four multipliers are determined by the four constraints in
(27). Using this solution for the densities in the variational
principle determines the effective potential as function of
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FIG. 3. The classical phase diagram of the fundamental effec-
tive G2 model. In addition to the calculated ferromagnetic and
antiferromagnetic phases we expect asymmetric phase for weak
couplings.
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the prescribed mean fields. The expectation values of the
characters on the two sublattices minimize the effective
potential. These minima solve the following system of
coupled gap equations

K ��e ¼ � @w ��o

@ ��o

; K ��o ¼ � @w ��e

@ ��e

wð ��Þ ¼ ln
Z

d�ðP Þe� ��TK�ðP Þ:
(29)

We have calculated the expectation values of �7 and �14 on
both sublattices as functions of the couplings on a 120�
100 grid in the rectangle

� 0:3 � �7 � 0:3 and � 0:25 � �14 � 0:25: (30)

The contour plot of the expectation value

h�7i ¼ 1

2
ðh�7;ei þ h�7;oiÞ; (31)

calledmagnetization, is depicted in Fig. 4. As expected, for
weak couplings we find a symmetric phase with vanishing
magnetization in the center of the phase diagram. On the
lower left, for negative couplings, we find the ferromag-
netic phase with h�7;ei ¼ h�7;oi � 7 or equivalently with a
typical P x near the identity. For an unambiguous identi-
fication of the phases one needs the expectation values of
both �7 and �14 on both sublattices. We have calculated
these four expectation values for the fundamental model on
a grid in the space of coupling constants with extensive
Monte Carlo simulations. Since the numerical simulations
and mean-field approximation yield almost identical re-
sults we defer the detailed discussion of phase portrait, and,
in particular, the localization of the various antiferromag-
netic phases for positive couplings, to the following
section.

C. Monte Carlo results

We performed our Monte Carlo simulations with about
10 000 samples for every point on a 60� 50 grid inside the
rectangle (30) in the space of coupling constants. Two
neighboring points on this grid are separated by 0.01.
First we calculated the magnetization h�7i and the result-
ing phase portrait is depicted in Fig. 5. It looks very similar
to the portrait calculated in the mean-field approximation,
see Fig. 4.

For weak couplings entropy wins over energy and the
product of Haar measures of the Polyakov loops become
relevant. In order to unambiguously identify the antiferro-
magnetic phases for positive couplings we again subdi-
vided the lattice in the even and odd sublattice,
� ¼ �e [�o, and measured the staggered magnetization

S ¼ 1

2
hj�7;e � �7;oji: (32)

The corresponding contour plot is exhibited in Fig. 6. On
top and on the right of the plot the staggered magnetization

gets large and we identify this region as belonging to
antiferromagnetic phases. For large absolute values of �7,
�14 action (energy) dominates over entropy and this ex-
plains why the simulation results agree well with the
classical analysis for strong couplings: all phases but the
transition phase F ! AF1 are already visible in the clas-
sical phase diagram in Fig. 3. In the Monte Carlo simula-
tion an additional ‘‘symmetric phase’’ with vanishing
Polyakov loop and vanishing staggered magnetization ap-
pears for weak couplings, in complete agreement with our
mean-field analysis. The resulting phase diagram with one
symmetric, one ferromagnetic and two antiferromagnetic
phases is depicted in Fig. 7.
Eventually the finite temperature phase transition in G2

gluodynamics will correspond to a transition between the
symmetric and the ferromagnetic phase in the effective
spin model. The dependence of the effective couplings
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FIG. 4 (color online). Polyakov-loop h�7i of the fundamental
G2 spin model in mean-field approximation.
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FIG. 5 (color online). Polyakov-loop h�7i of the fundamental
model obtained via Monte Carlo simulation on an 83 lattice.
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�7, �14 on the Yang-Mills coupling � can be calculated
with the help of powerful inverse Monte Carlo techniques
[9,13]. This will be done in a forthcoming publication.
However, preliminary results [19] show that the
confinement-deconfinement phase transition in G2 gluody-
namics will happen near the critical point �14;c ¼ 0, �7;c �
�0:0975ð75Þ of the fundamental model. Thus we have
plotted the magnetization in the vicinity of this first order
transition from the ferromagnetic to the symmetric phase
in Fig. 8.

Note that even in the ‘‘symmetric’’ phase we find a
nonzero magnetization h�7i which jumps at the critical
coupling �7;c. This parallels the jump of the Polyakov

loop in G2 gluodynamics, see Fig. 1.

The phase diagram in Fig. 7 contains lines of second and
first order transitions and 3 triple points. The full lines
belong to first order and the dotted lines to second order
transitions. Note that we may pass from the symmetric to
the ferromagnetic phase via a first or via a second order
transition. The transitions from the ferromagnetic to the
antiferromagnetic phases AF1 and AF2 and between the
antiferromagnetic phases are always of second order. In
order to determine the orders of the transitions we calcu-
lated more than 30 histograms for the Polyakov loop
distribution near the various phase transition curves and
the changes of various ‘‘order parameters’’ when one
crosses the transition lines. A typical scatter plot is de-
picted in Fig. 9. It shows the distribution of �7 at a
transition from the symmetric to the antiferromagnetic
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FIG. 7. Phase diagram of the fundamental effective model. The
orders of phase transitions are indicated with full lines (first
order) and dotted lines (second order/crossover).
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FIG. 8. Polyakov-loop h�7i of the fundamental effective model
with coupling �14 ¼ 0 obtained via Monte Carlo simulation on
an 83 lattice.
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FIG. 9. Distribution of �7 and �14 in the fundamental domain
of G2 at �7 ¼ 0 and �14 ¼ 0:1446.
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FIG. 6 (color online). Staggered magnetization S of the fun-
damental model obtained via Monte Carlo simulation on an 83

lattice.
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phase AF1 with critical couplings �7;c ¼ 0 and �14;c ¼
0:1446. Without further analysis it is already clear that
we are dealing with a first order phase transition.

The following Fig. 10 shows the behavior of the magnet-
izations h�7i and h�14i near the transition from the sym-
metric to the ferromagnetic phase, which happens for
�14 ¼ 0:13 and �7 between �0:18 and �0:12. Both ex-
pectation values vary continuously during the transition
and this already suggests that the transition is of second
order. This conclusion is further substantiated by the cor-
responding histograms for the distributions of �7 and �14.

V. THE G2 POTTS MODEL

After having collected sufficient information to recon-
struct the full phase diagram of the fundamental continu-
ous spin model with two effective couplings we now
truncate the degrees of freedom further to arrive at a
discrete spin model. In the case of the well-studied SUð3Þ
Polyakov-loop models one projects a Polyakov-loop P x

onto the closest center elements of SUð3Þ and arrives at a
Z3 Potts model with action (energy) given by

SN ¼ ��
X
hxyi

�ð	x; 	yÞ; 	x 2 ZN: (33)

The continuous and discrete models have coinciding criti-
cal exponents at the second order antiferromagnetic phase
transition and similar phase structures [20]. Motivated by
these earlier successes we perform a similar reduction of
the fundamental G2 spin model and arrive at a discrete
Potts-like G2 spin model.

By projecting the values of P x to the three group ele-
ments with characters �7, �14 lying at the extremal points
of the fundamental domain in Fig. 2, we arrive at a model
for the tree spins

	x 2
�

7
14

� �
;

�1
�2

� �
;

�2
5

� ��
(34)

with nearest neighbor interaction determined by the Potts-
type action

SPotts ¼
X
hxyi

	T
x

�7 0
0 �14

� �
	y: (35)

As expected, the classical phase diagram of the Potts-type
model with discrete spins is similar to the diagram of the
fundamental model with continuous spins. Depending on
the sign of �7 and the slope � ¼ �14=�7 we find the
following phases and phase transition lines:
(i) For �7 > 0 and � >�1=2 and for �7 < 0 and � >

�47=206 we find the ferromagnetic phase F with
�T
e ¼ �T

o ¼ ð7; 14Þ.
(ii) For �7 < 0 and �1=2< �<�47=206 we find the

antiferromagnetic phase AF3 with �T
e ¼ ð�1;�2Þ

and �T
o ¼ ð�2; 5Þ.

(iii) For �7 > 0 and �1=2< �< 1=14 we find the anti-
ferromagnetic phase AF2 wit �T

e ¼ ð�2; 5Þ and
�T
o ¼ ð7; 14Þ.

(iv) For �7 < 0 and � <�1=2 and for �7 > 0 and � >
1=14 we find the antiferromagnetic phase AF1 with
�T
e ¼ ð�1;�2Þ and �T

o ¼ ð7; 14Þ.
The phase portrait is depicted in Fig. 11, where we have
inserted by hand the expected symmetric phase for weak
couplings. A striking difference between the diagrams in
Fig. 3 and in Fig. 11 is the absence of the ‘‘transition
phase’’ F ! AF1 in the discrete model for which this phase
does not exist by construction. Instead we find a third
antiferromagnetic phase denoted by AF3 in Fig. 11. In
addition, in the symmetric phase of the continuous spin
model h�7i � 0 and in the symmetric phase of the discrete
spin model h�7i � 4=3.
Similarly as for the continuous model we calculated the

phase diagram of the discrete model with the help of the
modified mean-field approximation. The contour plot for
the magnetization is depicted in Fig. 12. In the lower part of
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FIG. 10 (color online). Magnetizations h�7i (upper curve) and
h�14i (lower curve) for various �7 at �14 ¼ 0:13.
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FIG. 11. The classical phase diagram of the discrete G2 Potts
model.
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the plot we can see the ferromagnetic phase for which the
Polyakov loops on both sublattices �e and �o are equal to
the identity with very high probability.

The corresponding contour plot as obtained from
Monte Carlo simulations is shown in Fig. 13. Again, the
mean-field approximation and the Monte Carlo simula-
tions fully agree over the whole range of coupling con-
stants. Note that the classical behavior as depicted in
Fig. 11 can be seen already for rather small coupling
constants.

In order to localize the antiferromagnetic phases we also
measured the staggered magnetization introduced in (32).
The resulting values on a grid in coupling constant space
are plotted in Fig. 14. In accordance with the classical
analysis we detect different antiferromagnetic phases for

positive coupling constants in the upper right part of the
phase portrait.
As concerning the relation between the Potts-type model

and G2 gluodynamics one caveat should be mentioned. In
the discrete spin model there exists no real ‘‘symmetric
phase’’ with a fixed expectation value of �. Even for very
weak coupling do the magnetizations h�i depend on the
couplings. This is a remnant of the missing center symme-
try of G2. Nevertheless, there exists a first order phase
transition from one (would be symmetric) ferromagnetic
phase at �7 � �14 � 0 to a second ferromagnetic phase
withP x directed to the 1-element inG2. Even in the simple
discrete model we see very pronounced what happens in
real G2 gluodynamics. In the deconfining and confining
phase there is a nonvanishing Polyakov loop, which still
serves as approximate order parameter for confinement
since it shows a steep jump at the transition point.

VI. CONCLUSIONS

Effective models for confinement with the Polyakov
loop as macroscopic degree of freedom arise naturally
from the strong coupling expansion of G2 gluodynamics.
Already the leading order continuous and discrete effective
theories show a rich phase structure with two coexisting
phases along transition lines and three coexisting phases at
several triple points. The fundamental model with continu-
ous spins and the Potts-type model with discrete spins
share many properties, although in the absence of a center
symmetry they need not be in the same universality class.
The continuous model exhibits a transition from the sym-
metric to the ferromagnetic phase with the same behavior
of the Polyakov loop as in G2 gluodynamics, namely, a
steep jump from a small (but nonvanishing) Polyakov loop
to a loop near the identity of G2.
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FIG. 13 (color online). Magnetization h�7i of the discrete G2

Potts model obtained via Monte Carlo simulation on an 83

lattice.
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FIG. 14 (color online). Staggered magnetization S of the dis-
crete G2 Potts model obtained via Monte Carlo simulation on an
83 lattice.
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FIG. 12 (color online). Magnetization h�7i of the discrete G2

Potts model in mean-field approximation.
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The classical, mean field and Monte Carlo analysis all
lead to a coherent and consistent picture for both three-
dimensional effective theories. In particular, the prediction
of the mean-field approximation for h�7i and hj�7;e �
�7;oji is in excellent agreement with the corresponding

results obtained by detailed Monte Carlo simulations.
This parallels our findings for SUð3Þ in [20] and probably
is due to the existence of tricritical points which lower the
upper critical dimension in the vicinity of these points.

As concerning the relationship between the continuous
effective models to the underlying G2 gluodynamics we
plan to apply inverse Monte Carlo techniques, preferably
with demon methods, to determine the dependence of the
coupling in the fundamental model on the gauge coupling.

We hope to present the resulting curve �7ð�Þ, �14ð�Þ in a
forthcoming publication. However we anticipate that for
the critical Yang-Mills coupling�c this curvewill cross the
transition line between the symmetric and ferromagnetic
phases at small �14 and negative �7 � �0:1 in Fig. 5.
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