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We develop a new superfield approach to N ¼ 4 supersymmetric mechanics based on the concept of

biharmonic superspace (bi-HSS). It is an extension of the N ¼ 4, d ¼ 1 superspace by two sets of

harmonic variables associated with the two SU(2) factors of the R-symmetry group SO(4) of the N ¼ 4,

d ¼ 1 super Poincaré algebra. There are three analytic subspaces in it: two of the Grassmann dimension 2

and one of the dimension 3. They are closed under the infinite-dimensional ‘‘large’’ N ¼ 4 super-

conformal group, as well as under the finite-dimensional superconformal group Dð2; 1;�Þ. The main

advantage of the bi-HSS approach is that it gives an opportunity to treat N ¼ 4 supermultiplets with

finite numbers of off-shell components on equal footing with their ‘‘mirror’’ counterparts. We show how

such multiplets and their superconformal properties are described in this approach. We also define

nonpropagating gauge multiplets which can be used to gauge various isometries of the bi-HSS actions. We

present an example of a nontrivial N ¼ 4 mechanics model with a seven-dimensional target manifold

obtained by gauging a U(1) isometry in a sum of the free actions of the multiplet ð4; 4; 0Þ and its mirror

counterpart.
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I. INTRODUCTION

Supersymmetric models in one dimension (i.e. models
of supersymmetric mechanics) present an interesting sub-
ject of study. The main reason for the interest in such
models is founded on the point that after quantization
they yield the supersymmetric quantum mechanics which
can be efficiently used to better understand the character-
istic features of higher-dimensional supersymmetric field
theories, e.g. the various mechanisms of spontaneous
breaking of supersymmetry [1]. These models, especially
their superconformally invariant versions [2–6], also bear
intimate relationships with superparticles, black holes, and
gauge/string correspondence. Leaving aside the connec-
tion with higher-dimensional theories (see, e.g., [7] for a
review) and superbranes, the supersymmetric mechanics
possesses a number of surprising properties and applica-
tions per se. For instance, it is an exciting task to construct
supersymmetric extensions of some important intrinsically
one-dimensional models, such as the integrable Calogero
and Calogero-Moser systems, various generalizations of
the renowned Landau problem, the outstanding quantum
Hall effect, etc. (see, e.g., [8–12] and references therein).

Moreover, one-dimensional extended supersymmetry
reveals many specific unusual features which are not in-
herent in its higher-dimensional counterparts. For instance,
some on-shell multiplets of the latter become off shell in
d ¼ 1; most of the standard linear constraints on the d ¼ 1

superfield (e.g., the chirality constraints) have their non-
linear counterparts giving rise to the intrinsic nonlinearity
of the relevant off-shell supersymmetry transformation
laws, etc. The specific d ¼ 1 phenomenon is the so-called
automorphic duality which relates the off-shell supermul-
tiplets having the same number of fermionic fields but
revealing different divisions of the bosonic fields into the
physical and auxiliary subsets [13–16]. As shown, for
instance, in [17–20], all multiplets of N ¼ 4, d ¼ 1 su-
persymmetry with four physical fermionic fields can be
generated from the ‘‘root’’ multiplet ð4; 4; 0Þ via this type
of duality.1

In order to better understand these and some other
remarkable properties of extended d ¼ 1 supersymmetries
and related supersymmetric mechanics models, it is useful
to have adequate superfield techniques making manifest as
many involved (super)symmetries as possible. It was ar-
gued in [18–22] that for N ¼ 4, d ¼ 1 supersymmetry
such an underlying superfield approach is the one based on
N ¼ 4, d ¼ 1 harmonic superspace [23,24]. In particular,
the automorphic duality was shown to be associated with
gaugings of various symmetries realized on a specific
harmonic superfield describing the root multiplet ð4; 4; 0Þ.
The harmonic superspace used in [21,22] is a direct d ¼

1 counterpart of the N ¼ 2, d ¼ 4 harmonic superspace
[25,26]. It involves the harmonic variables associated with
one of the two SU(2) automorphism (or R-symmetry)

*eivanov@theor.jinr.ru
†niederle@fzu.cz

1From now on, the notation ðn1;n2;n3Þ means an off-shell
multiplet with n1 physical bosonic fields, n2 physical fermionic
fields, and n3 ¼ n2 � n1 auxiliary bosonic fields.
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groups of the N ¼ 4, d ¼ 1 superalgebra. In this ap-
proach another SU(2) is not manifest. On the other hand,
all N ¼ 4, d ¼ 1 supermultiplets exist in two forms
which differ in the assignment of the component fields
with respect to these two different automorphism SU(2)
symmetries. Since the N ¼ 4 multiplets and their ‘‘mir-
ror’’ versions are different up to an interchange of the two
SU(2) groups, this difference is not essential when dealing
with only one multiplet from such a pair. When both sorts
of the N ¼ 4, d ¼ 1 multiplets are involved (as is the
case, e.g., in N ¼ 8 mechanics models formulated in
terms of N ¼ 4 multiplets [27,28]), this difference be-
comes essential. It is desirable to have both automorphism
SU(2) symmetries realized in a manifest way, in order to
efficiently control their breaking patterns, etc.

In this paper, we present basic elements of the appro-
priate superfield approach. It is based on the notion of
biharmonic superspace (bi-HSS) which involves the har-
monic variables associated with both SU(2) groups. This
type of harmonic superspace was previously used in two
dimensions to describe various types of twisted N ¼
ð4; 4Þ multiplets and their interactions [29,30], as well as
in N ¼ 8, d ¼ 1 supersymmetry [31].

The basic definitions are introduced in Sec. II. In par-
ticular, we show that the N ¼ 4 bi-HSS involves three
different analytic subspaces: two subspaces of Grassmann
dimension 2 (i.e. with the two Grassmann coordinates) and
one of Grassmann dimension 3. In Sec. III we show that all
three analytic subspaces are closed under the appropriate
realizations of the infinite-dimensional ‘‘large’’ N ¼ 4
superconformal group. The corresponding coordinate
transformations, as well as those of the finite-dimensional
N ¼ 4 superconformal group Dð2; 1;�Þ, are specified. In
Sec. IV we present the bi-HSS description of the basic off-
shell N ¼ 4 supermultiplets with four physical fermions,
and discuss peculiarities of the relevant realizations of the
N ¼ 4 superconformal groups. We also give an example
of the new N ¼ 4 multiplet with the off-shell content
(8þ 8) described by a superfield living on the three-theta
analytic superspace. The relevant invariant actions yield a
Wess-Zumino (WZ)-type term of the first order in the time
derivative for physical bosons, as opposed to the standard
second-order kinetic term. In Sec. V we discuss nonpro-
pagating gauge multiplets in theN ¼ 4 bi-HSS that allow
one to gauge isometries of the matter N ¼ 4, d ¼ 1
actions while preserving the relevant harmonic analytic-
ities. An example of such a gauged model with a seven-
dimensional bosonic target manifold is presented. Its com-
ponent action contains, besides the sigma-model-type
term, a scalar potential and a WZ term.

II. THE N ¼ 4, d ¼ 1 BIHARMONIC
SUPERSPACE: BASICS

We begin with the ordinary N ¼ 4, d ¼ 1 superspace
in a notation with both SU(2) automorphism groups being

manifest. It is defined as the coordinate set

z ¼ ðt; �iaÞ; (2.1)

in which the N ¼ 4, d ¼ 1 supersymmetry is realized by
means of the transformations

�t ¼ �i"ia�ia; ��ia ¼ "ia: (2.2)

The Grassmann coordinates �ia (as well as the supertrans-
lation parameters "ia) form a real quartet of the full auto-

morphism group SOð4Þ�SUð2ÞL�SUð2ÞR, ð�iaÞ¼�ia¼
�ik�ab�

kb. The indices i and a are doublet indices of the left
and the right SU(2) automorphism groups, respectively.
The corresponding covariant spinor derivatives are defined
as

Dia ¼ @

@�ia
þ i�ia@t;

�Dia ¼ � @

@�ia
� i�ia@t ¼ ��ik�abDkb;

fDia;Dkbg ¼ 2i�ik�ab@t:

In the central basis, the N ¼ 4, d ¼ 1 bi-HSS is de-
fined as the following extension of (2.1):

ðz; u; vÞ ¼ ðt; �ia; u�1
i ; v�1

b Þ: (2.3)

Here, u�1
i 2 SUð2ÞL=Uð1ÞL and v�1

a 2 SUð2ÞR=Uð1ÞR are
two independent sets of SU(2) harmonic variables. The
harmonics u�1

i satisfy the standard relations [25,26]

u�1
i ¼ ðu1iÞ; u1iu�1

i ¼ 1 , u1i u
�1
k � u1ku

�1
i ¼ �ik:

(2.4)

The same relations are valid for the harmonics v�1
a , with

the change i, k ! a, b. Though we denote the harmonic
charges of u and v by the same indices, these charges are
completely independent. So the harmonic part of the bi-

harmonic superspace is the coset SUð2ÞL
Uð1ÞL � SUð2ÞR

Uð1ÞR . As usual,

the fact that all biharmonic superfields, i.e., �ðq;pÞðz; u; vÞ,
are defined just on this coset is expressed as a requirement
that both harmonic U(1) charges are strictly preserved in

all superfield actions. For superfields �ðq;pÞðz; u; vÞ, we
assume a double harmonic expansion over the harmonic
monomials which are constructed from u�1

i and v�1
a , re-

spectively, and which have U(1) charges q and p.
A specific feature of the N ¼ 4, d ¼ 1 bi-HSS is the

existence of two types of analytic bases with the analytic
subspaces having half of the Grassmann variables, as com-
pared to the full Grassmann dimension 4 of the bi-HSS.
These two analytic bases are spanned by the following
coordinate sets:

ðzþ; u; vÞ ¼ ðtþ ¼ tþ ið�1;1��1;�1 þ ��1;1�1;�1Þ;
�1;1; �1;�1; ��1;1; ��1;�1; u�1

i ; v�1
a Þ; (2.5)

ðz�; u; vÞ ¼ ðt� ¼ tþ ið�1;1��1;�1 � ��1;1�1;�1Þ; �1;1;
�1;�1; ��1;1; ��1;�1; u�1

i ; v�1
a Þ; (2.6)
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where

�m;n :¼ �iaumi v
n
a; m; n ¼ �1: (2.7)

Defining harmonic projections of the spinor derivatives
as

Dm;n ¼ Diaumi v
n
a; (2.8)

ðD1;1Þ2 ¼ ðD�1;�1Þ2 ¼ ðD1;�1Þ2 ¼ ðD�1;1Þ2
¼ fD�1;1D�1;�1g ¼ fD1;�1; D�1;�1g ¼ 0;

fD1;1; D�1;�1g ¼ �fD1;�1; D�1;1g ¼ 2i@t;

(2.9)

it is easy to show that, in the above bases, they have the
form

D1;1 ¼ @

@��1;�1
; D1;�1 ¼ � @

@��1;1
;

D�1;1 ¼ � @

@�1;�1
þ 2i��1;1@tþ ;

D�1;�1 ¼ @

@�1;1
þ 2i��1;�1@tþ ;

(2.10)

D1;1 ¼ @

@��1;�1
; D�1;1 ¼ � @

@�1;�1
;

D1;�1 ¼ � @

@��1;1
þ 2i�1;�1@t� ;

D�1;�1 ¼ @

@�1;1
þ 2i��1;�1@t� :

(2.11)

The fact that two different pairs of covariant spinor deriva-
tives are reduced to the partial derivatives in these bases
implies the existence of two analytic subspaces which are
closed under the full N ¼ 4 supersymmetry. Hence there
are two sorts of analytic superfields defined as uncon-
strained functions on these analytic superspaces:

ð�þ; u; vÞ ¼ ðtþ; �1;1; �1;�1; u�1
i ; v�1

a Þ; (2.12)

D1;1�ðþÞ ¼ D1;�1�ðþÞ ¼ 0 ) �ðþÞ ¼ ’ðþÞð�þ; u; vÞ
(2.13)

and

ð��; u; vÞ ¼ ðt�; �1;1; ��1;1; u�1
i ; v�1

a Þ; (2.14)

D1;1�ð�Þ ¼ D�1;1�ð�Þ ¼ 0 ) �ð�Þ ¼ ’ð�Þð��; u; vÞ:
(2.15)

An important role in the harmonic superspace approach
is played by harmonic derivatives. The harmonic deriva-
tives with respect to harmonics u�1

i and v�1
a in the central

basis are defined as

@�2;0 ¼ u�1
i

@

@u�1
i

; @0;�2 ¼ v�1
a

@

@v�1
a

: (2.16)

These sets form two mutually commuting SU(2) algebras:

½@2;0; @�2;0� ¼ @0u; ½@0u; @�2;0� ¼ �2@�2;0;

½@0;2; @0;�2� ¼ @0v; ½@0v; @0;�2� ¼ �2@0;�2;

½@�2;0; @0;�2� ¼ ½@�2;0; @0;�2� ¼ ½@�2;0; @0;�2� ¼ 0:

(2.17)

Here,

@0u ¼ u1i
@

@u1i
� u�1

i

@

@u�1
i

and

@0v ¼ v1
a

@

@v1
a

� v�1
a

@

@v�1
a

(2.18)

are operators corresponding to the two independent exter-
nal harmonic U(1) charges. In the analytic bases (2.5) and
(2.6) the harmonic derivatives acquire additional terms. For
instance, in basis (2.5)

D�2;0 ¼ @�2;0 � 2i��1;�1��1;�1@tþ þ ��1;�1 @

@��1;�1
þ ��1;�1 @

@��1;�1
;

D0;�2 ¼ @0;�2 þ ��1;�1 @

@��1;�1
þ ��1;�1 @

@��1;�1
;

D0
u ¼ @0u þ

�
�1;1

@

@�1;1
þ �1;�1 @

@�1;�1
� ��1;1 @

@��1;1
� ��1;�1 @

@��1;�1

�
;

D0
v ¼ @0v þ

�
�1;1

@

@�1;1
þ ��1;1 @

@��1;1
� �1;�1 @

@�1;�1
� ��1;�1 @

@��1;�1

�
:

(2.19)

Their commutation relations are given again by the same
formulas (2.17) because they are basis independent.

For what follows, it is important to know the commuta-
tors of the harmonic derivatives with the spinor ones.
Independently of the basis, these commutation relations
are

½D2;0; D1;1� ¼ ½D2;0;D1;�1� ¼ 0; ½D2;0; D�1;1� ¼ D1;1;

½D2;0;D�1;�1� ¼ D1;�1; (2.20)

½D�2;0; D�1;1� ¼ ½D�2;0; D�1;�1� ¼ 0;

½D�2;0; D1;1� ¼ D�1;1; ½D�2;0; D1;�1� ¼ D�1;�1;
(2.21)

½D0;2; D1;1� ¼ ½D0;2;D�1;1� ¼ 0; ½D0;2; D1;�1� ¼ D1;1;

½D0;2; D�1;�1� ¼ D�1;1; (2.22)
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½D0;�2; D1;�1� ¼ ½D0;�2; D�1;�1� ¼ 0;

½D0;�2; D1;1� ¼ D1;�1; ½D0;�2; D�1;1� ¼ D�1;�1:

(2.23)

The commutation relations involving the harmonic-
charge operators D0

u and D0
v are evident:

½D0
u; D

m;n� ¼ mDm;n; ½D0
v;D

m;n� ¼ nDm;n:

From all these relations we observe another unusual prop-
erty of theN ¼ 4, d ¼ 1 bi-HSS, namely, that each of the
sets of analyticity conditions (2.13) and (2.15) is preserved
by three harmonic derivatives. These are D2;0, D0;2, D0;�2

and D2;0, D0;2, D�2;0, respectively. This is due to the fact
that the spinor derivatives entering (2.13) and (2.15), to-
gether with these harmonic derivatives, form closed sub-
algebras [the so-called Cauchi-Riemann (CR) structures]:

CR ðþÞ ¼ ðD1;1; D1;�1; D2;0; D0;2; D0;�2Þ; (2.24)

CR ð�Þ ¼ ðD1;1; D�1;1; D2;0; D0;2; D�2;0Þ: (2.25)

The homogeneously acting U(1) charge operators D0
u and

D0
v should be added to these sets.
To finish the discussion concerning the N ¼ 4 bihar-

monic analyticities, we note that the two-theta analytic
subspaces (2.12) and (2.14) can be embedded into an
analytic subspace with three theta coordinates. In basis
(2.5), it is given by the following set of coordinates:

ð�; u; vÞ ¼ ðtþ; �1;1; �1;�1; ��1;1; u�1
i ; v�1

a Þ; (2.26)

which corresponds to imposing the relaxed Grassmann
analyticity condition on the biharmonic superfields:

D1;1�ð3Þ ¼ 0 ) �ð3Þ ¼ ’ð3Þð�; u; vÞ: (2.27)

This analyticity is preserved only by two harmonic deriva-
tives commuting with D1;1, i.e. by D2;0 and D0;2. So, the
corresponding CR structure is

CR ð3Þ ¼ ðD1;1; D2;0; D0;2Þ: (2.28)

An important notion of the harmonic approach is the so-
called ‘‘tilde conjugation,’’ which is a product of the ordi-
nary complex conjugation and the Weyl reflection (anti-
podal map) on the harmonic sphere S2 [25,26]. In our case,
the basic rules of the tilde conjugation are

gð�p;qÞ ¼ �p;q; gðu�1
i Þ ¼ u�1i; gðv�1

a Þ ¼ v�1a;

~t� ¼ t�; and ~t ¼ t: (2.29)

Being applied twice, this involution yields �1 on the
harmonic variables, but þ1 on the harmonic projections
of the Grassmann coordinates due to the presence of two
sets of harmonics in their definition (2.7) (as distinct from
the case of harmonic superspaces with one set of harmon-
ics [21,25]). The analytic subspaces (2.12), (2.14), and
(2.26) are closed under this conjugation (as opposed, e.g.,

to the chiral N ¼ 4 superspaces which are not closed
under the complex conjugation) and thus one can choose
the corresponding analytic superfields to be real with re-
spect to it.
For further purposes, we shall also need the following

important statement concerning functions expandable in
the double harmonic series in u�1

i and v�1
a .

Proposition.—For all biharmonic functions Bðq;pÞ with
p < 0 andCðq;pÞ with q < 0, the following statements hold:

D0;2Bðq;pÞ ¼ 0 ) Bðq;pÞ ¼ 0; (2.30)

D2;0Cðq;pÞ ¼ 0 ) Cðq;pÞ ¼ 0: (2.31)

They can be proved by expanding Bðq;pÞ and Cðq;pÞ in a
biharmonic series, as in the case of the standard harmonic
superspace [25]. Similar statements are also true with
harmonic derivatives D�2;0 and D0;�2, namely, that

D�2;0Ĉðq;pÞ ¼ 0 ) Ĉðq;pÞ ¼ 0 iff q > 0 and

D0;�2B̂ðq;pÞ ¼ 0 ) B̂ðq;pÞ ¼ 0 iff p > 0:

Finally, let us define integration measures on the full
N ¼ 4, d ¼ 1 bi-HSS and on its analytic subspaces.
Full bi-HSS:Z

� :¼
Z

dtdudvðD�1;�1D�1;1D1;1D1;�1Þ: (2.32)

Analytic bi-HSS 1:Z
�ð�2;0Þ

Aþ :¼
Z

dtþdudvðD�1;�1D�1;1Þ: (2.33)

Analytic bi-HSS 2:Z
�ð0;�2Þ

A� :¼
Z

dt�dudvðD�1;�1D1;�1Þ: (2.34)

Analytic bi-HSS 3:Z
�ð�1;�1Þ

A3
:¼

Z
dtþdudvðD�1;�1D1;�1D�1;1Þ: (2.35)

They are normalized in such a way thatZ
�ð��1;�1��1;1�1;1�1;�1Þ � . . . ¼

Z
dtdudv� . . . ;

Z
�ð�2;0Þ

Aþ ð�1;1�1;�1Þ � . . . ¼
Z

dtþdudv� . . . ;

Z
�ð0;�2Þ

A� ð�1;1��1;1Þ � . . . ¼
Z

dt�dudv� . . . ;

Z
�ð�1;�1Þ

A3 ð�1;1�1;�1��1;1Þ � . . . ¼
Z

dtþdudv� . . .

¼
Z

dt�dudv� . . .

(up to a total time derivative).
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III. N ¼ 4 SUPERCONFORMAL GROUPS

By analogy with theN ¼ ð2; 2Þ, d ¼ 2 bi-HSS [29,30],
in the N ¼ 4, d ¼ 1 biharmonic superspace one can
define various superdiffeomorphism groups preserving a
given type of the harmonic Grassmann analyticity. The
resulting gauge theories will correspond to some versions
of nonpropagating N ¼ 4, d ¼ 1 supergravities which
can be used to construct various models of superparticles
in the N ¼ 4 bi-HSS (for instance, along the line of
Refs. [30,31]). Leaving this interesting, but difficult, prob-
lem for the future, in this section we are interested in those
subgroups of the general diffeomorphism group in a bihar-
monic N ¼ 4 superspace which (i) preserve the bihar-
monic analyticity and (ii) do not affect the flat form of the
analyticity-preserving harmonic derivatives. By analogy
with the previously known examples, one can anticipate
that these subgroups contain the appropriate N ¼ 4
superconformal transformations. This is indeed the case,
and we shall present below the precise form of these
transformations.

A. Infinite-dimensionalN ¼ 4 superconformal groups

In our search for the analyticity-preserving realizations
of N ¼ 4 superconformal groups, we shall consider both
the three-theta analytic subspace (2.26) and one of the two-
theta analytic subspaces (2.12) [realizations in the mirror
subspace (2.14) are obtained via the substitution tþ ! t�,
u�i $ v�

a and via the appropriate substitutions for the odd
coordinates]. For convenience, we shall always use the
analytic basis (2.5).

We start with the following most general coordinate
transformations preserving the three-theta analytic sub-
space (2.26):

�tþ ¼ �ð�; u; vÞ; ��1;1 ¼ �1;1ð�; u; vÞ;
��1;�1 ¼ �1;�1ð�; u; vÞ; ���1;1 ¼ ��1;1ð�; u; vÞ;

(3.1)

�u1i ¼ �2;0ð�; u; vÞu�1
i ; �u�1

i ¼ 0;

�v1
a ¼ �0;2ð�; u; vÞv�1

a ; �v�1
a ¼ 0;

(3.2)

���1;�1 ¼ ��1;�1ð�; ��1;�1; u; vÞ: (3.3)

The ‘‘triangular’’ form of transformations of harmonic
variables (3.2) (respecting only the generalized~conjuga-
tion) has been chosen by analogy with the previously
known examples [25].2 The infinitesimal transformation
of the nonanalytic coordinate ��1;�1 can bear dependence
on all coordinates of the bi-HSS.

Let us postulate now that under these transformations
the analyticity-preserving harmonic derivatives D2;0 and
D0;2 transform as follows:

�D2;0 ¼ ��2;0D0
u; (3.4a)

�D0;2 ¼ ��0;2D0
v: (3.4b)

Since �D0
u ¼ �D0

v ¼ 0, the transformations respecting
(3.4) form a subgroup of the superdiffeomorphism group
(3.1), (3.2), and (3.3).
Taking into account the explicit expressions of D2;0 and

D0;2 from Eqs. (2.19), Eqs. (3.4a) and (3.4b) imply, respec-
tively, the following constraints on the original transfor-
mation parameters:

D2;0�¼ 2ið�1;1�1;�1��1;�1�1;1Þ; D2;0�1;1 ¼�2;0�1;1;

D2;0�1;�1 ¼�2;0�1;�1; D2;0��1;1 ¼�1;1��2;0��1;1;

D2;0�2;0 ¼D2;0�0;2 ¼ 0; (3.5)

D2;0��1;�1 ¼ �1;�1 ��2;0��1;�1 (3.6)

and

D0;2�¼ 0; D0;2�1;1 ¼�0;2�1;1;

D0;2�1;�1 ¼�1;1 ��0;2�1;�1; D0;2��1;1 ¼�0;2��1;1;

D0;2�2;0 ¼D0;2�0;2 ¼ 0; (3.7)

D0;2��1;�1 ¼ ��1;1 ��0;2��1;�1: (3.8)

The set of Eqs. (3.5) and (3.7) fixes the structure of analytic
parameters�1;�1,��1;1,�2;0, and�0;2, whereas Eqs. (3.6)
and (3.8) express the nonanalytic parameter ��1;�1 in
terms of the analytic ones. These analytic parameters are
given by the following expressions:

� ¼ !þ 2ið�1;1�iau�1
i v�1

a � �1;�1�iau�1
i v1

aÞ
þ 2i�1;1�1;�1!ðikÞu�1

i u�1
k ; (3.9)

�1;1 ¼ �iau1i v
1
a þ �1;1½12 _!þ!ðikÞu1i u�1

k þ!ðabÞv1
av

�1
b �

þ i��1;1�1;�1ð�ia � 2 _�iaÞu1i v1
a

þ i�1;1��1;1�1;�1ð	� 2 _!ðabÞv1
av

�1
b Þ; (3.10)

�1;�1 ¼ �iau1i v
�1
a þ �1;�1½12 _!þ!ðikÞu1i u�1

k

�!ðabÞv1
av

�1
b � þ �1;1!ðabÞv�1

a v�1
b

þ i�1;1�1;�1ð�ia � 2 _�iaÞu�1
i v�1

a ; (3.11)

��1;1 ¼ �iau�1
i v1

a þ ��1;1½12 _!�!ðikÞu1i u�1
k

þ!ðabÞv1v�1
b � þ �1;1!ðikÞu�1

i u�1
k

� i�1;1��1;1�iau�1
i v�1

a þ 2i�1;�1��1;1 _�iau�1
i v1

a

� 2i�1;1��1;1�1;�1 _!ðikÞu�1
i u�1

k ; (3.12)

2The necessity of just this form of the transformations of the
harmonic variables was further explained in [32], in the equiva-
lent language of the active transformations on superfields and
using the specific parametrization for the harmonic variables.
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�2;0 ¼ !ðikÞu1i u1k � i�1;1�iau1i v
�1
a þ i�1;�1�iau1i v

1
a

� i�1;1�1;�1ð	þ €!þ 2 _!ðikÞu1i u�1
k Þ; (3.13)

�0;2 ¼ !ðabÞv1
av

1
b þ i�1;1ð�ia � 2 _�iaÞu�1

i v1
a

� i��1;1ð�ia � 2 _�iaÞu1i v1
a þ i�1;1��1;1

� ð	� 2 _!ðabÞv1
av

�1
b Þ þ 2i�1;�1��1;1 _!ðabÞv1

av
1
b

þ 2�1;1��1;1�1;�1ð _�ia � 2 €�iaÞu�1
i v1

a: (3.14)

Thus we are left with the set of ð8þ 8Þ real functions as the
essential parameters:

bosonic: !ðtÞ; !ðikÞðtÞ; !ðabÞðtÞ; 	ðtÞ;
fermionic: �iaðtÞ; �iaðtÞ:

(3.15)

These functions parametrize a classical centerless version
of the so-called large infinite-dimensional N ¼4SOð4Þ�
Uð1Þ superconformal group [33–35]. The bosonic func-

tions !ðtÞ, 	ðtÞ and !ðikÞðtÞ, !ðabÞðtÞ, in their t expansion,
collect the parameters of the Virasoro, of the
U(1), and of the SUð2Þ � SUð2Þ [� SOð4Þ] Kac-Moody
transformations,3 while the fermionic functions �iaðtÞ and
�iaðtÞ include the fermionic parameters associated with the
‘‘canonical’’ and ‘‘noncanonical’’ superconformal genera-
tors, respectively. All bosonic symmetries are contained in
the closure of the fermionic variations, which looks like

½�ð�Þ; �ð�Þ� � �ð!Þ þ �ð!abÞ;

½�ð�Þ; �ð�Þ� � �ð!Þ þ �ð	Þ þ �ð!abÞ þ �ð!ikÞ;

½�ð�Þ; �ð�Þ� ¼ 0:

(3.16)

The expression for the nonanalytic superparameter func-
tion ��1;�1 in terms of the independent parameter func-
tions (3.15) can be directly found by solving Eqs. (3.6) and
(3.8).

The superconformal transformations(3.9), (3.10), (3.11),
(3.12), (3.13), and (3.14) preserve the three-theta analytic-
ity but by no means the two-theta analyticities. The most
characteristic feature of this realization is that both sets of
harmonics, i.e. u�1

i and v�1
a , undergo the local (Kac-

Moody) SU(2) transformations in their doublet indices

with the parameters !ðikÞ and !ðabÞ, respectively.
However, there exist two different realizations of the
same large N ¼ 4 superconformal group preserving the
two-theta analyticities (2.12) and (2.14). Because these
analytic subspaces are ‘‘mirror images’’ of each other, it
will be enough to consider, for instance, the case of (2.12).

We begin with the two-theta analyticity-preserving
counterparts of the transformations (3.1), (3.2), and (3.3)4:

�tþ ¼ ~�þð�þ; u; vÞ; ��1;1 ¼ ~�1;1ð�þ; u; vÞ;
��1;�1 ¼ ~�1;�1ð�þ; u; vÞ;

(3.17)

�u1i ¼ ~�2;0ð�þ; u; vÞu�1
i ; �u�1

i ¼ 0;

�v1
a ¼ ~�0;2ð�þ; u; vÞv�1

a ; �v�1
a ¼ 0;

(3.18)

���1;�1 ¼ ~��1;�1ð�þ; ��1;1; ��1;�1; u; vÞ;
���1;1 ¼ ~��1;1ð�þ; ��1;1; ��1;�1; u; vÞ;

(3.19)

and, once again, look for their closed subset consisting of
those transformations which preserve the form of harmonic
derivatives D2;0, D0:2:

�D2;0 ¼ �~�2;0D0
u; (3.20a)

�D0;2 ¼ �~�0;2D0
v: (3.20b)

The resulting equations for the superparameters mimic
Eqs. (3.5), (3.6), (3.7), and (3.8), namely,

D2;0 ~�þ ¼ 2ið~�1;1�1;�1 � ~�1;�1�1;1Þ;
D2;0 ~�1;1 ¼ ~�2;0�1;1; D2;0 ~�1;�1 ¼ ~�2;0�1;�1;

D2;0 ~�2;0 ¼ D2;0 ~�0;2 ¼ 0;

(3.21)

D2;0 ~��1;1 ¼ ~�1;1 � ~�2;0��1;1;

D2;0 ~��1;�1 ¼ ~�1;�1 � ~�2;0��1;�1
(3.22)

and

D0;2 ~�þ ¼ 0; D0;2 ~�1;1 ¼ ~�0;2�1;1;

D0;2 ~�1;�1 ¼ ~�1;1 � ~�0;2�1;�1;

D0;2 ~�2;0 ¼ D0;2 ~�0;2 ¼ 0;

(3.23)

D0;2 ~��1;1 ¼ ~�0;2��1;1;

D0;2 ~��1;�1 ¼ ~��1;1 � ~�0;2��1;�1:
(3.24)

However, there is an essential difference from the previous
case (besides the more restrictive two-theta analyticity of
~�þ, ~�

1;�1, ~�2;0, ~�0;2). It consists in that superparameter
~��1;1 is now a function defined on the whole bi-HSS, while
its analogue ��1;1 has been required to live on the three-
theta analytic subspace. Because of this, Eqs. (3.21), (3.22),
(3.23), and (3.24) cannot be obtained as some truncation of
Eqs. (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14), as one
might naively think. Therefore, their general solution is by
no means a particular case of (3.9), (3.10), (3.11), (3.12),
(3.13), and (3.14). It can be written as

~�þ ¼ ~!þ 2ið�1;1 ~�iau�1
i v�1

a � �1;�1 ~�iau�1
i v1

aÞ
þ 2i�1;1�1;�1 ~!ðikÞu�1

i u�1
k ; (3.25)

3Strictly speaking, the full set of the Kac-Moody U(1) trans-
formations is collected in the ‘‘prepotential’’ ’ðtÞ of the function
	� _’ (see discussion on p. 8).

4Tildes used below should be distinguished from those in the
generalized~conjugation.
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~�1;1 ¼ ~�iau1i v
1
a þ �1;1½12 _~!þ ~!ðikÞu1i u�1

k

þ ð
̂ðabÞ þ ~!ðabÞÞv1
av

�1
b � � �1;�1ð
̂ðabÞ þ ~!ðabÞÞv1

av
1
b

þ i�1;1�1;�1ð~�ia � 2 _~�
iaÞu�1

i v1
a; (3.26)

~�1;�1 ¼ ~�iau1i v
�1
a þ �1;�1½12 _~!þ ~!ðikÞu1i u�1

k

� ð
̂ðabÞ þ ~!ðabÞÞv1
av

�1
b �

þ �1;1ð
̂ðabÞ þ ~!ðabÞÞv�1
a v�1

b

þ i�1;1�1;�1ð~�ia � 2 _~�
iaÞu�1

i v�1
a ; (3.27)

~�2;0 ¼ ~!ðikÞu1i u1k � i�1;1 ~�iau1i v
�1
a þ i�1;�1 ~�iau1i v

1
a

� i�1;1�1;�1ð ~	þ €~!þ 2 _~!ðikÞu1i u�1
k Þ; (3.28)

~� 0;2 ¼ 
̂ðabÞv1
av

1
b: (3.29)

The functions

bosonic: ~!ðtÞ; ~!ðikÞðtÞ; ~!ðabÞðtÞ; ~	ðtÞ;
fermionic: ~�iaðtÞ; ~�iaðtÞ

(3.30)

also parametrize the classical large N ¼ 4 SOð4Þ � Uð1Þ
superconformal group. The closure of transformations
(3.17), (3.18), (3.19), and (3.20) has the same structure in
terms of these parameters as that of (3.1), (3.2), (3.3), and
(3.4) in terms of the parameters (3.15). The additional

SU(2) parameters 
̂ðabÞ are constant, and the corresponding
transformations form a semidirect product with the super-
conformal group. Thus, a distinguishing feature of the two-
theta analyticity-preserving realization (3.25), (3.26),
(3.27), and (3.28) of the large superconformal group is
that only one ‘‘conformal’’ local (Kac-Moody) SU(2) sym-
metry has a nontrivial action on the harmonic variables:

this is the group with parameters ~!ðikÞðtÞ acting on har-
monics u1i . Another SU(2) factor of the full SO(4) Kac-

Moody subgroup [the one with parameters ~!ðabÞðtÞ] does
not affect the harmonics v�1

a and acts only on the
Grassmann coordinates. In the mirror realization which
preserves the alternative two-theta analytic subspace
(2.14), the roles of these two SU(2) Kac-Moody factors

are exchanged: the group with parameters ~!ðabÞðtÞ has a
nontrivial action on harmonics v1

a while the group with

parameters ~!ðikÞðtÞ affects only the Grassmann coordi-
nates. Let us remark that the mirror realization can be
obtained from (3.25), (3.26), (3.27), and (3.28) by the
following mnemonic rules:

ðiÞ tþ ! t�; ðiiÞ ��1;�1 $ ��1;�1; ��1;�1 $ ��1;�1;

ðiiiÞ i $ a; ðm; nÞ ! ðn;mÞ; u�1
i $ v�1

a : (3.31)

Here, ðm; nÞ, as before, denotes the harmonic Uð1Þ � Uð1Þ
charges of different quantities. The three-theta realization
(3.9), (3.10), (3.11), (3.12), (3.13), and (3.14) is closed
under these changes.

It is worthwhile to note two things. First, explicit ex-

pressions for nonanalytic superparameters ~��1�1 in terms
of the parameters (3.30) can be found from Eqs. (3.22) and
(3.24). Second, one can pass to an analytic superspace with
one set of harmonics u�i by substituting �1;�1 ¼ �þav�1

a .
The coordinate set (tþ, �þa, u�1

i � u�i ) parametrizes an
analytic subspace of the standardN ¼ 4, d ¼ 1 harmonic
superspace [21]. Since harmonics v�1

a are inert with re-
spect to the realization (3.25), (3.26), (3.27), and (3.28), the
latter can be equivalently rewritten in terms of this coor-
dinate set just by taking off the harmonics v�1

a from the
left-hand and from the right-hand sides of (3.25), (3.26),
(3.27), and (3.28). Realization of the large N ¼ 4 super-
conformal group preserving this analytic N ¼ 4 super-
space with one set of harmonic variables was first found in
[23], by also requiring the analyticity-preserving harmonic
derivative (Dþþ in this case) to retain its flat form. In the
previously considered case of the three-theta analytic
superspace realization (3.9), (3.10), (3.11), (3.12), (3.13),
and (3.14), one cannot take off either harmonics v�1

a or
u�1
i , since both harmonic sets are nontrivially transformed

by the superconformal group. The realization (3.9), (3.10),
(3.11), (3.12), (3.13), and (3.14) is new, and is inherent just
to the three-theta N ¼ 4, d ¼ 1 analyticity which is a
specific feature of the bi-HSS.
It is known that the largeN ¼ 4 superconformal group

includes two ‘‘small’’ N ¼ 4 SUð2Þ superconformal
groups as subgroups. They contain only the Virasoro and
the SU(2) Kac-Moody groups in their bosonic sector,
accompanied by one set of the fermionic superconformal
generators. In the realization (3.9), (3.10), (3.11), (3.12),
(3.13), and (3.14), transformations of these two small
superconformal groups correspond to the following alter-
native truncations of the set of parameter functions:

�iaðtÞ ¼ !ðikÞðtÞ ¼ 0; 	ðtÞ ¼ � €!ðtÞ ) N ¼ 4;

SUð2Þ I: !ðtÞ; �iaðtÞ; !ðabÞðtÞ; (3.32)

�iaðtÞ ¼ 2 _�iaðtÞ; !ðabÞðtÞ ¼ 	ðtÞ ¼ 0 ) N ¼ 4;

SUð2Þ II: !ðtÞ; �iaðtÞ; !ðikÞðtÞ: (3.33)

One can directly check that transformations with super-
parameters (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14)
involving the relevant smaller sets of the parameter func-
tions are still closed under the Lie brackets and form two
centerless N ¼ 4 SUð2Þ superconformal groups. The
same truncations, in which all parameters are changed to
those with tildes, single out two isomorphicN ¼ 4 SUð2Þ
superconformal groups in the realization (3.25), (3.26),
(3.27), and (3.28).
Finally, we would like to mention that the full set of

parameters of the U(1) Kac-Moody subgroups in the real-
izations (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14) and
(3.25), (3.26), (3.27), and (3.28) is actually reproduced after
passing to the analytic ‘‘prepotentials’’ for the superpara-
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meters �0;2, �2;0, and ~�2;0 as

�2;0 ¼ D2;0�L; �0;2 ¼ D0;2�R; ~�2;0 ¼ D2;0 ~�L: (3.34)

Here,

~�L ¼ ~’þ ~!ðikÞu1i u�1
k � i�1;1 ~�iau�1

i v�1
a þ i�1;�1 ~�iau�1

i v1
a � 2i�1;1�1;�1 _~!ðikÞu�1

i u�1
k ;

�L ¼ ’þ!ðikÞu1i u�1
k � i�1;1�iau�1

i v�1
a þ i�1;�1�iau�1

i v1
a � 2i�1;1�1;�1 _!ðikÞu�1

i u�1
k ;

�R ¼ �’� 1
2 _!þ!ðabÞv1

av
�1
b þ i�1;1ð�ia � 2 _�iaÞu�1

i v�1
a � i��1;1ð�ia � 2 _�iaÞu1i v�1

a � 2i�1;1��1;1 _!ðabÞv�1
a v�1

b

þ i�1;�1��1;1½	þ 2 _!ðabÞv1
av

�1
b � þ 2�1;1��1;1�1;�1ð _�ia � 2 €�iaÞu�1

i v�1
a ;

~	 ¼ �ð2 _~’þ €~!Þ; 	 ¼ �ð2 _’þ €!Þ; D0;2 ~�L ¼ D0;2�L ¼ D2;0�R ¼ 0: (3.35)

The new dimensionless parameters ~’ðtÞ, ’ðtÞ expanded in
the Taylor series with respect to t produce a full set of the
Kac-Moody U(1) parameters, including the rigid U(1)
symmetry parameters ~’ð0Þ, ’ð0Þ, in full agreement with
the structure of the N ¼ 4 SOð4Þ � Uð1Þ superconformal
algebra [34,35]. The parameters ~’ð0Þ and’ð0Þ do not show
up in the above realizations on the superspace coordinates,
but can appear in realizations on superfields, with ~�L, �L,
and �R as weight factors.5

B. Finite-dimensional superconformal group Dð2; 1;�Þ
It is well known that the maximal finite-dimensional

subgroup of the large N ¼ 4 SOð4Þ � Uð1Þ superconfor-
mal group is the supergroupDð2; 1;�Þ [36], whereas, in the
small N ¼ 4 superconformal group, the same role is
played by the supergroup SUð1; 1j2Þ which can be treated
as a particular case of Dð2; 1;�Þ with � ¼ �1 or � ¼ 0.6

In our case the subgroups Dð2; 1;�Þ of the realizations
(3.9), (3.10), (3.11), (3.12), (3.13), and (3.14) and (3.25),
(3.26), (3.27), and (3.28) are extracted in the following
unique way.

As an example, we consider the realization (3.9), (3.10),
(3.11), (3.12), (3.13), and (3.14). First, we restrict the
infinite-dimensional conformal group associated with pa-
rameter !ðtÞ down to the finite-dimensional d ¼ 1 confor-
mal group SOð2; 1Þ � SUð1; 1Þ by imposing the constraint

!
::: ¼ 0 ) ! ¼ !0 þ t!1 þ t2!2: (3.36)

Here, !0,!1, and!2 are constant parameters of the d ¼ 1
translations, dilatations, and conformal boosts, respec-
tively. Then we seek the most general constraints on the
remaining parameter functions, such that the Lie brackets

of different transformations are compatible with (3.36).
They are

€� ia ¼ 0 ) �ia ¼ "ia þ t�ia; (3.37)

where "ia, �ia are constant parameters of theN ¼ 4, d ¼
1 Poincaré and conformal supersymmetries, and also

�ia ¼ �2� _�ia ¼ �2��ia;

	 ¼ �ð1þ �Þ €! ¼ �2ð1þ �Þ!2;

’ ¼ �

2
_!; !ðikÞ ¼ ��
ðikÞ;

!ðabÞ ¼ ð1þ �Þ
ðabÞ; _
ðikÞ ¼ _
ðabÞ ¼ 0:

(3.38)

Here, � is an arbitrary real parameter. It can be checked
that the N ¼ 4 superconformal transformations form just
the supergroupDð2; 1;�Þ, including its extreme � ¼ 0 and
�¼�1SUð1;1j2Þ cases, as well as the case of �¼�1

2 ,

which yields the supergroup OSpð4j2Þ.7 Conditions sin-
gling out theDð2;1;�Þ transformations in set (3.25), (3.26),
(3.27), and (3.28) are the same as in (3.36), (3.37), and
(3.38) (with ‘‘tildes’’ on the relevant parameter functions).
Like in the case of infinite-dimensional N ¼ 4 super-

conformal groups, all bosonic symmetries ofDð2; 1;�Þ are
contained in the closure of its transformations associated
with odd parameters (3.37). For further purposes, we
present relevant pieces of both sets (3.9), (3.10), (3.11),
(3.12), (3.13), and (3.14) and (3.25), (3.26), (3.27), and
(3.28) adapted to the finite-dimensional case explicitly,
including nonanalytic superfunctions. We shall use the
same notation for the parameters of Dð2; 1;�Þ, despite
the fact that the form of the transformations in these two
cases is different.
In (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14), we have

5See, e.g., [29,30] for an analogous phenomenon in d ¼ 2
sigma models.

6Actually, these cases yield a semidirect product of SUð1; 1j2Þ
with an extra SU(2) which does not appear in the anticommu-
tators of the fermionic generators. Generically, our choice of
parameter � is such that two SUð2Þ 	 Dð2; 1;�Þ enter the right-
hand sides of the anticommutator of the fermionic generators
with the coefficients � and �ð1þ �Þ, like in [36].

7There are equivalent choices of � which give rise to the
isomorphic superalgebras [36].
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�) 2i�1;1��1;�1�2i�1;�1��1;1; �1;1 )�1;1þ2ið1þ�Þ�1;�1��1;1 _�1;1;

�1;�1 )�1;�1�2ið1þ�Þ�1;1�1;�1 _��1;�1; ��1;1 )��1;1þ2i��1;1��1;1 _��1;�1þ2i�1;�1��1;1 _��1;1;

��1;�1 )��1;�1�2i�1;1��1;�1 _��1;�1�2i��1;�1��1;�1 _��1;1þ2ið1þ�Þ�1;�1��1;1 _��1;�1þ2ið1þ�Þ��1;1��1;�1 _�1;�1;

�2;0 ) 2i�ð�1;1 _�1;�1��1;�1 _�1;1Þ; �L ) 2i�ð�1;1 _��1;�1��1;�1 _��1;1Þ;
�0;2 )�2ið1þ�Þð�1;1 _��1;1���1;1 _�1;1Þ; �R )�2ið1þ�Þð�1;1 _��1;�1���1;1 _�1;�1Þ; (3.39)

where �1;1 ¼ �iau1i v
1
a, etc.

In (3.25), (3.26), (3.27), and (3.28), we have

~�þ)2i�1;1��1;�1�2i�1;�1��1;1; ~�1;1)�1;1�2ið1þ�Þ�1;1�1;�1 _��1;1; ~�1;�1)�1;�1�2ið1þ�Þ�1;1�1;�1 _��1;�1;

~��1;1)��1;1þ2i��1;1��1;1 _��1;�1þ2i�1;�1��1;1 _��1;1;�2ið1þ�Þ�1;1��1;�1 _��1;1þ2ið1þ�Þ��1;1��1;�1 _�1;1;

~��1;�1)��1;�1�2i�1;1��1;�1 _��1;�1�2i��1;�1��1;�1 _��1;1þ2ið1þ�Þ�1;�1��1;1 _��1;�1þ2ið1þ�Þ��1;1��1;�1 _�1;�1;

~�2;0)2i�ð�1;1 _�1;�1��1;�1 _�1;1Þ; ~�0;2)0; ~�L)2i�ð�1;1 _��1;�1��1;�1 _��1;1Þ: (3.40)

Notice that the mirror realization of the same superconfor-
mal group Dð2; 1;�Þ preserving the analytic superspace
(2.14) can be obtained from (3.40) by changes (3.31)
together with the replacement

� ! �ð1þ �Þ: (3.41)

Under these changes realization (3.39) is ‘‘self-conjugate.’’
It will be important to specify how the integration mea-

sures (2.32), (2.33), and (2.35) are transformed under these
Dð2; 1;�Þ realizations. Using the general formula

��̂ ¼ �̂

�
@tþ�tþ þ @u1i �u

1
i þ @v1

a
�v1

a �
X

@n;m��
n;m

�
;

(3.42)

where �̂ stands for any measure (2.32), (2.33), (2.34), and
(2.35), we have found that, under the conformal supersym-
metry, the measures transform as

�� ¼ 4i�½ð��1;1 _�1;�1 � �1;1 _��1;�1Þ
þ �ð��1;1 _�1;�1 � �1;�1 _��1;1Þ�; (3.43)

��ð�1;�1Þ
A3 ¼ 2i�ð�1;�1Þ

A3 ½ð��1;1 _�1;�1 � �1;1 _��1;�1Þ
þ �ð��1;1 _�1;�1 � �1;�1 _��1;1Þ� (3.44)

for realization (3.39) and as

�� ¼ 2i�½ð1� �Þð�1;�1 _��1;1 � �1;1 _��1;�1Þ
þ ð1þ �Þð��1;1 _�1;�1 � ��1;�1 _�1;1Þ�; (3.45)

��ð�2;0Þ
Aþ ¼ 0 (3.46)

for realization (3.40). A difference in the transformations
of the full integration measure � is related to the property
that harmonics v1

a undergo a nontrivial transformation in
the first case and are inert in the second case.
Transformations (3.43) and (3.44) are not affected by mir-

ror changes (3.31) and (3.41), while the variation (3.45) is
converted into

�� ¼ 2i�½ð2þ �Þð��1;1 _�1;�1 � �1;1 _��1;�1

� �ð�1;�1 _��1;1 � ��1;�1 _�1;1Þ�: (3.47)

This reflects the fact that the realizations of Dð2; 1;�Þ
preserving the analytic subspaces (2.12) and (2.14) are
essentially different: they cannot be related to each other
by any redefinition of the superspace coordinates.
It is worth noting that in the case of the three-theta

analyticity-preserving realization, the full Dð2; 1;�Þ trans-
formations of measures �A3 and � can be written as

��ð�1;�1Þ
A3 ¼ �ð�1;�1Þ

A3 ð�L þ�RÞ;
�� ¼ 2�ð�L þ�RÞ;

(3.48)

where �L and �R were defined in (3.35) [with conditions
(3.36), (3.37), and (3.38) taken into account in the
Dð2; 1;�Þ case].
We need transformation properties of harmonic deriva-

tives D�2;0 and D0;�2 under the superconformal boost
generators of Dð2; 1;�Þ. For realizations (3.39), these de-
rivatives transform as

�D�2;0 ¼ �2i�½D�2;0ð�1;1 _�1;�1;��1;�1 _�1;1Þ�D�2;0;

�D0;�2 ¼ 2ið1þ �Þ½D0;�2ð�1;1 _��1;1 � ��1;1 _�1;1Þ�D0;�2;

(3.49)

and, for (3.40), as

�D�2;0 ¼ �2i�½D�2;0ð�1;1 _�1;�1 � �1;�1 _�1;1Þ�D�2;0;

�D0;�2 ¼ 0: (3.50)
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IV. N ¼ 4 SUPERMULTIPLETS IN THE
BIHARMONIC SUPERSPACE

Various N ¼ 4 supermultiplets with a finite number of
component fields admit a simple concise description in the
bi-HSS. Later on, we shall list these multiplets and some of
their superfield actions. In a few instructive cases, we shall
also discuss their properties with respect to the N ¼ 4
superconformal group Dð2; 1;�Þ.

A. Multiplets (4, 4, 0)

Multiplet ð4; 4; 0Þ exists in two basic complementary
forms which differ in the SU(2) assignment of component
fields. In the bi-HSS they are represented by the superfields

qð1;0ÞA and qð0;1ÞA (A, A ¼ 1, 2) subjected to the following
analyticity conditions and harmonic constraints:

D1;1qð1;0ÞA ¼ D1;�1qð1;0ÞA ¼ 0; (4.1a)

D2;0qð1;0ÞA ¼ D0;2;qð1;0ÞA ¼ 0; (4.1b)

and

D1;1qð0;1ÞA ¼ D�1;1qð0;1ÞA ¼ 0; (4.2a)

D2;0qð0;1ÞA ¼ D0;2;qð0;1ÞA ¼ 0: (4.2b)

The extra doublet indices A and A refer to some extra
SU(2) groups commuting with theN ¼ 4 supersymmetry
[the so-called Pauli-Gürsey (PG) SU(2) groups [25]]. The
above superfields are assumed to satisfy the reality con-
ditions

ðqfð1;0ÞAÞ ¼ �ABq
ð1;0ÞB; ðqfð0;1ÞAÞ ¼ �ABq

ð1;0ÞB: (4.3)

Both sets of constraints are solved in the same way.
Consider, for instance, Eqs. (4.1). The analyticity condi-
tions (4.1a) imply

ð4:1aÞ ) qð1;0ÞA ¼ qð1;0ÞAð�þ; u; vÞ: (4.4)

Then, taking into account the reality conditions (4.3),

harmonic constraints (4.1b) leave in qð1;0ÞA just ð4þ 4Þ
independent real fields

qð1;0ÞAð�þ; u; vÞ ¼ fiAðtþÞu1i þ �1;�1c aAðtþÞv1
a

� �1;1c aAðtþÞv�1
a

� 2i�1;1�1;�1@tþf
iAu�1

i ; (4.5)

where we have used the explicit form (2.19) of D2;0 and
D0;2 in analytic basis (2.5).

Quite analogously, in the alternative set (4.2), conditions

(4.2a) imply the analyticity of the second type for qð0;1ÞA,

ð4:2aÞ ) qð0;1ÞA ¼ qð0;1ÞAð��; u; vÞ; (4.6)

while (4.2b) fixes this analytic superfield to have the spe-
cial form

qð0;1ÞAð��; u; vÞ ¼ faAðt�Þv1
a þ ��1;1!iAðt�Þu1i

� �1;1!iAðt�Þu�1
i

� 2i�1;1��1;1@t�f
aAv�1

a : (4.7)

Comparing (4.5) with (4.7), we observe that the relevant
irreducible ð4þ 4Þ field sets coincide modulo a permuta-
tion of the SU(2) doublet indices i $ a and A $ A.
The free superfield actions of these supermultiplets are

written as the following integrals over the full bi-HSS:

Sqfree /
Z

�ðqð1;0ÞAqð�1;0Þ
A � qð0;1ÞAqð0;�1Þ

A Þ; (4.8)

where

qð�1;0ÞA :¼ D�2;0qð1;0ÞA; qð0;�1ÞA :¼ D0;�2qð0;1ÞA:
(4.9)

Notice that the superfields defined in (4.9) satisfy the
relations

D2;0qð�1;0ÞA ¼ qð1;0ÞA; D0;2qð0;�1ÞA ¼ qð0;1ÞA;

D�2;0qð�1;0ÞA ¼ D0;�2qð0;�1ÞA ¼ 0;
(4.10)

which can be proved using commutation relations (2.17),
constraints (4.1b) and (4.2b), and the general relations
(2.30) and (2.31). To avoid possible confusion, let us point
out that the two terms in the sum (4.8) are completely
independent. They have been written together for conve-
nience. The general action of these two multiplets in the bi-
HSS is given by the expression

Sqgen /
Z

�Lðqð�1;0ÞA; qð0;�1ÞA; u; vÞ: (4.11)

The component form of this general action in the ordinary
N ¼ 4, d ¼ 1 superspace has been given in [28]. Its
bosonic sector is a sum of the d ¼ 1 pullbacks of a con-
formally flat metrics for the fields fiA and faA with two
conformal factors related to the superfield Lagrangian.
This component action can be easily recovered from the
bi-HSS action (4.11), by performing u and v harmonic
integrations at the final step.
It is interesting that the bi-HSS approach naturally sug-

gests two other forms of the multiplet ð4; 4; 0Þ, such that the
extra SU(2) groups, realized on indices A and A and
commuting with supersymmetry, are replaced by the com-
plementary SU(2) automorphism groups. The physical
bosonic fields, in this case, transform as a four-vector of
the full automorphism group SOð4Þ � SUð2ÞL � SUð2ÞR of
theN ¼ 4, d ¼ 1 superalgebra. Both forms of this super-

multiplet are represented by biharmonic superfield qð1;1Þ
which is subjected either to the analyticity conditions
(4.1a) or to the analyticity conditions (4.2a) and to the
same set of harmonic constraints:
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D1;1qð1;1ÞI ¼ D1;�1qð1;1ÞI ¼ 0; (4.12a)

D2;0qð1;1ÞI ¼ D0;2qð1;1ÞI ¼ 0; (4.12b)

D1;1qð1;1ÞII ¼ D�1;1qð1;1ÞII ¼ 0; (4.13a)

D2;0qð1;1ÞII ¼ D0;2qð1;1ÞII ¼ 0: (4.13b)

The solutions of these constraints can be expressed as

qð1;1ÞI ¼ fiau1i v
1
a þ �1;1ðc þ c ðabÞv1

av
�1
b Þ

� �1;�1c ðabÞv1
av

1
b � 2i�1;1�1;�1@tþf

iau�1
i v1

a;

(4.14)

qð1;1ÞII ¼ f̂iau1i v
1
a þ �1;1ð!þ!ðikÞu1i u�1

k Þ � ��1;1!ðikÞu1i u1k
� 2i�1;1��1;1@t� f̂

iau1i v
�1
a (4.15)

[correspondingly, in the bases (2.5) and (2.6)].
We observe that these superfields can indeed be recov-

ered by identifying both the doublet index A in (4.5) with a,
and A in (4.7) with i. More precisely,

qð1;1ÞI ¼ qð1;0Þav1
a; qð1;1ÞII ¼ qð0;1Þiu1i : (4.16)

The free actions are given by the formula

~S
q
free /

Z
�ðqð1;1ÞI qð�1;�1Þ

I � qð1;1ÞII qð�1;�1Þ
II Þ; (4.17)

where

qð�1;�1Þ
I;II

:¼ D�2;0D0;�2qð1;1ÞI;II : (4.18)

The general action of these superfields is a particular case
of (4.11) corresponding to the above-mentioned identifica-
tion of the SU(2) groups.

A few further comments are needed.
(i) By making use of the general relations (2.30) and

(2.31), the harmonic constraints (4.1b) and (4.2b)
imply

D0;�2qð1;0ÞA ¼ 0 and (4.19a)

D�2;0qð0;1ÞA ¼ 0; (4.19b)

respectively.
(ii) By the same reasoning, the second analyticity con-

ditions in (4.1a) and (4.2a) follow from the first
analyticity conditions,

D1;1qð1;0ÞA ¼ D1;1qð0;1ÞA ¼ 0; (4.20)

and the harmonic constraints [including (4.19)].
(iii) A nonlinear generalization of multiplet ð4; 4; 0Þ pro-

posed in [18,37] amounts to the following set of
constraints in the bi-HSS:

D1;1qð1;0ÞA ¼ 0; (4.21a)

D2;0qð1;0ÞA ¼ F ð3;0ÞAðqð1;0Þ; u; vÞ;
D0;2qð1;0ÞA ¼ 0 (4.21b)

(and to the analogous one for qð0;1ÞA). The second
harmonic constraint in (4.21b) also implies

D0;�2qð1;0ÞA¼0. From these two constraints it fol-

lows that F ð3;0ÞA does not involve an explicit depen-

dence on harmonics v�1
a , namely, @0�2F ð3;0ÞA¼

0)F ð3;0ÞA¼F ð3;0ÞAðqð1;0Þ;uÞ.
(iv) The supermultiplets carried by qð0;1ÞA, qð1;0ÞA provide

an N ¼ 4 superfield realization of the N ¼ 8
multiplet ð8; 8; 0Þ [27,28]. The second hidden N ¼
4 supersymmetry completing the manifest N ¼ 4,
d ¼ 1 supersymmetry to N ¼ 8, d ¼ 1 is realized
as the following transformations of this superfield
pair:

�qð0;1ÞA ¼ "AAD
�1;1qð1;0ÞA;

�qð1;0ÞA ¼ �"A
AD1;�1qð0;1ÞA;

(4.22)

where "AA is the corresponding Grassmann parame-
ter. It is easy to check that these transformations are
compatible with the constraints (4.1) and (4.2) and
that the action (4.8) is invariant modulo a total
harmonic derivative in the integrand. General con-
ditions of the N ¼ 8 invariance of the general
action (4.11) (in a formulation through the ordinary
N ¼ 4, d ¼ 1 superfields) were derived in [28].
Notice that the transformation laws (4.22) together
with those of the manifest N ¼ 4 supersymmetry
are covariant with respect to the hidden
SOð8Þ=½SOð4Þ � SOð4Þ� transformations [28], in ac-
cordance with the property that the full automor-
phism group of the N ¼ 8, d ¼ 1 supersymmetry
is SO(8).

(v) Similarly, a hidden N ¼ 4 supersymmetry can be

realized in terms of superfields qð1;1ÞI;II [under the

above-mentioned identifications of the SU(2)
groups],

�qð1;1ÞII ¼ "̂1;�1D�1;1qð1;1ÞI � "̂1;1D�1;1D0;�2qð1;1ÞI ;

�qð1;1ÞI ¼ �"̂�1;1D1;�1qð1;1ÞII þ "̂1;1D1;�1D�2;0qð1;1ÞII ;

(4.23)

where "̂1;1 ¼ "̂iau1i v
1
a, "̂

1;�1 ¼ "̂iau1i v
�1
a , etc. One

can easily check that these transformations are per-
fectly compatible with the constraints (4.12) and
(4.13).

Finally, let us dwell on the superconformal properties of
the above ð4; 4; 0Þ supermultiplets.

On the superfields qð1;0ÞA, qð0;1ÞA, like on qð1;1ÞI;II , one can

realize the N ¼ 4 superconformal group Dð2; 1;�Þ con-
sidered in the previous section. Let us, for example, con-
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sider qð1;0ÞA. Based upon the coordinate transformation
laws (3.17) and (3.18) with superparameters (3.25), (3.26),
(3.27), and (3.28), it can be checked that analyticity con-
ditions (4.1a) together with harmonic constraints (4.1b) are
in fact covariant under the whole infinite-dimensional large

superconformal group, provided that qð1;0ÞA is transformed
as

�qð1;0ÞA ’ qð1;0ÞA 0ð� 0; u0; v0Þ � qð1;0ÞAð�; u; vÞ ¼ ~�Lq
ð1;0ÞA:
(4.24)

One can also show that, in the considered case, realizations
(3.9), (3.10), (3.11), (3.12), (3.13), and (3.14) and (3.25),
(3.26), (3.27), and (3.28) are equivalent modulo harmonic
constraint (4.19a), which is a consequence of (4.1b).
Indeed, as was already mentioned, the basic constraints

for qð1;0ÞA are (4.1b) and (4.20). Assuming that qð1;0ÞA trans-
forms with a nonzero weight,

�qð1;0ÞA ¼ �Lq
ð1;0ÞA; (4.25)

these constraints are manifestly covariant under the three-
theta analyticity-preserving variations with the superpara-
meters (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14). Then,
taking the active interpretation of the same full variation of

qð1;0ÞA, one finds that it differs from the variation corre-
sponding to the two-theta analytic superparameters (3.25),
(3.26), (3.27), and (3.28) merely by terms proportional to

D0;�2qð1;0ÞA which are zero by virtue of (4.19a). Hence, in

the realization on qð1;0ÞA, one can identify the superpara-

meters in both realizations, in particular, ~�L with �L. In

the same way, due to the constraint D�2;0qð0;1ÞA ¼ 0, the
supergroup (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14),

in the realization on qð0;1ÞA, can be identified with a real-
ization which is mirror to (3.25), (3.26), (3.27), and (3.28)
and preserves the alternative two-theta analytic subspace

(2.14). The transformation law of qð0;1ÞA is

�qð0;1ÞA ¼ ~�Rq
ð0;1ÞA ¼ �Rq

ð0;1ÞA: (4.26)

Notice that �R ‘‘lives’’ on the second two-theta analytic
superspace (2.14), so that (4.26) is compatible with the
constraints (4.2).

The superfield qð1;1ÞI and its mirror counterpart qð1;1ÞII do
not satisfy any extra harmonic constraints of the type
(4.19), and, for this reason, one can implement on them
only supergroup (3.25), (3.26), (3.27), and (3.28) and its

mirror. For instance, in the case of qð1;1ÞI ,

�qð1;1ÞI ¼ ~�Lq
ð1;1Þ
I : (4.27)

Constraints (4.12) are covariant with respect to these trans-
formations. They are covariant also under the global SU(2)

with parameters 
̂ðabÞ realized on harmonics v�1
a . The

corresponding weight transformation of qð1;1ÞI is

�̂qð1;1ÞI ¼ ð
̂ðabÞv1
av

�1
b Þqð1;1ÞI : (4.28)

While defining constraints of q superfields are covariant
under the infinite-dimensional large N ¼ 4 superconfor-
mal group, the q-superfield actions can be invariant only
under the finite-dimensional N ¼ 4 superconformal
group Dð2; 1;�Þ—for some special values of parameter
�. For instance, using transformation laws (3.43), (3.49),
(3.50), (4.25), and (4.26), as well as the Grassmann analy-
ticity conditions together with the relations (4.10) and
(4.19), one can directly check that the Dð2; 1;�Þ variations
of two separate terms in the free action (4.8) can be made
vanishing (up to a total harmonic derivative), but for differ-
ent choices of parameter �. The first term is superconfor-
mal only for � ¼ 1, while the second one only for
� ¼ �2.8 From this result it follows, in particular, that
the total free action (4.8), though being invariant under the
hidden N ¼ 8 supersymmetry, is not N ¼ 4 supercon-
formal and so is not N ¼ 8 superconformal either. A
similar situation takes place for the free actions of super-

fields qð1;1ÞI and qð1;1ÞII in (4.17): one can show that the qð1;1ÞI

action is invariant under realization (3.40) of Dð2; 1;�Þ
with � ¼ 1, whereas the qð1;1ÞII action is invariant under the
mirror image of (3.40) with � ¼ �2.
In fact, the Dð2; 1;�Þ invariant actions of ð4; 4; 0Þ mul-

tiplets of both sorts can be constructed for any�, but, in the
generic case, these actions involve some sigma-model-type
self-interactions [3,5,21] (see also [38,39]). Thus one can
hope to construct the N ¼ 8 superconformal actions by

combining those qð1;0ÞA and qð0;1ÞA actions which areN ¼
4 superconformal for the same value of �. A candidate
action of this type was presented in [28] in the ordinary
N ¼ 4 superfield approach. An interesting problem for
the future is to reformulate it in the bi-HSS and to examine
its N ¼ 4 and N ¼ 8 superconformal properties.

B. Multiplets (3, 4, 1)

Once again, there are two types of biharmonic super-
fields accommodating the off-shell multiplet ð3; 4; 1Þ, viz.
Wð2;0Þ and Wð0;2Þ. They differ in the type of Grassmann
analyticity:

D1;1Wð2;0Þ ¼ D1;�1Wð2;0Þ ¼ 0; (4.29a)

D2;0Wð2;0Þ ¼ D0;2;Wð2;0Þ ¼ 0 (4.29b)

and

8This difference in the superconformal properties of qð1;0ÞA and
qð0;1ÞA can be understood from the following simple reasoning.
The dilatation weight of integration measure � is �1, while the
weights of qð1;0ÞA and qð0;1ÞA are �=2 and �ð1þ �Þ=2, respec-
tively. This follows from the form of the superfield weight factor
~�L in (3.35) in which substitutions (3.37) have been made, and
its ‘‘mirror’’ counterpart ~�R obtained from ~�L via the changes
(3.31). Then, in order to cancel the dilatation weight of the
measure, the weights of both terms in Lagrangian (4.8) should
be þ1, and this is achieved with � ¼ 1 for the first term and
� ¼ �2 for the second term.
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D1;1Wð0;2Þ ¼ D�1;1Wð0;2Þ ¼ 0; (4.30a)

D2;0Wð0;2Þ ¼ D0;2;Wð0;2Þ ¼ 0: (4.30b)

The solutions of (4.29) and (4.30) read

Wð2;0Þð�þ; u; vÞ ¼ wðikÞðtþÞu1i u1k þ �1;�1c iaðtþÞu1i v1
a

� �1;1c iaðtþÞu1i v�1
a

þ �1;1�1;�1½wðtþÞ � 2i@tþw
ðikÞu1i u�1

k �;
(4.31)

Wð0;2Þð��; u; vÞ ¼ ŵðabÞðt�Þv1
av

1
b þ ��1;1 ĉ iaðt�Þu1i v1

a

� �1;1 ĉ iaðt�Þu�1
i v1

a

þ �1;1��1;1½ŵðt�Þ � 2i@t�ŵðabÞv1
av

�1
b �:

(4.32)

Thus, the irreducible ð3; 4; 1Þ field sets are ðwðikÞ; c ia; wÞ
and ðŵðabÞ; ĉ ia; ŵÞ, and they differ merely in the SU(2)
assignment of physical bosonic fields which form triplets
of the automorphism groups SUð2ÞL and SUð2ÞR,
respectively.

In order to construct the invariant actions, one should
define the full set of nonanalytic harmonic projections of
the basic analytic superfields:

W ¼ D�2;0Wð2;0Þ; Wð�2;0Þ ¼ ðD�2;0Þ2Wð2;0Þ;

Ŵ ¼ D0;�2Wð0;2Þ; Wð0;�2Þ ¼ ðD0;�2Þ2Wð0;2Þ:
(4.33)

Notice that

D0;�2Wð2;0Þ ¼ D�2;0Wð0;2Þ ¼ 0;

D�2;0Wð�2;0Þ ¼ D0;�2Wð0;�2Þ ¼ 0
(4.34)

as a consequence of the harmonic constraints (4.29b) and
(4.30b). The free action and the most general sigma-model-
type action of this superfield system are

SWfree /
Z

�ðWð2;0ÞWð�2;0Þ �Wð0;2ÞWð0;�2ÞÞ; (4.35)

SWgen /
Z

�LðWð�2;0Þ; Wð0;�2Þ; W; ŴÞ: (4.36)

The component structure of these actions in the ordinary
N ¼ 4 superspace was presented in [28]. The actions in
the bi-HSS give rise to the same component actions (per-
forming the u and v harmonic integrals at the final steps).

On these two N ¼ 4 multiplets, one can also imple-
ment the N ¼ 8 supersymmetry with respect to which
they combine into an off-shell ð6; 8; 2Þ multiplet [28]. The
transformations of the second hidden N ¼ 4 supersym-

metry on the biharmonic superfields Wð2;0Þ, Wð0;2Þ are

�Wð2;0Þ ¼ "̂1;�1D1;�1Wð0;2Þ � "̂1;1D1;�1D0;�2Wð0;2Þ;

�Wð2;0Þ ¼ �"̂�1;1D�1;1Wð2;0Þ þ "̂1;1D�1;1D�2;0Wð2;0Þ:
(4.37)

These transformations are compatible with the Wð2;0Þ,
Wð0;2Þ defining constraints (4.29) and (4.30). The free ac-
tion (4.35) is invariant with respect to them up to a total
derivative in the integrand. Conditions of the N ¼ 8
invariance of a general sigma-model-type action (4.36)
were derived in [28] in the framework of the conventional
N ¼ 4 superfield description.
Constraints (4.29) and (4.30) are covariant under the

infinite-dimensional large N ¼ 4 SOð4Þ � Uð1Þ super-
conformal group in the realization (3.25), (3.26), (3.27),
and (3.28) and in its mirror counterpart, respectively, pro-

vided that the superfields Wð2;0Þ and Wð0;2Þ transform as

�Wð2;0Þ ¼ 2~�LW
ð2;0Þ; �Wð0;2Þ ¼ 2~�RW

ð0;2Þ: (4.38)

Like in the case of multiplets ð4; 4; 0Þ, theWð2;0Þ andWð0;2Þ
superfield actions can be invariant only under the finite-
dimensionalN ¼ 4 superconformal symmetryDð2; 1;�Þ.
The free action of Wð2;0Þ in (4.35) is invariant with respect

to Dð2; 1;� ¼ 1
2Þ, while that of Wð0;2Þ with respect to

Dð2; 1;� ¼ � 3
2Þ. This can be shown by exploiting the

superconformal transformations with the superparameters
(3.40) and their mirror counterparts, and by making use of
the Grassmann analyticity constraints in (4.29) and (4.30),
as well as the harmonic constraints together with some of
their consequences, e.g.,

D0;�2Wð2;0Þ ¼ D�2;0Wð0;2Þ ¼ 0; (4.39a)

ðD�2;0Þ3Wð2;0Þ ¼ ðD0;�2Þ3Wð0;2Þ ¼ 0: (4.39b)

The superconformal actions, for any other choice of �, can
also be constructed, but they necessarily involve interac-
tions [4,5,21]. Let us remark that, as a consequence of the
constraints (4.39a), the realizations (3.39) and (3.40) (for
the relevant choices of �) are equivalent to each other

when applied to Wð2;0Þ and Wð0;2Þ (as in the case of qð1;0ÞA

and qð0;1ÞA).

C. Multiplet (1, 4, 3)

The multiplet ð1; 4; 3Þ and its mirror are defined by
constraints of the second order in the spinor derivatives
[3,40]. In the bi-HSS these multiplets are described by
zero-charge superfieldsU andV defined by the following
constraints:

D1;1D1;�1U ¼ c2;0; (4.40a)

D2;0U ¼ D0;2U ¼ 0; (4.40b)
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D1;1D�1;1V ¼ ~c0;2; (4.41a)

D2;0V ¼ D0;2V ¼ 0; (4.41b)

where

c2;0 ¼ cðikÞu1i u1k; ~c0;2 ¼ ~cðabÞv1
av

1
b: (4.42)

Here, cðikÞ, ~cðabÞ are two independent constant triplets
which break the SUð2ÞL and/or SUð2ÞR symmetries. It is
self-consistent to choose both or one of these triplets equal
to zero.

Solution of the constraints (4.40) can be written in basis
(2.5) in the form

U ¼ Uð�þ; u; vÞ þ ��1;�1�1;1ð�þ; u; vÞ
� ��1;1�1;�1ð�þ; u; vÞ þ ��1;�1��1;1cðikÞu1i u1k;

(4.43)

where

U ¼ 	ðtþÞ þ �1;1�iaðtþÞu�1
i v�1

a � �1;�1�iaðtþÞu�1
i v1

a

� �1;1�1;�1cðikÞu�1
i u�1

k ; (4.44)

�1;1 ¼ �iau1i v
1
a þ �1;�1	ðabÞv1

av
1
b

þ �1;1ð@tþ	� cðikÞu1i u�1
k �	ðabÞv�1

a v1
bÞ

� 2i�1;1�1;�1@tþ�
iau�1

i v1
a;

�1;�1 ¼ �iau1i v
�1
a � �1;1	ðabÞv�1

a v�1
b

þ �1;�1ð@tþ	� cðikÞu1i u�1
k þ	ðabÞv�1

a v1
bÞ

� 2i�1;1�1;�1@tþ�
iau�1

i v�1
a : (4.45)

Thus, the irreducible ð1; 4; 3Þ field content of the multiplet
in question is the set of ð4þ 4Þ fields

ð	ðtÞ; 	ðabÞðtÞ; �iaðtÞÞ, as it should be.
Solution V of the constraints (4.41) is naturally written

in basis (2.6). It is obtained from (4.43), (4.44), and (4.45)
by the formal changes [cf. (3.31)]

tþ ! t�; i$ a; u�1
i $ v�1

a ; �1;�1 $ ��1;1:

(4.46)

The corresponding irreducible field content is

ð ~	ðtÞ; ~	ðikÞðtÞ; ~�iaðtÞÞ. Thus these two off-shell ð1; 4; 3Þ
multiplets differ in the SU(2) assignment of auxiliary
bosonic fields which form triplets of either SUð2ÞL or
SUð2ÞR.

The free and general actions of these two multiplets are
given by the following integrals over the bi-HSS:

Sfree /
Z

�ðU2 �V 2Þ; Sgen /
Z

�LðU;V ; u; vÞ:
(4.47)

On this pair of biharmonic superfields one can also realize
a hidden secondN ¼ 4 supersymmetry which extends the
manifest N ¼ 4 supersymmetry to N ¼ 8. The

Dð2; 1;�Þ superconformal properties of these multiplets
were also studied in detail (see e.g. [3,5,19]), and they
can be easily translated into the bi-HSS language.

D. An example of a new off-shellN ¼ 4 supermultiplet

The off-shellN ¼ 4multiplets discussed above are not
new; they admit an alternative description either in the
ordinary N ¼ 4 superspace [3,5,41], or in the harmonic
N ¼ 4 superspace with one set of harmonic variables
[18,19,21]. An advantage of the bi-HSS is that it gives
the possibility of the joint description of these multiplets
together with their mirror counterparts. The basic new
feature of the bi-HSS is the presence of a new analytic
subspace in it—the three-theta analytic superspace (2.26).
This property provides an opportunity to define new off-
shell N ¼ 4 superfields. Namely, one can define three-

theta analytic superfields Gðp;qÞð�; u; vÞ, p > 0, q > 0,

D1;1Gðp;qÞ ¼ 0; (4.48a)

D2;0Gðp;qÞ ¼ D0;2Gðp;qÞ ¼ 0: (4.48b)

If q or p is zero, (4.48) would imply D1;�1Gðp;0Þ ¼ 0 or

D�1;1Gð0;qÞ ¼ 0; i.e. the corresponding superfields would
be automatically two-theta analytic and would be reduced

either to multiplets qð1;0Þ, Wð2;0Þ, qð0;1Þ, Wð0;2Þ treated in the
previous subsections or to some direct generalizations of
the latter with p > 2, q ¼ 0 or p ¼ 0, q > 2 (considered in
[21] in the framework of the standard N ¼ 4, d ¼ 1
HSS). However, for p, q � 0, the second Grassmann har-
monic analyticity conditions do not directly follow from
(4.48). So, in this case these constraints define some new
off-shell representations of the N ¼ 4, d ¼ 1
supersymmetry.
Here, we consider the simplest example of such a super-

field, namely, that corresponding to the choice p ¼ q ¼ 1.
Constraints (4.48) uniquely fix the component field content

of Gð1;1Þ:

Gð1;1Þð�; u; vÞ ¼ fiau1i v
1
a þ �1;1½c þ c ðabÞv1

av
�1
b þ c ðikÞ

� u1i u
�1
k � � �1;�1c ðabÞv1

av
1
b � ��1;1c ðikÞ

� u1i u
1
k þ i�1;1�1;�1ðgia � _fiaÞu�1

i v1
a

� i�1;1��1;1ðgia þ _fiaÞu1i v�1
a � i��1;1

� �1;�1ðgia þ _fiaÞu1i v1
a þ i�1;1�1;�1��1;1

� ½!þ _c þ 2 _c ðikÞu1i u�1
k �: (4.49)

Thus we have an ð8þ 8Þ off-shell representation consisting
of eight bosonic d ¼ 1 fields fiaðtÞ, giaðtÞ and eight fermi-

onic fields c ðtÞ, c ðabÞðtÞ, c ðikÞðtÞ, !ðtÞ. By dimensionality

reasoning, the fields fiaðtÞ, c ðtÞ, c ðikÞðtÞ, and c ðabÞðtÞ are
candidates for physical fields, and giaðtÞ and !ðtÞ for

auxiliary fields. Note that c ðabÞ and c ðikÞ appear in (4.49)
in an asymmetric way, though one would expect them to be
on equal footing. This asymmetry is in fact an artifact of
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our choice of the tþ basis (2.5) in the three-theta super-
space; after passing to the basis (2.6), the � expansion in

(4.49) takes the form in which c ðabÞ and c ðikÞ exchange
their places. TheN ¼ 4, d ¼ 1 supersymmetry is realized
on these ð8þ 8Þ fields as follows:
�fia ¼ �"iac þ "ibc

ðabÞ þ "k
ac ðikÞ;

�gia ¼ �"ia!� "ib
_c ðabÞ þ "k

a _c ðikÞ;

�c ðikÞ ¼ i"ðiaðgkÞa þ _fkÞaÞ;
�c ðabÞ ¼ �i"iðaðgibÞ � _fi

bÞÞ;
�c ¼ �i"ia _fia; �! ¼ �i"ia _gia: (4.50)

Without loss of generality, the free action SfreeG can be

chosen in the form

SfreeG /
Z

�Gð�1;1ÞGð1;�1Þ (4.51)

where

Gð�1;1Þ :¼ D�2;0Gð1;1Þ; Gð1;�1Þ :¼ D0;�2Gð1;1Þ:

Alternative bilinear superfield Lagrangians, e.g.,

Gð1;1ÞGð�1;�1Þ ¼ Gð1;1ÞD�2;0D0;�2Gð1;1Þ, are either reduced
to (4.51) via integration by parts, or are vanishing as a
consequence of the constraints (4.48) and their corollaries

ðD�2;0Þ2Gð1;1Þ ¼ ðD0;�2Þ2Gð1;1Þ ¼ 0:

After substituting the precise form of Gð�1;1Þ and Gð1;�1Þ
into action (4.51) and integrating over the � variables and
harmonics u and v, one gets the following component off-
shell form of (4.51):

SfreeG /
Z

dtðic ðikÞ _c ðikÞ � ic ðabÞ _c ðabÞ � 2i!c

þ 2gia _fiaÞ: (4.52)

We see that ! and c form a pair of auxiliary fermionic
fields with complementary dimensions; the only physical

fermionic fields are c ðikÞ and c ðabÞ. Surprisingly, in the
bosonic sector, instead of the standard kinetic term for field

fia, i.e. _fia _fia, we find a Lagrangian of the first order in the
time derivative, giving rise to the first-order equations of
motion:

_g ia ¼ _fia ¼ 0:

It can be interpreted as a sort of d ¼ 1 Wess-Zumino (or
Chern-Simons) Lagrangian describing a Lorentz coupling
of the target coordinate fiaðtÞ to some external ‘‘magnetic’’

potential giaðtÞ. We can rescale gia as gia ¼ 2
~fia, ½
� ¼
cm�1, and, consequently, pass to the doubled eight-

dimensional target coordinate set ð~fia; fiaÞ :¼ fia� , � ¼
1, 2. After this redefinition, the WZ term in (4.52) (modulo
a total time derivative) takes the following more familiar
form:

gia _fia ¼ 
���fia� _fia�; ��� ¼ ����; �21 ¼ 1;

with 
 being a constant external magnetic field. The mod-
els of such WZ (or CS [42]) mechanics received some
attention in connection with the famous Landau problem
(see, e.g., [11,43] and references therein), as well as with
the matrix models (see, e.g., [12]). Thus, the off-shell ð8þ
8Þ multiplet (4.49) living on the three-thetaN ¼ 4, d ¼ 1
analytic superspace naturally gives rise to an N ¼ 4
superextension of the simple d ¼ 1 WZ mechanics with
a specific eight-dimensional target manifold. Notice the
relative minus sign between the fermionic kinetic terms in
(4.52); it signals the presence of fermionic ghost states in
quantum theory, though everything is self-consistent at the
classical level.9

It is straightforward to find how (4.52) generalizes to the

interacting case. The general action of superfield Gð1;1Þ,
giving rise to the fermionic kinetic terms with only one
time derivative, can be written as10

SG ¼
Z

�LðGð1;�1Þ; Gð�1;1Þ; u; vÞ: (4.53)

For brevity, we present only the bosonic core of the com-
ponent off-shell action following from the superfield action
(4.53):

SbosG � 2
Z

dtF ðfÞgia _fia;

F ðfÞ ¼
Z

dudv
@2Lðfð1;�1Þ; fð�1;1Þ; u; vÞ

@fð1;�1Þ@fð�1;1Þ :

(4.54)

We observe that the whole effect of self-interaction of
fields fiaðtÞ can be absorbed into the following redefinition
of gia:

F ðfÞgia ¼ ~gia:

Consequently, the aboveWZ term is form-invariant against

passing to a general action of Gð1;1Þ.
Reduction to the two-theta analytic supermultiplets qð1;1ÞI

and qð1;1ÞII is accomplished by imposing additional analy-
ticity conditions:

ðaÞ D1;�1Gð1;1Þ ¼ 0 or ðbÞ D�1;1Gð1;1Þ ¼ 0;

which yield the following constraints on component fields:

ðaÞ c ðikÞ ¼ 0; gia ¼ � _fia; ! ¼ � _c ;

ðbÞ c ðabÞ ¼ 0; gia ¼ _fia;! ¼ _c :

9In fact, the quantum theory can be ‘‘cured’’ by methods
similar to those worked out for situations like in [44–47]. We
thank S. Fedoruk and A. Smilga for a discussion of this point.
10One could start with a more general Lagrangian,
LðGð1;�1Þ; Gð�1;1Þ; Gð1;1Þ; Gð�1;�1Þ; u; vÞ, which is expandable in
series with respect to its functional arguments, and show that it is
indeed reduced, modulo a total harmonic derivative, to (4.53).
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One can check that they are covariant under the off-shell
transformations (4.50). Action (4.52) is reduced (up to an

overall sign) to the component actions of either qð1;1ÞI or

qð1;1ÞII . The WZ term converts to the standard kinetic terms
of fia. After these reductions, the scalar factor F in (4.54)
cannot be removed, in accordance with the fact [21] that
the target geometry of the ð4; 4; 0Þ multiplets is confor-
mally flat.

Constraints (4.48), including the case of q ¼ p ¼ 1, are
covariant under the large N ¼ 4 SOð4Þ � Uð1Þ supercon-
formal group in the realization (3.9), (3.10), (3.11), (3.12),

(3.13), and (3.14), provided that Gðp;qÞ transforms as

�Gðp;qÞ ¼ ðp�L þ q�RÞGðp;qÞ: (4.55)

One can check that actions (4.51) and (4.52) are not invari-
ant under the supergroup Dð2; 1;�Þ for any choice of
parameter �, so that they are not superconformal.

V. GAUGE SUPERFIELDS

For gauging various isometries of superfield theories in
the N ¼ 4 bi-HSS, we need appropriate nonpropagating
gauge superfields. For simplicity, we shall consider here
the Abelian case. Generalization to the case of non-Abelian
isometries is straightforward.

Analogously to the case of the standard N ¼ 4 HSS
[25,26], we are led to introduce, as basic geometric objects,
the analytic gauge connections which lengthen the
analyticity-preserving harmonic derivatives. Because there
exist three different types of analytic subspaces in the
N ¼ 4 bi-HSS, one can define three analytic frames
(the so-called � frames) and, correspondingly, three differ-
ent types of analytic harmonic gauge connections. As we
shall show, these frames are related to each other and to the

 frame (in which gauge parameters are the harmonic-
independent N ¼ 4, d ¼ 1 superfields) by appropriate
‘‘bridges.’’

A. The first � frame

First, we consider a frame corresponding to the
Grassmann analyticity pattern (2.12), (2.13), and (2.24).
In this case, there are three analyticity-preserving har-
monic derivatives ðD2;0; D0;�2Þ. They are covariantized as

ðD2;0D0;�2Þ ) ðr2;0r0;�2Þ; r2;0 ¼ D2;0 � V2;0J ;

r0;�2 ¼ D0;�2 � V0;�2J ; (5.1)

D1;1V2;0 ¼ D1;�1V2;0 ¼ 0;

D1;1V0;�2 ¼ D1;�1V0;�2 ¼ 0:
(5.2)

Here, J is the anti-Hermitian generator of some one-
parameter symmetry. The real analytic harmonic connec-
tions V2;0, V0;�2 have the following standard gauge trans-
formation laws:

V2;0 0 ¼ V2;0 þD2;0�; V0;�2 0 ¼ V0;�2 þD0;�2�;

(5.3)

where � is an analytic gauge parameter, � ¼ �ð�þ; u; vÞ.
Requiring the covariantized harmonic derivatives to satisfy
the same algebra as the flat ones, we get a number of
harmonic flatness conditions for analytic connections:

F2;2 :¼ D2;0V0;2 �D0;2V2;0 ¼ 0; (5.4)

F :¼ D0;2V0;�2 �D0;�2V0;2 ¼ 0; (5.5)

F2;�2 :¼ D2;0V0;�2 �D0;�2V2;0 ¼ 0: (5.6)

These additional harmonic constraints for analytic
gauge connections are new features of the N ¼ 4, d ¼
1 bi-HSS as compared to the ordinaryN ¼ 4, d ¼ 1 HSS
[18]. Let us remark that relation (5.6) is a consequence of
(5.4) and (5.5). Indeed, using these two conditions and the
commutation relations (2.17), one can show that

D0;2F2;�2 ¼ 0: (5.7)

Then F2;�2 is vanishing due to Proposition (2.30).
Connection V0;�2 is not an independent quantity, since it

can be expressed through V0;2 from (5.5), like the non-
analytic V�� connection in the standard HSS is expressed
through the analytic one Vþþ [25]. The specificity of the
bi-HSS is that V0;�2 is analytic like V2;0 and V0;2. In fact,
its analyticity is already implied by analyticity of the
connection V0;2, i.e. by the conditions D1;1V0;2 ¼
D1;�1V0;2 ¼ 0. This can be proved using (2.30) and rela-
tion (5.5).
Thus, the basic quantities of the gauge formalism in the

N ¼ 4 bi-HSS are the analytic gauge connections V2;0

and V0;2 subjected to the additional harmonic constraint
(5.4). As usual, to reveal the irreducible field content of
these superfields, one must pass to the WZ gauge. Direct
calculations show that the gauge freedom (5.3) together
with constraint (5.4) allow one to cast both connections,
V2;0 and V0;2, in the following very simple form11:

V2;0
WZ ¼ 2i�1;1�1;�1AðtÞ; V0;2

WZ ¼ 0;

A0ðtÞ ¼ AðtÞ þ _�0ðtÞ;
(5.8)

where �0ðtÞ is a harmonic-independent part of �j�¼0. Thus,
we face the same phenomenon as in the case of the ordi-
nary N ¼ 4, d ¼ 1 HSS [18]: the only unremovable
component in the off-shell gauge supermultiplet is the
bosonic d ¼ 1 ‘‘gauge field’’ AðtÞ with a residual gauge
transformation law as in (5.8). This transformation law
means that locally the considered supermultiplet contains
ð0þ 0Þ off-shell degrees of freedom, but AðtÞ cannot be
globally gauged away using the gauge freedom (5.8). This

11From now on, for brevity, we omit the indices � of time
variables in analytic bases.
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is the reason why such gauge supermultiplets were called
‘‘topological’’ in [18]. The difference of the considered
case from the case of topological gauge multiplets in the
ordinary N ¼ 4, d ¼ 1 HSS is that the underlying ana-
lytic biharmonic gauge freedom alone is not sufficient to
achieve the minimal field representation (5.8). In addition,
one needs to exploit the harmonic flatness relation (5.4).
Notice that condition (5.5) implies that the remaining
analytic connection V0;�2 is also vanishing in gauge (5.8):

V0;�2
WZ ¼ 0: (5.9)

As in the standard HSS, having at hand the analytic
potentials V2;0, V0;2, one can define a nonanalytic connec-
tion V�2;0 which covariantizes the remaining harmonic
derivative D�2;0:

D�2;0 ) r�2;0 ¼ D�2;0 � V�2;0J : (5.10)

It is related to V2;0 by the following appropriate harmonic
flatness condition:

~F :¼ D2;0V�2;0 �D�2;0V2;0 ¼ 0: (5.11)

There are also a few additional flatness conditions which
follow from the mutual commutativity of the setsr�2;0 and
r0;�2, e.g.,

F�2;2 :¼ D0;2V�2;0 �D�2;0V0;2 ¼ 0: (5.12)

All of them can be shown to follow from the basic har-
monic constraints (5.4), (5.5), and (5.11) [once again, in
order to check this, the general relations (2.30) and (2.31)
should be used].

Now we are prepared to define a full set of the gauge-
covariant spinor derivatives in the considered � frame:

D�1;1 :¼ ½r�2;0; D1;1� ¼ D�1;1 þD1;1V�2;0J ; (5.13)

D�1;�1 :¼ ½r�2;0; D1;�1� ¼ D�1;�1 þD1;�1V�2;0J

¼ ½r0;�2; D�1;1�
¼ D�1;�1 þ ðD�1;1V0;�2 þD0;�2D1;1V�2;0ÞJ :

(5.14)

The coincidence of the two forms of the same spinor
connection inD�1;�1 can be proved by taking into account
the analyticity of V0;�2 and the harmonic flatness condition

D�2;0V0;�2 �D0;�2V�2;0 ¼ 0:

Using the analyticity properties of V2;0 and V0;2, the
harmonic flatness conditions, and (2.30) and (2.31), one
can check that the (anti)commutator algebra of these co-
variantized spinor derivatives coincides with the algebra of
the flat derivatives (2.9), up to the appropriate covarianti-
zation of @t:

@t ) Dt ¼ @t � i

2
D1;1D1;�1V�2;0J : (5.15)

By the same token, one can check that Dt commutes with
all covariantized spinor derivatives,

½D1;1;Dt� ¼ ½D1;�1;Dt� ¼ ½D�1;1;Dt�
¼ ½D�1;�1;Dt� ¼ 0; (5.16)

and with all covariantized harmonic derivatives. It is easy
to understand why, in the case under consideration, there is
no analogue of the gauge-covariant superfield strengths
which are present in similar algebras of the gauge-
covariant derivatives in higher dimensions. The obvious
reason is that for the one-dimensional ‘‘gauge field’’ A,
A0 ¼ Aþ _�, one cannot construct any analogue of the
covariant field strength. As we have already seen, this
‘‘gauge field’’ is the only nonvanishing field in the WZ
gauge (5.8). Substituting the WZ form of V2;0 into the
flatness condition (5.11), it is also easy to see that in this
gauge

V�2;0
WZ ¼ 2i��1;1��1;�1AðtÞ: (5.17)

The last topic of this subsection is devoted to the relation
with the 
 frame, where the gauge group parameters 
 are
harmonic-independent N ¼ 4 superfields (in the central
basis). The whole set of harmonic flatness conditions im-
plies that all harmonic connections are expressed through
the bridge bðz; u; vÞ,

V�2;0 ¼ D�2;0b; V0;�2 ¼ D0;�2b;

b0 ¼ bþ �� 
; D�2;0
 ¼ D0;�2
 ¼ 0:
(5.18)

The analyticity of V2;0, V0;2, V0;�2 implies that the super-
field b is constrained by

D1;1D2;0b ¼ D1;1D0;2b ¼ D1;�1D2;0b

¼ D1;�1D0;2b ¼ 0; (5.19a)

D1;1D0;�2b ¼ D1;�1D0;�2b ¼ 0; (5.19b)

where constraints (5.19b) are a consequence of (5.19a). A
change to the 
 frame is accomplished by a similarity
transformation,

Oð
Þ ¼ e�bJOð�ÞebJ ; �ð
Þ ¼ e�bJ�ð�Þ; (5.20)

in which Oð�Þ stands for all gauge-covariantized differen-

tial operators in the � frame defined above, and �ð
Þ, �ð�Þ
are superfields transforming by the 
 and � gauge groups,
respectively. Then all harmonic derivatives become
‘‘short’’ in the 
 frame:

ðr�2;0Þ
 ¼ D�2;0; ðr0;�2Þ
 ¼ D0;�2; (5.21)

while the gauge-covariant spinor derivatives take the form
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ðD1;1Þ
 ¼ D1;1 þD1;1bJ ;

ðD1;�1Þ
 ¼ D1;�1 þD1;�1bJ ;

ðD�1;1Þ
 ¼ D�1;1 þD�2;0D1;1bJ ;

ðD�1;�1Þ
 ¼ D�1;�1 þD�2;0D1;�1bJ ;

(5.22)

ðDtÞ
 ¼ @t þ
�
@tb� i

2
D1;1D1;�1D�2;0b

�
J : (5.23)

As usual, the form of (anti)commutation relations between
gauge-covariant differential operators is frame
independent.

B. The second and third � frames

As in the previous case, the basic objects of the � frame
associated with the CR structure (2.25) are harmonic con-
nections which covariantize the analyticity-preserving har-
monic derivatives D2;0 and D0;2:

ðD2;0; D0;2Þ ) r2;0 ¼ D2;0 � ~V2;0J ;

r0;2 ¼ D0;2 � ~V0;2J ;
(5.24)

~V 2;0 0 ¼ ~V2;0 þD2;0 ~�; ~V0;2 0 ¼ ~V0;2 þD0;2 ~�:

(5.25)

However, they are subjected to an alternative type of two-
theta Grassmann analyticity,

D1;1 ~V2;0 ¼ D�1;1 ~V2;0 ¼ 0;

D1;1 ~V0;2 ¼ D�1;1 ~V0;2 ¼ 0:
(5.26)

The gauge parameter ~� also displays this type of analy-
ticity:

D1;1 ~� ¼ D�1;1 ~� ¼ 0 ) ~� ¼ ~�ð��; u; vÞ: (5.27)

As in the previous case, connections ~V2;0, ~V0;2 obey the
harmonic integrability condition

D2;0 ~V0;2 �D0;2 ~V2;0 ¼ 0: (5.28)

All other harmonic connections, i.e., ~V�2;0 and ~V0;�2

(where ~V�2;0 is now analytic), are expressed through these
two basic ones by means of appropriate harmonic flatness
conditions. The gauge-covariant spinor derivatives can be
constructed in the same way as in the previous subsection,
starting from derivatives D1;1, D�1;1 which are gauge co-
variant themselves by virtue of analyticity (5.27) of gauge

parameter ~�. The full set of harmonic flatness conditions
implies a bridge representation for the harmonic connec-
tions

~V �2;0 ¼D�2;0 ~b; ~V0;�2 ¼D0;�2 ~b; ~b0 ¼ ~bþ ~�� 
:

(5.29)

Here, bridge ~b is a biharmonic superfield subjected to the
constraints

D1;1D2;0 ~b ¼ D1;1D0;2 ~b ¼ D�1;1D2;0 ~b ¼ D�1;1D0;2 ~b ¼ 0;

(5.30)

which express another form of analyticity conditions
(5.26). Note that the harmonic-independent gauge parame-

ter 
ðt; �Þ in the gauge transformation law of ~b is the same
as in (5.18) because the 
 frame is unique, as distinct from
the three types of � frames related to the existence of three
different analytic subspaces in the N ¼ 4, d ¼ 1 bi-HSS.
A change to the 
 frame is accomplished by a rotation

similar to (5.20), this time with ~b instead of b. Once again,
the harmonic derivatives become short as a result of this
rotation, while gauge-covariant spinor derivatives take the
form

ðD1;1Þ
 ¼ D1;1 þD1;1 ~bJ ;

ðD1;�1Þ
 ¼ D1;�1 þD0;�2D1;1 ~bJ ;

ðD�1;1Þ
 ¼ D�1;1 þD�1;1 ~bJ ;

ðD�1;�1Þ
 ¼ D�1;�1 þD0;�2D�1;1 ~bJ ;

(5.31)

ðDtÞ
 ¼ @tt þ
�
@t ~b� i

2
D1;1D�1;1D0;�2 ~b

�
J : (5.32)

Since the 
 frame is unique, these expressions for spinor
derivatives should coincide with (5.22), whence we can

conclude that the relations between the bridges b and ~b are

ðaÞ D1;1b ¼ D1;1 ~b; (5.33)

ðbÞ D1;�1b ¼ D0;�2D1;1 ~b; (5.34)

ðcÞ D�2;0D1;1b ¼ D�1;1 ~b; (5.35)

ðdÞ D�2;0D1;�1b ¼ D0;�2D�1;1 ~b: (5.36)

By applying relations (2.30) and (2.31), one can show that
conditions (5.34), (5.35), and (5.36) are in fact a conse-
quence of (5.33) combined with the analyticity constraints

(5.19a) and (5.30).12 Relation (5.33) tells us that ~b� b is a
three-theta analytic superfield [see Eq. (2.27)]. This super-
field is still properly constrained by (5.30).
In order to make all these statements more explicit, let us

restore the bridges b and ~b for the Wess-Zumino gauge
(5.8) and show that the latter implies a similar gauge for the
harmonic connections ~V2;0 and ~V0;2.
Using the definition (5.18) it is easy to restore, up to a

gauge 
 freedom, the bridge b corresponding to a particular
choice (5.8),

bWZ ¼ ið�1;1��1;�1 þ ��1;1�1;�1ÞAðtþÞ � 
; (5.37)

12It is interesting that the relations (5.30) follow from (5.19a),
(5.33), and (5.35). When restoring ~b by b, it is more convenient
to choose the latter set of constraints as the independent one.
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where 
 is a superfield which does not depend on harmon-
ics in the central basis, 
 ¼ 
ðt; �Þ, and we returned to the
notation tþ for an argument of A in order to stress that we
are still staying in the analytic basis (2.5). Substituting this
expression into (5.33) and taking into account (5.30), it is

straightforward to restore ~b up to the appropriate � gauge
freedom,

~bWZ ¼ ~�� 
þ ið�1;1��1;�1 � ��1;1�1;�1ÞAðtþÞ;
(5.38)

where ~� satisfies the alternative analyticity constraints
(5.27) and is arbitrary otherwise. In basis (2.6), in which

the alternative analyticity is manifest, the same object ~bWZ

is written as

~bWZ ¼ ~�� 
þ ið�1;1��1;�1 � ��1;1�1;�1ÞAðt�Þ
� 2ð�1;1��1;�1��1;1�1;�1Þ _Aðt�Þ: (5.39)

Here, the last term is vanishing under the action of D�2;0

andD0;�2; i.e., it belongs to the 
 gauge freedom [the same
additional 
 gauge term also appears in (5.37) after passing
to the basis (2.6)].

For harmonic gauge potentials ~V2;0 and ~V0;2 [in basis
(2.5)], one obtains

~V �2;0 ¼ D�2;0 ~bWZ ¼ D�2;0 ~�;

~V0;2 ¼ D0;2 ~bWZ ¼ D0;2 ~�þ 2i�1;1��1;1A:
(5.40)

Thus, the WZ gauge (5.8) for the basic harmonic potentials
V2;0 and V0;2 in the first � frame induces a similar gauge for
the basic harmonic potentials ~V2;0 and ~V0;2 in the second �
frame, up to an arbitrary gauge transformation with the

analytic gauge superfunction ~�. This gauge transformation
can always be absorbed into an appropriate field redefini-
tion preserving the alternative analyticity, after which one
is left with the pure WZ gauge for ~V2;0 and ~V0;2. This

corresponds just to setting ~� ¼ 0 in (5.40). Alternatively,
one could, from the very beginning, work in the second �
frame and arrive at the WZ gauge for ~V2;0 and ~V0;2 in the
sameway as expression (5.8) was obtained. Then, using the
same identification (5.33), (5.34), (5.35), and (5.36) of the 

frames, one can show that such a WZ gauge induces
expression (5.8) for harmonic potentials in the first �
frame, up to an arbitrary gauge transformation with ana-
lytic parameter �ð�þ; u; vÞwhich can also be absorbed into
an appropriate gauge transformation of the involved ‘‘mat-
ter’’ superfields. To avoid possible confusion, let us note
that it is impossible to arrange the ‘‘pure’’ WZ gauges for
the harmonic connections in both � frames simultaneously:
a set of the WZ connections in one of these frames will
always be defined up to an appropriate � gauge
transformation.

It remains to consider the � frame associated with the
third CR structure (2.28). Once again, the basic quantities

are two harmonic connections, V̂2;0, V̂0;2, which covarian-

tize the analyticity-preserving harmonic derivatives,
namely,

D2;0 ) r2;0 ¼ D2;0 � V̂2;0J ;

D0;2 ) r0;2 ¼ D0;2 � V̂0;2J ;
(5.41)

V̂ 2;0 0 ¼ V̂2;0 þD2;0�̂; V̂0;2 0 ¼ V̂0;2 þD0;2�̂:

(5.42)

These connections, as well as gauge parameter �̂, satisfy
the weak analyticity condition

D1;1V̂2;0 ¼ D1;1V̂0;2 ¼ 0; D1;1�̂ ¼ 0; (5.43)

and are subject to the harmonic integrability condition

D2;0V̂0;2 �D0;2V̂2;0 ¼ 0: (5.44)

The remaining harmonic connections, V̂�2;0 and V̂0;�2, are

nonanalytic. They are related to the basic connections V̂0;2

and V̂2;0 by appropriate harmonic flatness constraints. The
full set of these constraints implies the existence of a

nonanalytic bridge b̂, such that

V̂ �2;0 ¼ D�2;0b̂; V̂0;�2 ¼ D0;�2b̂; (5.45)

and

b̂ 0 ¼ b̂þ �̂� 
: (5.46)

Here, 
ðt; �Þ is the same harmonic-independent 
 frame
gauge parameter as in the previous two cases, which ex-
presses the uniqueness of the 
 frame. The only constraints

on b̂ stem from those of analyticity (5.43):

D1;1D2;0b̂ ¼ D1;1D0;2b̂ ¼ 0: (5.47)

A full set of gauge-covariant derivatives in the � frame is
constructed, by means of the formulas similar to (5.13) and
(5.14), from a single spinor derivativeD1;1. It should not be
covariantized in view of the analyticity of the � frame

gauge parameter �̂. As in the previous cases, the 
 frame

is achieved by similarity transformation (5.20), with b̂
instead of b. The harmonic derivatives in the 
 frame are
short, while the covariant spinor derivatives and t deriva-
tive take the following form:

ðD1;1Þ
 ¼ D1;1 þD1;1b̂J ;

ðD1;�1Þ
 ¼ D1;�1 þD0;�2D1;1b̂J ;

ðD�1;1Þ
 ¼ D�1;1 þD�2;0D1;1b̂J ;

ðD�1;�1Þ
 ¼ D�1;�1 þD0;�2D�2;0D1;1b̂J ;

(5.48)

ðDtÞ
 ¼ @t þ
�
@tb̂� i

2
D1;1ðD�1;1D0;�2

þD1;�1D�2;0Þb̂
�
J : (5.49)
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The relations between the bridges b and b̂, implied by
the uniqueness of the 
 frame, are

ðaÞ D1;1b ¼ D1;1b̂; (5.50)

ðbÞ D1;�1b ¼ D0;�2D1;1b̂; (5.51)

ðcÞ D�2;0D1;�1b ¼ D�2;0D0;�2D1;1b̂: (5.52)

It is easy to show that relations (5.51) and (5.52), as well as

the weak analyticity constraints (5.47) for b̂, are a conse-
quence of the constraints (5.19) for b and of relation (5.50).
Substituting the particular expression (5.37) for b into

(5.50), it is easy to restore the corresponding b̂,

b̂WZ ¼ �̂� 
þ i�1;1��1;�1AðtþÞ; (5.53)

where �̂ð�3; u; vÞ is an arbitrary three-theta analytic gauge
superfunction. Then, for the basic harmonic connections,
we obtain the following expressions:

V̂ 2;0
WZ ¼ D2;0b̂WZ ¼ D2;0�̂þ i�1;1�1;�1AðtþÞ;

V̂0;2
WZ ¼ D0;2b̂WZ ¼ D0;2�̂þ i�1;1��1;1AðtþÞ:

(5.54)

Thus, the WZ gauge for harmonic connections in the
first � frame entails a similar gauge for harmonic connec-
tions in the third � frame, up to an appropriate analytic
gauge transformation which can be removed by a redefi-
nition of the involved superfields. It is worth noting that the

WZ gauge for V̂2;0, V̂0;2 can be independently achieved just

by making use of the �̂ gauge freedom (5.42) and the
harmonic constraint (5.44), without any reference to the
first � frame.

The main conclusion of this section is that all three
possible � gauge frames are equivalent to each other under
a natural assumption that the 
 gauge frame is unique.
Hence, while gauging various isometries realized on bi-
harmonic superfields, we can choose that � frame which is
the most convenient for one or another purpose. It is
worthwhile to note that there is no direct correlation be-
tween a choice of the gauge frame and that of the coor-
dinate basis in the bi-HSS. However, once the � frame has
been chosen, it is natural to deal with the basis in which the
corresponding Grassmann analyticity is manifest, i.e. in
which the spinor derivatives having no gauge connections
are reduced to partial derivatives. These are the spinor
derivatives D1;1, D1;�1 in the first � frame, D1;1, D�1;1 in
the second � frame, and D1;1 in the third � frame. The WZ
gauges for the basic harmonic connections covariantizing
the harmonic derivatives D2;0 and D0;2 have the simplest
form just in such coordinate bases, in which these con-
nections are manifestly analytic.

C. An example of a gauged model in biharmonic
superspace

Diverse models of theN ¼ 4mechanics were obtained
in [18–20] by gauging various symmetries of one type of
ð4; 4; 0Þ supermultiplet in the N ¼ 4, d ¼ 1 harmonic
superspace with one set of harmonics. Models with non-
trivial interactions can be generated in this way even from a
free action of the ð4; 4; 0Þ supermultiplet. Here, we present
an example of gauging symmetries of the free bi-HSS
action (4.8) involving two different types of ð4; 4; 0Þ mul-
tiplets. We shall use the gauge approach developed in the
previous subsections. Since this gauging procedure is man-
ifestly N ¼ 4 supersymmetric, the resulting action is
N ¼ 4 supersymmetric like the initial free action. As
distinct from the latter, the gauged action will prove to
exhibit a nontrivial sigma-model-type interaction of com-
ponent fields.
As was emphasized in [18], the symmetries to be gauged

should commute with the rigid supersymmetry; otherwise
the latter should be promoted to the local supersymmetry,
i.e. to a worldline supergravity. The free action (4.8) enjoys
a few symmetries which meet this requirement. These are
two independent PG-type SU(2) symmetries realized on
the doublet indices A and A, as well as the Abelian shift
symmetries

qð1;0ÞA 0 ¼ qð1;0ÞA þ kiAu1i ; qð0;1ÞA 0 ¼ qð0;1ÞA þ laAv1
a;

(5.55)

where kiA and laA are some constant parameters. The
covariance of the defining constraints (4.1) and (4.2) under
these shifts is evident, and the invariance of (4.8) can be
easily proved by representing u1i ¼ D2;0u�1

i , v1
a ¼

D0;2v�1
a , integrating by parts, and by using the harmonic

constraints D2;0qð1;0ÞA ¼ D0;2qð0;1ÞA ¼ 0 together with the
Grassmann analyticity conditions in (4.1) and (4.2).
All these symmetry groups or some of their subgroups

can be gauged using the techniques of the previous sub-
sections. We shall consider the gauging of some common
U(1) subgroup of the two PG SU(2) groups:

�qð1;0ÞA ¼ �CA
Bq

ð1;0ÞB; �qð0;1ÞA ¼ �CA
Bq

ð0;1ÞB;

CA
A ¼ CA

A ¼ 0:

Here, CA
B and CA

B are two independent constant SU(2)

triplets describing the embedding of the uð1Þ algebra into a
sum of two PG suð2Þ algebras. They satisfy the pseudor-
eality conditions

ðCA
BÞ ¼ �CB

A; ðCA
BÞ ¼ �CB

A; (5.56)

and, without loss of generality, can be chosen in such a way
that

CABCAB ¼ 2; CABCAB ¼ 2c2; c > 0; (5.57)

where CAB ¼ CBA ¼ �ADCB
D, etc. Using two independent
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SU(2) rotations, one can choose a frame in which these
SU(2) breaking tensors take the simple form

C1 2 ¼ i; C12 ¼ ic; (5.58)

with all other components vanishing.
Nowwewish to gauge this U(1) symmetry by promoting

parameter � to an arbitrary analytic superfunction,

� ) �ð�þ; u; vÞ;
and to find a gauge-invariant extension of action (4.8).

As a first step, we covariantize the defining conditions
(4.1) and (4.2):

ðaÞ D1;1qð1;0ÞA ¼ D1;�1qð1;0ÞA ¼ 0;

ðbÞ r2;0qð1;0ÞA ¼ r0;2;qð1;0ÞA ¼ 0;
(5.59)

and

ðaÞ D1;1qð1;0ÞA ¼ D�1;1qð1;0ÞA ¼ 0;

ðbÞ r2;0qð1;0ÞA ¼ r0;2;qð1;0ÞA ¼ 0;
(5.60)

where the gauge-covariant harmonic derivatives and spinor
derivatives in the considered (first) � frame are defined in
(5.1), (5.10), and (5.13), with

J qð1;0ÞA ¼ CA
Bq

ð1;0ÞB; Jqð0;1ÞA ¼ CA
Bq

ð0;1ÞB:

(5.61)

Second, we replace qð�1;0ÞA ¼ D�2;0qð1;0ÞA and qð0;�1ÞA ¼
D0;�2qð0;1ÞA in (4.9) by their gauge-covariant analogues

r�2;0qð1;0ÞA and r0;�2qð0;1ÞA.
Then, the gauge-invariant action can be written as

Sgauge /
Z

�ðqð1;0ÞAr�2;0qð1;0ÞA � qð0;1ÞAr0;�2qð0;1ÞA Þ;
(5.62)

with qð1;0ÞA and qð0;1ÞA defined by the covariantized con-
straints (5.59) and (5.60).

It is now easy to solve Eqs. (5.59) and (5.60) and to find
the component form of the action, using the WZ gauge
(5.8):

V2;0 ¼ 2i�1;1�1;�1AðtÞ;
V�2;0 ¼ 2i��1;1��1;�1AðtÞ;
V0;2 ¼ V0;�2 ¼ 0;

D1;1V�2;0 ¼ �2i��1;1AðtÞ: (5.63)

For instance, the gauge-covariant version of solution (4.5)
is obtained via the following substitution in the last com-

ponent of qð1;0ÞA in (4.5):

_f iA ) rfiA ¼ _fiA �ACA
Bf

iB: (5.64)

After performing the Berezin and harmonic integrations,
one finally obtains the following expression for the com-

ponent action:

Scgauge /
Z

dt

�
rfiArfiA þrfaArfaA þ i

2
c aArc aA

þ i

2
!iArc iA

�
; (5.65)

where rfaA ¼ _faA �ACA
Bf

aB, etc. Action (5.65) still
respects the residual U(1) gauge freedom under the trans-
formations with parameter �0ðtÞ ¼ �j�¼0:

�faA ¼ �0C
A
Bf

aB; �fiA ¼ �0C
A
Bf

iB; �A¼ _�0

(5.66)

(and analogous transformations for fermionic fields).
One can consider a more general model by adding the

Fayet-Iliopoulos (FI) term to the superfield action (5.62),

Sgauge ) Sgauge � i

2
�
Z

�ð�2;0Þ
Aþ V2;0: (5.67)

The FI term is evidently invariant under the gauge trans-
formation �V2;0 ¼ D2;0�. The component action (5.65) is
modified as

Scgauge ) Scgauge þ �
Z

dtA: (5.68)

By construction, actions (5.65) and (5.68) respect the
off-shell N ¼ 4 supersymmetry. Taking into account
gauge invariance (5.66), which implies that one bosonic
field is purely a gauge degree of freedom, the field content
of these actions is still ð8þ 8Þ.
The gauge field AðtÞ enters (5.65) and (5.68) without

derivatives. So it plays the role of the auxiliary field and
can be integrated out by its algebraic equation of motion.
The result is a nontrivial nonlinear d ¼ 1 sigma-model-
type action which is stillN ¼ 4 supersymmetric on shell.
We give here the explicit form of the final nonlinear action
in a bosonic limit with all fermionic fields discarded:

Snonl /
Z

dt

�
_fiA _fiA þ _faA _faA � 1

V
�2 � �2 1

V
þ 2�

1

V
�

�
(5.69)

where

� ¼ _fiACABf
B
i þ _faACABf

B
a ;

V ¼ fiAfiA þ c2faAfaA:
(5.70)

The bosonic action contains a nonlinear sigma-model part
(the terms bilinear in time derivatives), a potential term
(� �2) and the WZ-type coupling to an external gauge
potential (the term ��).
To summarize, we have started from action (4.8), which

is a sum of free actions of two ð4; 4; 0Þ supermultiplets and,
after gauging its U(1) isometry, arrived at the action with a
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nontrivial self-interaction mixing the fields from both mul-
tiplets. The final action still respects the local U(1) sym-
metry (5.66), and one can fully fix it by making one of the
bosonic target coordinates zero. So, finally, we have a
nonlinear sigma-model-type action with a seven-
dimensional bosonic target manifold, involving nontrivial
WZ and potential terms. Let us note that the originalN ¼
8 supersymmetry of action (4.8) is not preserved by the
gauging procedure; the gauged actions possess only N ¼
4 supersymmetry. We note also that the target metric and
potential in (5.69) are singular at the point fiA ¼ faA ¼ 0,
and thus one is led to assume that these bosonic fields have
some nonzero background values.13 The more detailed
study of geometric properties of this model, as well as of
some other ones associated with different gaugings of

symmetries realized on the superfields qð1;0ÞA and qð0;1ÞA,
will be performed elsewhere. The options of special inter-
est are those in which one of the two SU(2) PG groups, or
their diagonal SU(2) subgroup, are gauged. The resulting
N ¼ 4 supersymmetric models with five-dimensional tar-
get bosonic manifolds could reveal a close relationship to
supersymmetric mechanics with the Yang monopole as a
target [see the recent paper [48], the authors of which also
proceed from an ð8; 8; 0Þ ¼ ð4; 4; 0Þ 
 ð4; 4; 0Þ multiplet of
the N ¼ 8 supersymmetry].

VI. CONCLUSIONS AND OUTLOOK

In this paper, we worked out the basic elements of a new
systematic superfield approach to models of the N ¼ 4
supersymmetric mechanics based on the concept of bihar-
monic superspace. In this approach, both SU(2) R symme-
tries of the N ¼ 4, d ¼ 1 super Poincaré algebra are
‘‘harmonized’’ and prove to be on equal footing, thus
allowing a joint description of the off-shell N ¼ 4 super-
multiplets which are mirror to each other. Here, we limited
ourselves to presenting a few particular examples of how
useful this approach is for the N ¼ 4 mechanics model-
building, leaving a more extensive study of its possible
applications in this area for the future. It should be men-
tioned that, until now, only the N ¼ 4 mechanics models
based on one type of N ¼ 4 supermultiplets were mostly
studied; having the bi-HSS approach, one will be able to
explore the more general models combining these super-
multiplets together with their mirror counterparts. In the
case with one sort of multiplet, the whole variety of N ¼
4 mechanics models can be generated by appropriate re-
ductions [related to the notion of the ‘‘automorphic dual-
ity’’ [13–16]] from models associated with the root
multiplet ð4; 4; 0Þ [17]. In the superfield language, these
reductions amount to diverse gaugings in the standard
harmonic N ¼ 4, d ¼ 1 superspace [18–20]. In the case

where both sorts ofN ¼ 4multiplets are incorporated, we
expect a similar phenomenon with a pair of the comple-

mentary biharmonic supermultiplets qð1;0ÞA; qð0;1ÞA as the
root ones and with the gauging procedure presented in
Sec. V as a generalization of that of Refs. [18–20]. As
shown in a recent paper [49], the superfield gauging ap-
proach is efficient for deriving novel N ¼ 4 superexten-
sions of some integrable Calogero-type d ¼ 1models. The
inclusion of pairs of mutually mirror N ¼ 4 multiplets
into the scheme of [49] within the bi-HSS approach could
result in an essential enlargement of this class of super-
symmetric d ¼ 1 systems.
The bi-HSS approach can also, presumably, provide new

opportunities in a different circle of problems, for instance
those related to supersymmetric integrable systems of the
Korteweg–de Vries (KdV) type. It was found in [24] that
the harmonic N ¼ 4, d ¼ 1 analyticity underlies an
N ¼ 4 super KdV equation. The second Hamiltonian
structure of the latter, namely, the small N ¼ 4 SU(2)
superconformal algebra, in the d ¼ 1 harmonic superspace
approach with one set of SU(2) harmonics u�i is naturally

represented by an analytic supercurrent Jþþð�; u�Þ satis-
fying the harmonic constraintDþþJþþ ¼ 0. It collects the
Virasoro, superconformal, and SU(2) affine currents as
independent components in its � expansion. The direct
bi-HSS analogue of this superfield is

Jð2;0Þð�þ; u; vÞ; D2;0Jð2;0Þ ¼ D0;2Jð2;0Þ ¼ 0. A new feature
of the bi-HSS is the possibility to define a mirror super-

current Jð0;2Þð��; u; vÞ; D2;0Jð0;2Þ ¼ D0;2Jð0;2Þ ¼ 0. It can
generate another N ¼ 4 SU(2) superconformal algebra
which, together with the first one, would yield the large
N ¼ 4 SOð4Þ � Uð1Þ superconformal algebra as a clo-
sure. These two supercurrents can be used as the basic
entities of a new N ¼ 4 super KdV system with the large
superconformal algebra as the second Hamiltonian struc-
ture. Such a superfield extension of the KdV equation has
not been constructed yet. On top of that, one more notable
feature of the N ¼ 4 bi-HSS, viz. the existence of the
three-theta analytic subspace (2.26), can hopefully be uti-
lized as a new tool in attempts to construct N ¼ 4 super-
extensions of Zamolodchikov’s Wð3Þ algebra. This
problem remains open, too.
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