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We generalize (linearized) relativistic hydrodynamics by including all order gradient expansion of the

energy-momentum tensor, parametrized by four momenta-dependent transport coefficients, one of which

is the usual shear viscosity. We then apply the AdS/CFT duality forN ¼ 4 SUSY in order to compute the

retarded correlators of the energy-momentum tensor. From these correlators we determine a large set of

transport coefficients of third- and fourth-order hydrodynamics. We find that higher order terms have a

tendency to reduce the effect of viscosity.
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I. INTRODUCTION

The relativistic heavy ion collider (RHIC) produces
hadronic matter with temperatures ranging between the
initial Ti � 2Tc and the final (or freeze-out) value Tf �
Tc=2 [1,2], where Tc � 170 MeV is the QCD critical
temperature. It has been shown [3–5] that the flows (radial,
elliptic) associated with the plasma expansion are well and
consistently described by near-ideal relativistic hydrody-
namics, with freeze-out implemented via hadronic cas-
cades. Since elliptic flow is dominated by the early times
of the fireball expansion, when T > Tc and matter is in the
so-called quark-gluon plasma (QGP) phase [6], this lead to
the conclusion [7,8] that QGP is a ‘‘perfect liquid’’, pre-
sumably because it is actually in a new—strongly
coupled—regime of QCD. Those views were discussed
in detail and eventually accepted in the 2004 ‘‘white pa-
pers’’ of all four experimental collaborations [9]. The full
understanding of QCD dynamics at strong coupling, even
in the deconfined phase, remains a challenge and one
usually appeals to either lattice simulations or phenome-
nological models. While the lattice is considered a reliable
source for QCD thermodynamics, it usually fails to provide
accurate data on transport coefficients. Thus, in order to
understand transport properties of QCD, at the moment we
have to appeal to various microscopic models (for recent
reviews on the strongly coupled QGP see e.g. [10,11]).

Starting from 2004 RHIC experiments have discovered
and studied phenomena known as the ‘‘cone’’ and the
‘‘ridge’’, associated with the propagation of the energy
deposited by quenched hard jets (for the description of
the phenomena and recent data see Refs. [12–14] and
references therein). The former was associated with coni-
cal hydrodynamic flows induced by fast particles propagat-
ing through the medium [15]. This has in turn initiated
studies, within AdS/CFT, of such processes induced by a
steadily moving heavy quark, see [16–19]. Although these
studies did not appeal to any hydro description, their results
were found to be in very good agreement with (even
unimproved) hydrodynamics.

Another structure, known as the ‘‘soft ridge’’ has been
observed in two-particle correlations: its origin is attrib-
uted to initial state fluctuations in the colliding nuclei. For
experimental data and phenomenological discussion see
the talks at the BNL dedicated workshop [20]. Although
in this paper we will not discuss the phenomenology of
those objects, we nevertheless stress that they provide the
strongest motivation for a detailed study of small perturba-
tions on top of (hydrodynamically expanding) matter.
One obvious step in understanding these perturbations is

to study them using linearized hydrodynamics, assuming
their amplitude to be small. On the other hand, these
objects start their evolution at much smaller scales com-
pared to nuclear (or fireball) radii. For example initial state
fluctuations are believed to be given by the ‘‘saturation
scale’’ 1=Qs, which is only 0.2 fm, about 30 times smaller
than the fireball as a whole. Therefore, the evolution of
small perturbations includes much larger spatial gradients,
and in order to treat them better one would naturally try to
improve the accuracy of hydrodynamics, including higher
order derivative terms. Since the latter appear with many
new transport coefficients, the usual phenomenological
approach which derives viscosity from the data would
hardly be possible. Instead, some self-consistent approach
is needed to calculate as many of them as necessary.
Such model of choice for the present study is N ¼ 4

SUSYat large Nc. Via the celebrated AdS/CFT correspon-
dence [21] this gauge theory at strong coupling admits a
dual description in terms of weakly coupled gravity in
AdS5 � S5 space. The finite temperature version of this
field theory is dual to the AdS-Schwarzschild black hole
(brane). The laws for Schwarzschild black hole thermody-
namics imply that the entropy density is proportional to the
area of the horizon [22].1 The equilibrium pressure is P ¼
�2N2

cT
4=8, while the energy density is � ¼ 3P due to the

conformal symmetry of the microscopic theory.

1For theories involving higher order curvature corrections to
the Einsteinian gravity, the relation between area of the horizon
and entropy is invalid [23].
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Refs. [24] pioneered the study of transport coefficients
via dual description. For a static plasma and in the limit of
large ’t Hooft coupling � � 1, the ratio of shear viscosity
to entropy is independent of the coupling and is in fact
remarkably small

�0

s
¼ 1

4�
: (1.1)

Furthermore, Refs. [24] conjectured that this value for the
ratio is a universal lower bound, valid for all physical
systems in nature. While AdS/CFT leads Eq. (1.1), it
does not provide any explanation of this result from the
gauge theory side. So far, no microscopic mechanism for
low viscosity has been established for QCD, though a
promising proposal can be found in [25].

It is rather difficult to extract viscosity from experimen-
tal data precisely, because it is small and its effects are
Oð10%Þ or so, comparable to other uncertainties. The
phenomenological studies of RHIC data (such as in
Ref [26]) typically focus on the elliptic flow dependence
on centrality or transverse momentum, v2ðb; ptÞ. The opti-
mal �0=s for these fits occurs at a value of the order of the
suggested minimum, although deviations from it by a
factor two or so are still possible. Another argument to
support very low viscosity comes from discussions of the
overall entropy production, such as in Ref. [27]. Those
works suggested that there is a tension between the total
entropy (measured by the observed multiplicity of pro-
duced hadrons) and the very short thermalization time
(initial time for hydro evolution), unless the viscosity
over entropy ratio is pushed down, maybe even below the
bound. The third (more indirect) argument for low viscos-
ity is the survival till freeze-out of the ‘‘cones’’ and
‘‘ridges’’, suggesting smallness of dissipative effects.
Therefore all these approaches indicate a very small vis-
cosity value.

The hydrodynamic representation of the energy-
momentum tensor is

hT��i ¼ ð�þ PÞu�u� þ Pg�� þ���; (1.2)

where the average is taken over the thermal bath. While at
some microscopic scale l the system is assumed to be
locally at thermal equilibrium, at some macroscopic scale
L � l the local fluid velocity field u is a function of space-
time coordinates. The ‘‘tensor of dissipations’’���, added
to the ideal-fluid part, represents all the deviations from the
equilibrium state induced by such a flow field. In the long
wavelength limit L � l, these fluctuations can be ex-
panded in terms of gradients of the velocity field, or in
powers of l=L. The first order Navier-Stocks (NS) hydro-
dynamics retains only the first gradient2

��� � �0r�u�: (1.3)

In this work we will discuss higher order gradients, which
will provide certain corrections to the first order viscosity
term when gradients grow. These corrections are relevant
for smaller size objects in the plasma or to earlier time of
hydro evolution.
The high order gradient expansion generically includes

two types of terms: (i) nonlinear terms in the velocity field
(like ðruÞ2) and (ii) linear terms with multiple gradient
operators acting on a single velocity field (like rru).
These two types of terms are controlled by two different
parameters. The nonlinearities are important when the field
amplitude is large. However, even for small amplitude
waves, one can get large contributions from the linear
terms when the momenta associated with the wave are
large.
Recently, second order hydrodynamics (next-to-NS) at-

tracted significant attention [1,2]. The main reason is that
NS hydrodynamics is known to have causality problems.
The acausal effects create numerical instabilities when
solving hydrodynamic equations. The problem originates
from the fact that NS equations imply instantaneous re-
sponse to any perturbation introduced in the system. In
order to circumvent this problem, one may introduce a
relaxation time. It explicitly appears as a new transport
coefficient when the gradient expansion is extended to
second order:

��� � �0½1� �ðurÞ�r�u� ! �0½1þ i�!�ðk�u�Þ:
(1.4)

In fact, in order to restore causality it is not sufficient to
include second gradients only: all order gradients need to
be resummed. A very popular resummation scheme is due
to Israel and Stewart (IS) [28]. It essentially generalizes
viscosity to an !-dependent but k-independent (complex)
function

�ISð!Þ ¼ �0

1� i!�
: (1.5)

Equation (1.5) can be viewed as a Pade-like resummation
of (1.4). The relaxation time � provides a scale for expo-
nential relaxation. The position of the pole below the real
axis and the ‘‘good’’ falling off asymptotic behavior make
the model causal. In other words, as a function of complex
!, the viscosity is analytic in the upper half plane. In
coordinate space this simple pole corresponds to a memory
function with exponential falloff:

���ðx; tÞ � �0

�

Z t

0
dt0e�ðt�t0Þ=�r�u�ðx; t0Þ: (1.6)

In this paper we will be studying all order gradient expan-
sion in the linear approximation. Instead of introducing
new transport coefficients at each new order, we will be
thinking of viscosity and other transport coefficients as
frequency and momentum-dependent functions. We will

2Throughout this paper we will be considering conformal
theory only, for which there is only shear viscosity since the
bulk viscosity is zero.
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be working in the framework ofN ¼ 4 SUSY. For the rest
of this paper we set all dimensionfull units to be related
with the temperature, 2�T ¼ 1. Among our results, we
will show that the IS resummation, although well-known
and used, is still simplistic model for high order gradient
terms, which is even qualitatively inconsistent with AdS/
CFT results. Not only it misses important nonlinear terms
already at second order [29,30], but (as we will show
below) it is also incorrect in the linear approximation
starting from the third order.

More generally, we will find that higher order terms do
have a tendency to cancel (or reduce) the effect of NS
viscosity. In particular, in our earlier paper [31], we argued
that the extremely low viscosity suggested by Refs. [26,27]
may essentially be some ‘‘effective viscosity’’, which in-
cludes these high order gradient terms. The real systems
probed in RHIC collisions have finite gradients and the
inclusion of their effects may demand going beyond NS
approximation. In [31] we attempted to extract a
momentum-dependent viscosity from the imaginary part
of the sound dispersion curve. Our main observation was
that the effective viscosity as probed at finite momenta
turns out to be smaller compared to the value at the origin.
Motivated by [27], we discussed in [31] the implications of
a momentum-dependent viscosity on the entropy produc-
tion for Bjorken expansion [32]. We discovered that the
inclusion of momentum-dependence made it possible to
push the hydrodynamic description a bit further into earlier
times of the collisions, with the entropy production due to
viscous hydro stabilized at around 20% of the total entropy
produced in the collision. The conclusion is that the ac-
count for a momentum-dependent viscosity reduces the
sensitivity to thermalization time. Now, with the result
reported below, our previous approach [31] based on the
sound dispersion curve looks rather naive (for a much more
elaborated study of hydrodynamic theory as an effective
theory for the lowest modes see Ref. [33]). In general, we
will see that the sound dispersion curve does not contain
enough information to define the ‘‘generalized viscosity’’
function. Nevertheless, we qualitatively captured at least
the right trend: full second order hydro with all nonlinear
terms included has the same trend towards reducing the
entropy production [29,34].

Our goal in this paper is to put the idea of a momentum-
dependent viscosity on a more solid ground compared to
our naive treatment in [31]. In the present analysis we will
be focusing on the retarded correlators of the stress tensor.
The correlators contain information not only about the
positions of the poles but also about their residues. The
complete information on the correlators is equivalent to the
knowledge of the energy-momentum tensor in the linear-
ized approximation.

In a conformal theory in four dimensions, there are only
three independent correlators of the energy-momentum
tensor. These are correlators in the sound (GS), shear

(GD), and scalar (GT) channels. AdS/CFT correspondence
provides a tool to compute these correlators by solving
certain linearized gravity equations in the background of
the AdS-Schwarzschild black hole [35–37]. These equa-
tions essentially describe graviton’s propagation from the
AdS boundary, where the field theory is defined, to the
horizon of the black hole. Absorptive boundary conditions
are imposed there. Dissipation takes place at the horizon
while there is no dissipation in the bulk of AdS. However,
the bulk curvature acts as a nonlinear medium, which
provides a source for complicated dispersion. It is this
dispersion which, by means of the duality, is mapped into
momenta-dependent transport coefficients.
Our strategy is to first write a most generic hydrolike

representation of the energy-momentum tensor T��, in
terms of the fluid velocity field u. We find that, generically,
there are four structures (or operators involving derivatives
of u or the metric g) which can occur in T�� and are
consistent with all symmetries. Each structure enters with
a coefficient which is momentum-dependent. These are the
generalized transport coefficient we are looking for. One of
them is associated with the shear viscosity, while the
remaining three encode responses of the system to external
(4d) gravity perturbations. We call them gravitational sus-
ceptibilities of the fluid (GSF). The operators which are
multiplied by the GSFs involve the Weyl tensor of the
metric and vanish in the flat Minkowski space.
We then proceed by using this hydrolike representation

of T�� in order to compute its correlators in the three
channels introduced above. We then attempt to determine
the momentum-dependent transport coefficients from the
matching to the functions GS, GD, and GT computed
directly from the bulk gravity side.
Our program ran into a problem, which we were not able

to resolve completely: there are in fact four independent
transport functions to be extracted from three equations.
Despite the fact that we could not determine the entire
functions, we were able to get them to quite high order in
the perturbative expansion at small momenta. In particular,
we found the shear viscosity function to fifth order in the
gradient expansion. This involves several new transport
coefficients, most of which are obtained numerically.
The conceptual problem mentioned above, prevented us

from computing shear viscosity in the whole kinematic
region of arbitrary frequency and momentum. Instead,
we build a model similar to IS which utilizes the informa-
tion about the new transport coefficients and preserves the
causality condition. We propose this model for phenome-
nological studies of hydrodynamics at RHIC, but any
application of this model is left beyond the scope of this
paper.
The paper is organized in the following way. In Sec. II

we present the general setup for computing the retarded
correlators from the bulk gravity and from the generalized
hydro on the boundary. Section III presents some results. A
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phenomenological model for generalized viscosity is pro-
posed in Sec. IV. Our conclusions are summarized in
Sec. V. Two Appendices supplementing Sec. II provide
details of some analytical computations.

II. GENERALITIES

The retarded correlators of two energy-momentum ten-
sors are defined as follows

G���	ðk;!Þ ¼ �i
Z 1

0
dt

Z
d3xe�i!tþikx

� h½T��ðx; tÞ; T�	ð0Þ�i: (2.1)

Here the average is over the equilibrated thermal bath. For
conformally invariant plasma with traceless T��, there are
only three independent correlators GT � Gxyxy (tensor),
GD � Gtxtx (shear), and GS � Gtztz (sound) with the vec-
tor k pointing in the z-direction. All other correlators are
related to these three either by rotational symmetry or by
the equations of motion.

A. Life in the bulk: Retarded correlators from gravity

In this subsection we closely follow the setup and results
of Ref. [38]. From the bulk gravity side, in order to
compute the retarded correlators at nonzero temperature
one has to solve certain wave equations (one for each

symmetry channel). These equations describe propagation
of the corresponding metric perturbations (gravitons) in the
AdS-Schwarzschild BH background of the dual descrip-
tion. The differential equations are of the form

d2

dr2
ZaðrÞ þ paðrÞ ddrZaðrÞ þ qaðrÞZaðrÞ ¼ 0; (2.2)

where the coefficients paðrÞ, qaðrÞ depend on the fre-
quency ! and momentum k, and a ¼ T, D, S labels the
three symmetry channels. The coefficient functions are
given by the following expressions.
(i) The scalar channel

pTðrÞ ¼ � 1þ r2

rf
; qTðrÞ ¼ !2 � k2f

rf2
; (2.3)

where f ¼ 1� r2. The function f is inherited from
the AdS-BH metric.

(ii) The shear channel

pDðrÞ ¼ ð!2 � k2fÞfþ 2r2!2

rfðk2f�!2Þ ;

qDðrÞ ¼ !2 � k2f

rf2
:

(2.4)

(iii) The sound channel

pSðrÞ ¼ � 3!2ð1þ r2Þ þ k2ð2r2 � 3r4 � 3Þ
rfð3!2 þ k2ðr2 � 3ÞÞ ; qSðrÞ ¼ 3!4 þ k4ð3� 4r2 þ r4Þ þ k2ð4r2!2 � 6!2 � 4r3fÞ

rf2ð3!2 þ k2ðr2 � 3ÞÞ :

(2.5)

The fifth dimension coordinate r ranges from 0 to 1,
where r ¼ 0 corresponds to the boundary of the
asymptotically AdS space, and r ¼ 1 corresponds
to the event horizon of the background metric.

The information about the retarded correlation functions
is encoded in the solutions to Eq. (2.2), which satisfy the
incoming wave condition at the horizon Zaðr !
1Þ � exp½�i!=2�. At r ¼ 0 the solution can be written
as a linear combination of two independent local solutions,

ZaðrÞ ¼ AaZ
I
aðrÞ þBaZ

II
a ðrÞ; (2.6)

Here ZI
a is irregular in the origin while ZII

a is a regular
solution.

The prescription to compute the correlators G follows
from the Minkowski formulation of the AdS/CFT corre-
spondence and amounts to computing the ratio between the
two coefficients in the expansion (2.6)

~Gað!; kÞ ¼ �8P
Bað!; kÞ
Aað!; kÞ : (2.7)

For the three symmetry channels the correlators G are

related to ~G,

Gxyxy ¼ 1

2
~GT ; Gtxtx ¼ 1

2

k2

!2 � k2
~GD: (2.8)

For the sound channel the relation is a bit more involved
and includes a contribution from contact terms [39]

Gtttt ¼ 1

2

�
4

3

k4

ð!2 � k2Þ2
~GS þ 1

12

� 29k4 � 30k2!2 þ 9!4

ðk2 �!2Þ2
�
: (2.9)

Equation (2.2) has real coefficients which are even
functions of frequency. In other words this equation prop-
agates waves without any dissipation. The dissipation
(time irreversal) effects are introduced by the boundary
conditions at the horizon. However, the AdS-BH metric
acts as a nonlinear medium for the propagating graviton.
The nonlinear dependences on frequency and momenta
which appear in (2.2) are to be mapped onto highly non-
trivial momenta dependence of the transport coefficient
functions.
Let us make a technical remark on numerical solution.

The equations for the shear and sound channels have
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singular points inside the bulk r ¼ ½0; 1�. For the shear

channel it appears for !< k at r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2=k2

p
and for

the sound it is at r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1�!2=k2Þp

(condition that r0 is
inside the bulk). It would be interesting to understand if
these points have any special physical role. To ensure that
there is no instability caused by these singularities, we split
our numerical solution into two intervals ½0; r0� and ½r0; 1�
and matched the solutions at the singular points using
analytic solutions in the vicinity of r0.

The correlators computed from the gravity side agree
with the field theory correlators up to a constant [35]. In

particular, in the sound channel the relation between the
correlators Gtttt and Gtztz is

!2ðGtttt þ �Þ ¼ k2ðGtztz þ PÞ: (2.10)

The analytical expansion for the correlators at small
momenta can be found in Appendix A. For the shear and
sound channels we show some numerical results alongside
the corresponding curves for the NS and IS hydrodynamics
on Figs. 1 and 2.
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FIG. 1 (color online). Shear channel: top k ¼ 0:4; bottom ! ¼ 0:4. Solid line corresponds to the AdS/CFT correlator. Short dashes
display the NS hydrodynamics while long dashes show the IS hydrodynamics.
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FIG. 2 (color online). Sound channel: top k ¼ 0:4; bottom ! ¼ 0:4. Solid line corresponds to the AdS/CFT correlator. Short dashes
display the NS hydrodynamics while long dashes show the IS hydrodynamics.
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B. Life on the boundary: All order hydrodynamics

The thermal field theory on the four dimensional bound-
ary is defined by means of the generating functional

Z½h� ¼
Z

D
eS0½
�þ
R

d4xh��T
��

; (2.11)

where 
 collectively denotes all fields of the theory, S0 is
the flat metric action and h�� is an external perturbation of

the Minkowski space.
The expectation value of the energy-momentum tensor

at nonvanishing external field h�� is

hT��ihcl ¼
� lnZ

�h
¼ hT��ih¼0

cl þ h�	 ~G�	��: (2.12)

Within the linear response theory we keep terms linear in h

only. The correlators ~G�	�� differ from the retarded cor-
relators G�	�� by constant contact terms [35].

We use Eq. (2.12) to define hydrodynamic variables.
Here hT��ih¼0

cl corresponds to the thermal equilibrium.

The equilibrium energy density is

�0 � hT00ih¼0
cl : (2.13)

The external perturbation h�� shifts the theory from its

thermal equilibrium. The out-of- equilibrium energy den-
sity is

� � hT00ihcl ¼ �0 þ h�	 ~G�	00: (2.14)

We can also define fluid’s three-velocity vi

ð�0 þ P0Þvi � hT0iihcl ¼ h�	 ~G�	0i (2.15)

and fluid‘s 4-velocity u� ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
; vÞ satisfying u2 ¼

�1.
The action (2.11) is required to be invariant under the

local Weyl transformation (see the extensive discussion in
Ref. [29])

g�� ! e�2�ðx;tÞg��: (2.16)

The invariance of the action implies that T�� and the
velocity field u transform homogeneously

T�� ! e6�ðx;tÞT��; u� ! e�ðx;tÞu�: (2.17)

In our construction below we will be imposing the Weyl
invariance. To this goal we will employ the Weyl tensor
C�
���

C�
��� ¼ R�

��� � 1

2
ðg��R�� � g��R�� � g��R

�
�

þ g��R
�
�Þ þ 1

6
Rðg��g�� � g��g��Þ;

which is constructed to be invariant under this transforma-

tion. Here R�
���, R

�
� and R stand for the Riemann, Ricci

tensors and the scalar curvature.
The hydro representation of the energy-momentum ten-

sor

hT��ihcl ¼ ð�þ PÞu�u� þ Pg�� þ�h��i: (2.18)

Here for any tensor ��� we define its traceless and sym-
metric component (following the notations of Ref [29])

�h��i ¼ 1

2
�����	ð��	 þ�	�Þ � 1

3
�����	��	

(2.19)

with the projector

��� ¼ g�� þ u�u� (2.20)

which is commonly introduced to ensure transversity of the
tensor of dissipations �:

u��
�� ¼ 0: (2.21)

This transversity is equivalent to the condition of no dis-
sipation in the fluid‘s rest frame. The tracelessness of T��

implies that�h��i is also traceless.3 The metric g is the full
metric, namely, the Minkowski metric perturbed by h.
The energy-momentum conservation leads to equations

of motion for the fluid:

r�hT��i ¼ 0: (2.22)

Here r� stands for covariant derivative with respect to the

metric g.
The tensor ��� is considered to have all order gradient

expansion. Within the linearized approximation discussed
above, and constrained by the Lorentz and Weyl symme-
tries, there are four independent structures (operators) one
can write down4

��� ¼ �2�r�u� þ 2�u�u	C
���	

þ 
ðu�r	 þ u	r�ÞC���	 þ �r�r	C
���	:

(2.23)

By representing ��� in the form (2.23) we essentially
postulate a constitutive relation between hTiji and vi.
This structure implies that the fluid can be perturbed either
by inducing some velocity perturbation or by shaking the
metric. These perturbations are not fully independent
and can be related by the equations of motion: the gravity
perturbations create perturbations of velocity (see
Appendix B).

3We ignore the Weyl anomaly since it is nonlinear in the
metric perturbations

4To our understanding, there are no more structures one could
possibly add to the expansion (2.23). The only tensors with more
than four Lorentz indices and linear in h are the ones obtained by
applying covariant derivatives to the Weyl tensor.
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Each of the four transport coefficient functions �, �, 

and � are considered to be functions of the Lorentz scalar
operators r2 and ðurÞ

� ¼ �½r2; ðurÞ�; � ¼ �½r2; ðurÞ�;

 ¼ 
½r2; ðurÞ�; � ¼ �½r2; ðurÞ�; (2.24)

In momentum space representation (adequate for our
framework of linear approximation) these functions will
depend on i! and k2: r2 ! !2 � k2 and ðurÞ ! �i!.

The first term generalizes the usual shear viscosity co-
efficient �0 defined at zero frequency and momentum. It
also contains the relaxation time term of second order
hydrodynamics. The other terms (GSFs) are due to metric
perturbations, absent in Minkowski space. However, as
was pointed out in Ref. [29], these terms contribute directly
to two-point functions of stress tensors, as computed from
the bulk gravity side. Also the ‘‘�’’ term has been first
introduced in Ref. [29].5

From the Minkowski perspective, the physical role of �,

 and � is not obvious. It is well-known that the correlators
of T�� contain not only ‘‘thermal’’ physics but in addition
get contaminated by the vacuum or zero temperature con-
tributions due to pair production (this is because the under-
lying microscopic theory is a quantum field theory).
However, a naive subtraction of T ¼ 0 contributions leads
to sign alternating results for imaginary parts of the corre-
lators [38,40,41] which cannot be identified with true
thermal spectral functions. This suggests a presence of
interference terms between ‘‘vacuum’’ and thermal
amplitudes.

It is tempting to identify the viscosity term with pure
hydrodynamic (thermal) physics associated with the matter
flow, and the GSFs with the nonhydrodynamic or non-
matter effects and the interference thereof. This conjecture
is nicely supported by the � term, which at first glance does
not depend on the fluid‘s velocity and temperature at all.6

Consequently, when looking at the correlators, we will find
that in all three channels the contributions due to the � term
could be naturally identified with the vacuum (T ¼ 0)
effects. The spectral functions computed from the viscosity
terms only are positive definite, as they should.

We would like to comment on the Weyl invariance and
nonlinear completions. When introducing the all order
(linearized) hydrodynamics (2.23) we presented the tensor
��� as transforming homogeneously under the Weyl
transformation (2.16). It is obvious, however, that ���,
as it appears in (2.23), does not have this property. This is
because, while the tensor C���	 is Weyl invariant, its
derivatives are not. Furthermore, higher order derivatives
put as arguments of the transport coefficient functions also
destroy the desired transformation properties. The correct

statement is that the Weyl invariance is recovered up to
nonlinear terms, which by themselves are of no interest to
us in this paper.7

It is then a legitimate and interesting question to ask if
for any higher order derivative term there exists a nonlinear
completion needed to restore the right transformation prop-
erty under the Weyl transformation. Can it happen that
some of the higher order derivatives both in the viscosity
term and the GSF terms cannot be completed to meet the
requirement of the Weyl invariance and should be forbid-
den (similarly to the fate of the bulk viscosity term)? The
answer is negative and there is no additional selection
principle based on the Weyl symmetry. For any number
of derivatives there exist a nonlinear completion with the
formal construction given in Ref. [43]. It is based on the
fact that, instead of the covariant derivative r�, one can
introduce an even longer derivative D� involving the Weyl
connection constructed from the field u itself. Any number
of these derivatives acting on C�

�
�
	 leaves a Weyl-

invariant result. This procedure generates nonlinear terms,
which are of no interest to us in this paper. For our purposes
it is sufficient to know about their existence. Note, how-
ever, that the procedure of Ref. [43] can be used to recon-
struct these nonlinear terms from the higher order linear
terms discussed below. That would certainly provide more
insight on hydrodynamics at order three and higher.
If we were not to impose the Weyl invariance, we would

introduce another shear viscosity term in the expansion
(2.23),

�2r�r�r�u�:

This term would normally contribute to the sound channel
starting from third order hydrodynamics. We would like to
argue that this term is in fact forbidden byWeyl invariance.
As was explained above, in order to comply with Weyl
invariance the correct prescription is to use long derivatives
D� instead of r�. However, the long derivativeD� has the
property D�u� ¼ 0, which eliminates the �2 term.
The hydro ansatz (2.23) can be probed by small gravity

perturbations. Using linear response theory we can then
compute the retarded correlators in the three symmetry
channels (the computation is presented in Appendix B).
(i) The scalar:

GTðk; wÞ ¼ �i!�� �
1

2
ðw2 þ k2Þ

� 

i!

2
ðw2 � k2Þ þ �

1

4
ð!2 � k2Þ2

(2.25)

5In [29] � was introduced as constant.
6Up to nonlinear terms it actually coincides with the stress-

energy tensor of the conformal gravity [42].

7For the � term with constant � there exists a well-known
nonlinear completion (see e.g. [42]): under the Weyl transfor-
mation the tensor r�r	C

���	 � 1=2C���	R�	 transforms
homogeneously.
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(ii) The shear:

GDðk; wÞ ¼ ð�þ PÞ ��k
2 � i ��!k2=2� �
k2ðk2 � 2!2Þ=4þ i ��!k2ð!2 � k2Þ=4

�i!þ ��k2
(2.26)

(iii) The sound:

GSðk; wÞ ¼ ð�þ PÞ k
2 � 4i ��!k2 � 2 ��!2k2 � 2i �
!3k2 þ ��!4k2

k2 � 3!2 � 4i ��!k2
(2.27)

with

�� � �=ð�þ PÞ; �� � �=ð�þ PÞ;
�
 � 
=ð�þ PÞ; �� � �=ð�þ PÞ: (2.28)

Note that when k ¼ 0 the SO(3) symmetry of the
space is restored. Modulo trivial rescaling we do
indeed observe that the three correlators GT , GD,
and GS all coincide:

GTjk!0 ¼ �!2

k2
GDjk!0

¼ �3=4
!2

k2
GSjk!0 � ð�þ PÞ=4:

At large frequencies w � 1, the temperature effects
should be negligible and the correlators G are expected
to coincide with the correlators computed in the vacuum:

GTð!; kÞT¼0 ¼ ð�þ PÞð!2 � k2Þ2 lnðk2 �!2Þ;
GDð!; kÞT¼0 ¼ �ð�þ PÞk2ð!2 � k2Þ lnðk2 �!2Þ;
GSð!; kÞT¼0 ¼ �ð�þ PÞð4=3Þk2ð!2 � k2Þ lnðk2 �!2Þ:

(2.29)

The asymptotics (2.29) is indeed observed in the correla-
tors computed from the bulk gravity (see the previous
section). What is interesting to note is that the behavior
(2.29) is naturally identified with the � terms in the corre-
lators, suggesting �� lnðk2 �!2Þ at asymptotically large
!. It is then tempting to identify the � terms as responsible
for the contribution to the correlators of the nonhydro pair
creation effects, while the � and 
 terms could be regarded
as interference contributions between the ‘‘vacuum’’ and
‘‘hydro’’ physics. Within such interpretation it is natural to
identify � as purely hydrodynamical effects associated
with the matter flow. Thus if one is interested in pure
thermal/hydrodynamic correlators, one first has to deter-
mine � as functions of momenta and then compute the
correlators with the GSFs set to zero.

Despite this nice interpretation of � as the pure vacuum
term, all GSF terms in fact fully mix when considered as
functions of momenta. If we consider (! ! 0, k ! 1)
asymptotics, all correlators tend to behave proportional to

k4 lnk2. From this behavior we can learn about the asymp-
totic behavior of the GSFs themselves

�� k2 lnk2; 
�
ffiffiffiffiffi
k2

p
lnk2; �� lnk2: (2.30)

III. WHEN THE BULK MEETS THE BOUNDARY:
RESULTS

There should be one to one correspondence between
linearized T�� and the full set of its correlators. Our
program is to equate the expressions (2.25), (2.26), and
(2.27) for the correlators to the correlators computed from
the bulk gravity. The goal is to invert these equations in
order to determine the four transport coefficient functions.
We have got an apparent problem as we end up having only
three equations for four unknown functions. This system
does not seem to have a unique solution. Despite our fail-
ure to simultaneously determine all transport coefficient
functions, we are able to extract them perturbatively in the
long-wave limit approximation.
In the near long-wave limit all of the coefficient func-

tions are expandable in power series8

� ¼ �0ð1þ i�0;1!þ �2;0k
2 þ �0;2w

2 þ i�2;1!k2

þ i�0;3!
3 þ �4;0k

4 þ �2;2!
2k2 þ �0;4!

4 þ 	 	 	Þ;
� ¼ �0ð1þ i�0;1!þ �2;0k

2 þ �0;2w
2 þ i�2;1!k2

þ i�0;3!
3 þ 	 	 	Þ;


 ¼ 
0ð1þ i
0;1!þ 
2;0k
2 þ 
0;2w

2 þ 	 	 	Þ
� ¼ �0ð1þ i�0;1!þ 	 	 	Þ (3.1)

Here we explicitly list all terms up to fifth order. The third
order coefficients are determined (practically all) analyti-
cally. The other coefficients are extracted numerically. We
achieved a good accuracy with the forth order coefficients
while the rest have large errors.

8We believe this expansion has a finite radius of convergence,
The radius of convergence is given by the first singularity, which
coincides with the first quasinormal mode of the scalar channel.
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�0 ¼ ð�þ PÞ=2; � � �0;1 ¼ 2� ln2;

�2;0 ¼ �1=2; �0 ¼ 2�0;

�0;1 ¼ 5=2� 2 ln2; 
0 ¼ 4�0:

(3.2)

The viscosity �0 is of course just (1.1). The coefficient �0;1

is the relaxation time, which within the AdS/CFTapproach
was first addressed in Ref. [44]. It was correctly deter-
mined in Refs. [29,30] and later in [45]. In [29] it was
found by looking at the first correction to speed of sound.
�0;1 can be consistently deduced from any of the three

correlators. �0 was found also in [29] by matching the k2

term in GT . Independently and consistently, it can be also
found from the shear and sound channels (the !k2 term in
the numerator ofGD and the w2k2 term in the numerator of
the function GS).

The coefficient �2;0 appears at third order hydro, which

was left beyond the scopes of [29]. However, this coeffi-
cient could be easily read off from the analysis of Ref. [29],
in particular, from the k4 correction to the diffusive pole in
the shear channel. The result is consistent with the k4 term
in the numerator ofGD. The coefficient 
0 is deduced from
the! ¼ 0 limit of the functionGD. Finally we analytically
extracted the coefficient �0;1. This comes from matching

the coefficients of the !k2 in the scalar channel.
The remaining coefficients were found numerically. Let

consider the coefficient �0;2 as an example of our numeri-

cal procedure. We were able to get a very accurate fit of the
coefficient in front of the !3 term in the expansion of the
correlator GT . This coefficient is then trivially related to
�0;2 and �0, �0;1, 
0, the latter being all previously deter-

mined. The result is

�0;2 ’ �1:379
 0:001 ’ � 3

2
þ ln22

4
(3.3)

where the last expression is our guess for the analytic
expression. The error in Eq. (3.3), as well as other errors
quoted below, reflect our confidence in the results
provided.
Despite the fact that we were not able to find a method to

extract four unknown coefficient functions from three
equations, there seems to be a recurrent procedure, which
make this task possible, at least perturbatively near the
long-wave limit. The coefficient �2;0 can be obtained

from the ! ¼ 0 limit of the sound correlator GS. Once
this one is known, the ! ¼ 0 limit of GT reveals the
coefficient �0, etc.
Below we present our numerical results. 4th order hydro

�2;1 ¼ �2:275
 0:005; �0;3 ¼ �0:082
 0:003

(3.4)

5th order hydro

�4;0 ¼ 0:565
 0:005; �0;4 ¼ 2:9
 0:1;

�2;2 ¼ 1:1
 0:2;
(3.5)

The GSF’s coefficients

�2;0 ¼ �1:6
 0:05; �0;2 ¼ 0:04
 0:01;

�0;3 ¼ �1:95
 0:05; �2;1 ¼ �1:6
 0:2;


0;1 ¼ 0:92
 0:01; 
0;2 ¼ �0:68
 0:04;


2;0 ¼ �0:755
 0:005; �0 ¼ �2:6
 0:1;

�0;1 ¼ �1:1
 0:2:

(3.6)
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FIG. 3 (color online). Viscosity function (divided by �0): top AdS/CFT; bottom IS.
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To summarize our knowledge of viscosity function �,
we plot it and compare to the IS one (Fig. 3). The NS value
is, of course, � ¼ �0. For !, k � 0:4 we can expect up to
15% correction due to momenta-dependence of the viscos-
ity function.

On quasinormal modes and analytic structure of the
viscosity function

The quasinormal modes are poles of the retarded corre-
lators. They have been analyzed in all three channels in
[39]. We would like to argue that entire information about
quasinormal modes is coded in the viscosity function �,
while the GSF do not have any poles. If this were not true,
we would observe appearance of identical quasinormal
modes in all three channels, which is not the case at least
for a number of low lying modes.

�ðk2; wÞ ¼ X1
n¼0

�nðk2; wÞ
!�!nðk2Þ

: (3.7)

We further argue that !n coincide with the quasinormal

modes of the scalar channel (poles ofGT), which have been
analyzed in the past (see the table below). At k2 ¼ 0 they
can be computed quasiclassically for large n (in fact qua-
siclassics works well down to n ¼ 2) [46]

!nðk2 ¼ 0Þ ’ !0 þ nð
1� iÞ: (3.8)

No analytical expression for nonzero k is known.
The quasinormal modes of the shear and sound channels

are obtained from the following dispersion relations.

�i!þ �ðk2; !Þk2 ¼ 0;

�3!2 þ k2 � 4i�ðk2; !Þ!k2 ¼ 0
(3.9)

As well-known, these dispersion relations admit hydro-
dynamic modes as lowest modes in the spectrum. Higher
modes will appear as distorted spectrum !n. Furthermore,
the higher the mode the less distortion should be present. In
other words, the spectra of all three channels will
become degenerate for high modes. This tendency is
clearly observed in the following table copied from
Ref. [39] (k2 ¼ 1)

Scalar channel Shear channel Sound channel

n <e!n =m!n <e!n =m!n <e!n =m!n

1 
1:954331 �1:267327 
1:759116 �1:291594 
1:733511 �1:343008
2 
2:880263 �2:297957 
2:733081 �2:330405 
2:705540 �2:357062
3 
3:836632 �3:314907 
3:715933 �3:345343 
3:689392 �3:363863
4 
4:807392 �4:325871 
4:703643 �4:353487 
4:678736 �4:367981
5 
5:786182 �5:333622 
5:694472 �5:358205 
5:671091 �5:370784

Finally we would like to note that from the behavior of
the sound dispersion curve [39] one can deduce the follow-
ing asymptotic behavior of the viscosity function

�ðk2 �!2 ! 1Þ ! i

2!
; (3.10)

which supports our understanding that it is a falling func-
tion at large momenta.

IV. MODEL FOR IMPROVED CAUSAL
HYDRODYNAMICS

Though in this paper we do not pursuit any practical
applications, we would like to propose an improved and
causal hydrodynamics for future use by hydro
practitioners.

While we were not able to achieve our prime goal, of
deducing the viscosity function in full range of frequency
and momentum, we were able to get several new coeffi-
cients for the small momenta expansion. Below we present
a resummation scheme similar to IS, which is an ansatz
aimed at providing a good model for the entire viscosity
function. The model is constructed with the requirement of
causality built in.

Causality implies that the imaginary part of the poles is
always negative and the function vanishes at infinite fre-
quencies. This is equivalent to the validity of the dispersion
relation:

�ðk2; !Þ ¼
Z d!0

2�i

<e�ðk2; !0Þ
!0 �!

: (4.1)

In addition, in order to relate the viscosity function to the
thermal spectral functions, we require that both real and
imaginary parts of it remain positive for all values of
momentum and frequency.
Similarly to the IS model, we take a Pade-like resum-

mation ansatz which reproduces all low momentum coef-
ficients in the expansion.

�model1 ¼ �0

X3
i¼1

di
ai þ bik

2 � iw
: (4.2)

This ansatz has three pure imaginary poles and it reprodu-
ces exactly eight first coefficients in the expansion (3.1).
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d1 ¼ 0:736; a1 ¼ 0:72731; b1 ¼ 0:3263

d2 ¼ 2:1; a2 ¼ 0:10618; b2 ¼ 0:3042;

d3 ¼ �2:1016; a3 ¼ 0:10620; b3 ¼ 0:3038:

The resummed viscosity function is plotted in Fig. 4. This
model could be further improved by accounting for the
asymptotic behavior (3.10) as well as for information about
quasinormal modes of the scalar channel. The second and
third poles practically cancel each other. Despite the fact
that it does not accurately reproduce the expansion, it turns
out to be a very good approximation to retain only one
pole, similarly to IS but with three-momentum depen-
dence.

�model2 ¼
�0

1� �2;0k
2 � iw�0;1

: (4.3)

Within about 10% accuracy (and in some regions with
much better one) the second model is equivalent to the
first one. Since the entire effect of momenta-dependence is
not expected to be very large, the second model should be
more than sufficient for any phenomenological applica-
tions. We note that the group velocity for the sound
mode computed within this model is always smaller than
one, confirming causality of the model. The viscosity
function can be Fourier transformed into the memory
function

Dðx; tÞ ¼
Z

d!d3ke�i!tþikx�ðk2; !Þ; (4.4)

which leads to the following expression for the dissipation
tensor �:

��� ¼ �2
Z t

0
dt0

Z
d3x0Dðx� x0; t� t0Þr0�u�ðx0; t0Þ:

(4.5)

Performing the Fourier transform explicitly we obtain

Dmodel2ðx; tÞ ¼
Z

d!d3ke�i!tþikx�model2ðk2; !Þ

¼ 1

2
ffiffiffi
2

p �0

�0;1

���0;1

�2;0t

�
3=2

e�t=�0;1ex
2�0;1=ð�2;0tÞ:

(4.6)

We remind the reader that �2;0 is negative.

V. SUMMARYAND DISCUSSION

In this paper we initiated a study of all order velocity
gradient expansion of linearized relativistic hydrodynam-
ics near equilibrium. The research was carried out within
theN ¼ 4 SYM theory at large Nc. More specifically, we
parametrized the energy-momentum tensor of the theory in
terms of four momenta-dependent functions. These func-
tions generalize the notion of the usual constant transport
coefficients, such as viscosity, into momenta-dependent
ones. We then attempted to determine all four functions
based on the information on retarded correlators of two
stress tensors. The latter were computed via the AdS/CFT
prescription for computing retarded correlators from bulk
gravity waves.
Out of four transport coefficient functions, which we

introduced in (2.23), � appears as a coefficient of the
operator constructed from velocity gradients and is a gen-
eralization of shear viscosity. The remaining three coeffi-
cients (GSFs) arise as coefficients of four-dimensional
metric perturbations and appear in front of three operators
involving the curvature Weyl tensor.
In this paper we extended the previous knowledge of

hydrodynamic transport coefficients at first and second
order to some higher order coefficients. We were able to
find only those, which contribute to linearized hydrody-
namics. We gave analytic values for two coefficients of the
third order hydro. We provided very accurate numerical
estimates for two coefficients of the forth order and one of
the fifth. In addition, we introduced and determined several
new coefficients associated with the GSFs.
To illustrate the effect of the higher order terms in the

viscosity function, we compute the sound dispersion curve
by solving (perturbatively) Eq. (3.9) to the order k6:
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FIG. 4 (color online). Viscosity function (divided by �0): the model.
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!AdS ¼ 
 kffiffiffi
3

p
�
1þ

�
1

2
� ln½2�

3

�
k2 � 0:088k4

�

� i
k2

3

�
1� k2

12
ð4� 8 ln2þ ln22Þ � 0:15k4

�
(5.1)

As we have already emphasized in Ref. [31], the sound
width gets negative corrections from higher order terms.
This is in sharp contrast to the IS model, which leads to a
qualitatively opposite effect, with the correction being
positive

!IS ¼ 
 kffiffiffi
3

p
�
1þ

�
1

2
� ln½2�

3

�
k2
�

� i
k2

3

�
1þ k2

3
ln2ð2� ln2Þ

�
: (5.2)

Based on the new information about higher order terms in
the expansion of the viscosity function, we have proposed
an improved causal IS-like (single pole) hydrodynamics,
which we hope can be used by hydro practitioners.
Compared to IS, this model emphasizes the importance
of the space-momentum dependence of the viscosity func-
tion. It leads to qualitatively different predictions, as seen
from the width of the sound pole. On the basis of this
example, we cautiously suggest that the results based on
the IS theory might be in fact less reliable than it was
previously thought. We also propose to exploit our im-
proved model for nonlinear phenomena (such as Bjorken
expansion and elliptic flow) even though such applications
have no theoretical justification.

Admittedly, the problem we had set up was not yet fully
solved by the present paper. Using a perturbative proce-
dure, we found several new higher order (constant) trans-
port coefficients, either analytically or numerically.
Nevertheless, a generic problem remains to be solved:
the correlators we used as our input seemed not to be
sufficient to determine the four transport coefficient func-
tions parametrizing all relevant kinematic structures.
While it is possible to follow the iterative approach used
by us to determine more coefficients in the expansion of
the transport functions, we have no proof that this proce-
dure will actually work at all higher orders with unique
results. It is not excluded that some additional inputs (apart
of the correlators) are required in order to solve the prob-
lem in full.

As an alternative approach to the problem, one may
switch from solving the bulk equations for gravity
waves—the basis for computing the correlators—to a
membrane paradigm-type approach based on vibrations
and translations of the horizon, as it is done in Ref. [30]
and the following papers [34,47]. This approach provides a
quite general procedure to derive the next order derivative
terms for boundary hydrodynamics. In this approach, the

boundary energy-momentum tensor with appropriate gra-
dient corrections is obtained through the usual holographic
renormalization procedure, with the bulk solution reflect-
ing perturbation of the near-horizon ‘‘membrane’’. If the
boundary metric is not taken as flat Minkowski (as it was
done in [30]), but rather as a slightly perturbed one, the
method of [30] would reveal the GSFs alongside the vis-
cosity function. Furthermore, the approach of [30] has a
potential to determine not only linear but also nonlinear
terms, the latter being beyond the scope of our present
paper. Here we obviously mean third and higher order
hydrodynamics. We have not pursued this direction, but
believe it is worth studying it as it is important to learn
about the gradient structure as a way to understand the
nonequilibrium effects in plasma.
An important general problem is a separation between

the hydrodynamic (thermal) physics associated with the
matter flow and the vacuum (zero temperature) effects
associated with the pair production, as both contribute to
the retarded correlators. We hope that we proposed the
right approach to it, by identifying the different roles
played by the viscosity function and the GSFs. While the
former is purely ‘‘hydrodynamical’’, the latter includes
nonthermal physics and interference. This separation of
roles is very plausible, supported by the results at hand, but
it was not proven by us in general. We have argued in the
text that the pole structure of the correlators is entirely
included in the viscosity function, while the GSFs have no
poles. The overall role of the GSFs is somewhat unclear.
On the one hand, they are formally introduced in (2.23) as a
response of the fluid to external gravitational shakings. On
the other hand, from the analysis of the correlators we
identify the GSFs as being responsible for flat space non-
hydrodynamic (nonthermal) effects associated with pair
production of the underlying microscopic field theory.
The metric perturbations in effect mimic nonhydro
physics.
Are the GSFs relevant for RHIC experiment?We believe

the answer is ‘‘no’’. We had to deal with them only because
the correlators used for our analysis contain both thermal
physics and vacuum effects (such as pair creation). One, of
course, could propose another type of experiment, in which
plasma would be exposed to a real gravitational wave. In
this type of experiment, the GSFs would determine the
physical response of the fluid.
The so-called contact (or Schwinger) terms are QFT

phenomena originating in UV. One could suspect that the
GSFs originate from those. However, if this were the case,
the only effect they would produce is to shift the correlators
by finite order polynomials in momenta. This is not the
case, however. From the explicit expressions for the corre-
lators (2.26) and (2.27) one can see that the numerator
terms involving the GSFs cannot cancel the corresponding
poles. Thus they include more physics than just the contact
terms part of which is not coming from the UV.
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Last but not least, it remains to be seen how relevant the
effects of momenta-dependent viscosity are for realistic
applications of relativistic hydrodynamics to heavy ion
collisions. Our previous paper [31] argues that they might
be quite substantial at the early times of the collision. As
we explained in the Introduction, recently the phenome-
nology shifted to the ‘‘fate of small initial state fluctua-
tions’’, related with the conical structure and ‘‘ridges’’.
Although we have not applied our results, it is clear that
such flows would be sensitive to higher gradients, as the
size of those fluctuations is an order of magnitude smaller
than the nuclear size associated with radial and elliptic
flows studied before. In agreement with our proposal [31],
the viscosity function (its real part) is a decreasing function
both of frequency and momenta. This behavior might be
the reason behind the low viscosity observed at RHIC. It
may also explain the exceptionally good survival of various
hydrodynamic flows, particularly the sound waves.

ACKNOWLEDGMENTS

We would like to express our gratitude for numerous
discussion of the subject to our Stony Brook colleagues
Alexander Abanov, Andrej Parnachev, Claudia Ratti,
Shlomo Razamat, Derek Teaney, Izmail Zahed and Peter
van Nieuwenhuizen. We also wish to thank Chris Herzog,
Alex Buchel, Maxim Khodas, Alex Kovner, Pavel Kovtun,
Philip Mannheim, Alfred Mueller, Paul Romatschke, Dam
Son, Andrej Starinets, Misha Stephanov, Larry Yaffe, and
Amos Yarom for very illuminating discussions related to
the present work. We thank the [Department of Energy’s]
Institute for Nuclear Theory at the University of
Washington for its hospitality and the Department of
Energy for partial support during the completion of this
work. We thank the KITP at Santa Barbara and the GGI at
Florence for the hospitality during the completion of this
work. This research was supported in part by the National
Science Foundation under Grant No. PHY05-51164. This
work is partially supported by the DOE grants DE-FG02-
88ER40388 and DE-FG03-97ER4014.

APPENDIX A: ANALYTIC EXPANSIONS OF
CORRELATORS

In this Appendix we present analytic expansions of
retarded correlators at small frequency and momentum,

as computed from the bulk gravity. The expansions are
obtained following Appendix of Ref. [29] where a pertur-
bative approach to solving Eq. (2.2) is set. We reproduce
and extend their results to include some of higher order
terms.

1. Scalar channel

A ¼ 1þ i
ln2

2
!þ ln2

�
3 ln2

8
� 1

�
!2 þ ln2k2 � ln22

2
k4

� i
ln22

2
!k2 þ

�
5

4
� ln32

6

�
k6 . . .

B ¼ 1

2
k2 þ i

1

2
!þ

�
3

4
� ln2

2

�
k4 �

�
1

2
� ln2

4

�
!2

� i
ln2

4
!k2 þ ln2

4
ð3� ln2Þk6 . . .

(A1)

For the retarded correlator GT we obtain

1

ð�þ PÞG
T ¼ �B

A

¼ � 1

2
k2 � i

1

2
!� 1

2
ðln2� 1Þ!2

� 1

4
ð3� 4 ln2Þk4 þ i ln2!k2 � ln22k6 . . .

(A2)

2. Shear channel

A ¼ !þ i
1

2
k2 þ i

1

4
k4 þ ln2

4
wk2 þ i

ln2

2
!2 . . . ;

B ¼ i

2
ðk2 �!2Þ

�
1þ i

2� ln2

2
!� 1

2
k2 . . .

�

(A3)

The correlator reads

1

ð�þ PÞG
D ¼ � k2

!2 � k2
B

A
¼ ik2=2½1þ ið2� ln2Þ!� k2=2 . . .� þ!k2=2þ 	 	 	

!þ ik2=2½1þ ið2� ln2Þ!� k2=2þ 	 	 	� : (A4)
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3. Sound channel

A ¼ 8

�
9!2 � 3k2 þ i6!k2 þ ðln2� 4Þk4 þ 9 ln2

�
ln2

2
� 1

�
!4 þ 3 ln2

�
2� ln2

2

�
!2k2

�

B ¼ 3½18!2 � 30k2 þ i12!k2 þ 2ð5 ln2� 12Þk4 þ 3 ln2ð12� 5 ln2Þ!2k2 þ 9 ln2ðln2� 2Þ!4 . . .�
(A5)

The analytically controlled part of the sound correlator

1

ð�þ PÞG
S ¼

�
4

3

k4

ð!2 � k2Þ2
B

A
þ 1

12

29k4 � 30k2!2 þ 9!4

ðk2 �!2Þ2 � 3

4

�
!2

k2
þ 1

¼ �k2 þ i2½1� i!ðln2� 2Þ þ 	 	 	�!k2 þ 2!2k2 . . .

3!2 � k2 þ i2!k2½1� i!ðln2� 2Þ þ 	 	 	� : (A6)

Here we used Eq. (2.10).

APPENDIX B: CORRELATORS FROM
GENERALIZED HYDRODYNAMICS

In this Appendix we compute the retarded correlators
from the hydrodynamic ansatz (2.23) using 4d metric
perturbations. The nonperturbed space has the
Minkowski metric g�� ¼ diagf�1; 1; 1; 1g.

1. Scalar channel

The perturbation is h � hxyðz; tÞ. The fluid remains at

rest. We first compute Christoffels coefficients and
Riemann tensor

�t
xy ¼ �x

ty ¼ �y
tx ¼ 1

3
_h;

�x
zy ¼ �y

zx ¼ ��z
xy ¼ 1

2
h0

Rt
xty ¼ Rx

tty ¼ Ry
ttx ¼ 1

2
€h;

Rx
zzy ¼ Ry

zzx ¼ �Rz
xzy ¼ 1

2
h00;

Rt
xzy ¼ Rx

tzy ¼ Ry
tzx ¼ �Rz

xzy ¼ Rx
zty ¼ Ry

ztx ¼ 1

2
_h0

(B1)

The only nonzero component of the Ricci tensor is Rxy

while the scalar curvature is zero

Rxy ¼ 1

2
ð €h� h00Þ R ¼ 0: (B2)

The relevant nonzero components of the Weyl tensor are

Ctxty ¼ �Ctxyt ¼ Cxtyt ¼ Cytxt ¼ Cxzyz ¼ Cyzxz

¼ � 1

4
ð €hþ h00Þ

Cxzyt ¼ Cyzxt ¼ Cxtyz ¼ Cytxz ¼ � 1

2
_h0:

(B3)

The xy component of the stress tensor reads

hTxyi ¼ �Ph� � _h� 1

2
�½ €hþ h00� þ 


1

2
½h:::� _h00�

� �
1

4
½h::::� 2 €h00 þ h0000�: (B4)

In momentum space this becomes

hTxyi ¼ �
�
P� i!�� �

1

2
ðw2 þ k2Þ � 


i!

2
ðw2 � k2Þ

þ �
1

4
ð!2 � k2Þ2

�
hðk; wÞ: (B5)

From Eq. (B5) one can read off the correlator GT ¼ Gxyxy

~Gxyxyðk; wÞ ¼ P� i!�� �
1

2
ðw2 þ k2Þ � 


i!

2
ðw2 � k2Þ

þ �
1

4
ð!2 � k2Þ2: (B6)

The retarded correlator Gxyxy ¼ ~Gxyxy � P. The transverse
static susceptibility �T is momenta dependent and is given
by the functions � and �:

�TðkÞ ¼ ��ðk; 0Þk2=2þ �ðk; 0Þk4=4: (B7)

2. Shear channel

The perturbation h � htxðz; tÞ. The fluid’s four velocities
is u� ¼ ð1; v; 0; 0Þ and u� ¼ ð�1; vþ h; 0; 0Þ The

Christoffels coefficients and the Riemann tensor are

�x
tz ¼ ��t

xz ¼ ��z
xt ¼ 1

2
h0; �x

tt ¼ _h

Rt
txtz ¼ �Rt

xzt ¼ Rx
ttz ¼ �Rx

tzt ¼ �Rz
txt ¼ � 1

2
_h0

Rz
xzt ¼ �Rz

xtz ¼ Rx
ztz ¼ �Rz

txz ¼ � 1

2
h00: (B8)

The nonzero Ricci components and curvature are

Rxz ¼ � 1

2
_h0; Rxz ¼ � 1

2
h00; R ¼ 0: (B9)
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The relevant nonzero Weyl components read

Cxtzt ¼ Cztxt ¼ 1

4
_h0; Cxzzt ¼ Cztxz ¼ 1

4
h00: (B10)

The components of the stress tensor

hTtti ¼ �; Ttx ¼ ð�þ PÞvþ Ph

hTxzi ¼ ��v0 þ �
1

2
_h0 þ 


1

4
ðh000 � 2 €h0Þ þ �

1

4
ðh:::0 � _h000Þ:

(B11)

Equations of motion relate the metric perturbation h to the
induced three-velocity v:

@thTtxi ¼ ð�þ PÞð _vþ _hÞ;
@zhTzxi ¼ ��v00 þ �

1

2
_h00

þ 

1

4
ðh0000 � 2 €h00 þ �

1

4
ðh:::00h� _h0000Þ

(B12)

which leads to the relation (in momentum space)

v ¼ h
i!� i ��!k2=2� �
k2ðk2 � 2!2Þ=4þ i ��!k2ð!2 � k2Þ=4

�i!þ ��k2
: (B13)

Substituting this relation back into the expression for hTtxi we can read off the correlator GD ¼ Gtxtx

~G txtx ¼ ð�þ PÞ ��k
2 � i ��!k2=2� �
k2ðk2 � 2!2Þ=4þ i ��!k2ð!2 � k2Þ=4

�i!þ ��k2
� � (B14)

Note the appearance of the extra terms proportional to the
GSFs in the numerator, whereas in the normal diffusion
scenario the residue is usually given by the viscosity only.

The retarded correlator Gtxtx ¼ ~Gtxtx þ �. The shear
static susceptibility �D:

�DðkÞ ¼ ð�þ PÞ
�
1� �
ðk; 0Þ

4 ��ðk; 0Þ k
2

�
: (B15)

3. Sound channel

The perturbation which generates sound is h � htzðz; tÞ.
The fluid‘s four velocities is u� ¼ ð1; 0; 0; vÞ and u� ¼
ð�1; 0; 0; vþ hÞ.

Christoffels and Riemann are

�t
zz ¼ �h0; �z

tt ¼ _h;

Rz
tztz ¼ �Rz

ttz ¼ Rt
zzt ¼ �Rt

ztz:
(B16)

Contrary to the cases of tensor and shear perturbations, the
sound perturbation has a nonvanishing scalar curvature.

Rzz ¼ �Rtt ¼ � _h0; R ¼ �2 _h0; Cztzt ¼ 1

3
_h0:

(B17)

The relevant components of the stress tensor

hTtti ¼ �; hTtzi ¼ ð�þ PÞvþ Ph;

hTzzi ¼ P� �
4

3
v0 þ �

2

3
_h0 � 


2

3
€h0 þ �

1

3
h
:::0:

(B18)

Equations of motion can be solved for v relating it to the
perturbation h

v ¼ h
3!2 � 2 ��!2k2 � 2i �
!3k2 þ ��!4k2

k2 � 3!2 � 4i ��!k2
: (B19)

Substituting v back into the expression for Ttz we can read
off the correlator GS ¼ Gtztz

~Gtztz ¼ ð�þ PÞ

� k2 � 4i ��!k2 � 2 ��!2k2 � 2i �
!3k2 þ ��!4k2

k2 � 3!2 � 4i ��!k2

� �: (B20)

The retarded correlator Gtztz ¼ ~Gtztz þ �.
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