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Localization and mass spectra of fermions on symmetric and asymmetric thick branes
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A three-parameter (positive odd integer s, thickness factor A, and asymmetry factor a) family of
asymmetric thick brane solutions in five dimensions were constructed from a two-parameter (s and A)
family of symmetric ones in by R. Guerrero, R. O. Rodriguez, and R. Torrealba in [Phys. Rev. D 72,
124012 (2005).]. The values s = 1 and s = 3 correspond to single branes and double branes, respectively.
These branes have very rich inner structure. In this paper, by presenting the mass-independent potentials
of Kaluza-Klein (KK) modes in the corresponding Schrodinger equations, we investigate the localization
and mass spectra of fermions on the symmetric and asymmetric thick branes in an anti-de Sitter
background. In order to analyze the effect of gravity-fermion interaction (i.e., the effect of the inner
structure of the branes) and scalar-fermion interaction to the spectrum of fermion KK modes, we consider
three kinds of typical kink-fermion couplings. The spectra of left chiral fermions for these couplings
consist of a bound zero mode and a series of gapless continuous massive KK modes, some discrete bound
KK modes including zero mode (exist mass gaps), and a series of continuous massive KK modes, infinite

discrete bound KK modes, respectively. The structures of the spectra are investigated in detail.
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L. INTRODUCTION

The suggestion that our observed four-dimensional
world is a brane embedded in a higher-dimensional
space-time [1-5] can provide new insights for solving
gauge hierarchy problem and cosmological constant prob-
lem, etc. In the framework of brane scenarios, gravity is
free to propagate in all dimensions, while all the matter
fields are confined to a 3-brane. By introducing large extra
dimensions, the Arkani-Hamed-Dimopoulos-Dvali brane
model [3] drops the fundamental Planck scale to Tev.
However, it introduces intermediate mass scales corre-
sponding to the large extra dimensions between Planck
and Tev scales. In Ref. [4], an alternative scenario,
Randall-Sundrum (RS) warped brane model, was pro-
posed. In this scenario, the internal manifold does not
need to be compactified to the Planck scale anymore and
the exponential warp factor in the metric can generate a
large hierarchy of scales, which are reasons why this new
brane model has attracted so much attention.

Generalizations and extensions of the RS brane model
have been proposed, for example, in Refs. [6-8]. In
Ref. [7], the model with extra dimensions composed of a
compact hyperbolic manifold is free of usual problems that
plague the original Arkani-Hamed-Dimopoulos-Dvali
model and shares many common features with the RS
model. Recently, the RS model was generalized to higher
dimensions for a multiply space-time with negative cos-
mological constant [8]. In this generalized scenario, the
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observed hierarchy in the masses of standard model fermi-
ons can be explained geometrically without invoking any
further hierarchy among the various moduli provided the
warping is large in one direction and small in the other.

In the RS warped scenario, however, the modulus,
namely, the brane separation, is not stable. Goldberger
and Wise showed that it can be stabilized by introducing
a scalar field in the bulk [9]. A bulk scalar also provides us
with a way of generating the brane as a domain wall (thick
brane) in five dimensions. Considering our four-
dimensional Universe as an infinitely thin domain wall is
an idealization. It is for this reason that an increasing
interest has been focused on the study of thick brane
scenarios based on gravity coupled to scalars in higher-
dimensional space-time [10—19]. A virtue of these models
is that the branes can be obtained naturally rather than
introduced by hand. In most thick brane scenarios, the
scalar field is a standard topological kink interpolating
between the minima of a potential with spontaneously
broken symmetry. For a comprehensive review on thick
brane solutions and related topics please see Ref. [20].

In brane world scenarios, an important problem is the
localization of various bulk fields on a brane by a natural
mechanism. Especially, the localization of spin half-
fermions on thick branes is very interesting. Localizing
fermions on branes or defects requires us to introduce other
interactions besides gravity. Recently, localization mecha-
nisms on a domain wall for fermions have been extensively
analyzed in Ref. [21]. There are some other backgrounds,
for example, gauge field [22,23], supergravity [24], and
vortex background [25-28], could be considered.
Localization of fermions in general space-times has been
studied, for example, in [29]. In five dimensions, with the
scalar-fermion coupling, there may exist a single bound
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state and a continuous gapless spectrum of massive fer-
mion Kaluza-Klein (KK) states [30-34], while for some
other brane models, there exist finite discrete KK states
(mass gaps) and a continuous gapless spectrum starting at a
positive m? [35-37]. In Ref. [38], it was found that fermi-
ons can escape into the bulk by tunnelling, and the rate
depends on the parameters of the scalar potential. In
Ref. [39], the authors obtained trapped discrete massive
fermion states on the brane, which in fact are quasibound
and have a finite probability of escaping into the bulk.

In Ref. [40], localization and mass spectra of various
bulk matter fields including fermions on symmetric and
asymmetric de Sitter thick single branes were investigated.
It was shown that the massless modes of scalars and
vectors are separated by a mass gap from the continuous
modes. The asymmetry may increase the number of the
bound KK modes of scalars but does not change that of
vectors. The localization property of spin 1/2 fermions is
dependent on the coupling of fermions and the background
scalar nWF(¢)W. For the usual Yukawa coupling with
F(¢(z)) = ¢(z) ~ arctan(sinhz) (a usual kink which is al-
most a constant at large z), the fermion zero mode cannot
be localized on the branes. For the scalar-fermion coupling
with F(¢(z)) a kink likes sinhz, which increases quickly
with z, there exist some discrete bound KK modes and a
series of continuous ones, and one of the zero modes of left
and right fermions is localized on the branes strongly. The
asymmetry reduces the number of the bound fermion KK
modes.

Fermions on symmetric and asymmetric double branes
have been reported in Ref. [41]. These double branes are
stable Bogomol’nyi-Prasad-Sommerfeld thick walls with
two subwalls located at their edges. It was shown that, for
the symmetric brane, the zero modes of fermions coupled
to the scalar field through Yukawa interactions and grav-
itons are not peaked at the center of the brane, but instead a
constant between the two sub-branes. However, in the
asymmetric scenario, as a consequence of the asymmetry,
fermions are localized on one of the subwalls, while the
gravitons are localized on another subwall. Hence a large
hierarchy between the Planck and the weak scales can be
produced.

In Ref. [42], a three-parameter family of asymmetric
thick brane solutions in five dimensions (including single
branes and double branes) were constructed from a two-
parameter family of symmetric ones given in Refs. [43—
45]. These branes have very rich inner structure. In this
paper, we will investigate the localization problem and the
mass spectra of fermions on the symmetric and asymmetric
thick branes for three kinds of typical kink-fermion cou-
plings in detail. It will be shown that the localization
properties on asymmetric branes are very different from
those given in Refs. [40,41]. The mass spectra of fermions
are determined by the inner structures of the branes and the
scalar-fermion couplings. The paper is organized as fol-
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lows: In Sec. II, we first give a brief review of the sym-
metric and asymmetric double thick branes in an anti-
de Sitter (AdS) background. Then, in Sec. III, we study
localization of spin half-fermions on the thick branes with
different types of scalar-fermion interactions by presenting
the shapes of the potentials of the corresponding
Schrédinger problem. Finally, a brief discussion and con-
clusion are presented in Sec. IV.

II. REVIEW OF THE SYMMETRIC AND
ASYMMETRIC THICK BRANES

Let us consider thick branes arising from a real scalar
field ¢ with a scalar potential V(¢). The action for such a
system is given by

1 1
5= [¢x/Tg 5k~ 58 oudind ~ V)|
K 2
where R is the scalar curvature and K% = 8mG5 with G5 the
five-dimensional Newton constant. Here we set x5 = 1.
The line element for a five-dimensional space-time is
assumed as

ds* = X (n,,, dxtdx’ + dz?), )

where ¢4 is the warp factor and z stands for the extra
coordinate. The scalar field is considered to be a function
of z only, i.e., ¢ = ¢(z). In the model, the potential could
provide a thick brane realization, and the soliton configu-
ration of the scalar field dynamically generates the domain
wall configuration with warped geometry. The field equa-
tions generated from the action (1) with the ansatz (2)
reduce to the following coupled nonlinear differential
equations:

d)lZ — 3(A/2 _ A”), (3)
V(p) =3(—3A" — A")e ™, 4)
dv(e) _ GA/P' + ¢p")e A, 5)

d¢
where the prime denotes the derivative with respect to z.
Now we consider static double thick branes in an AdS
background. A two-parameter family of symmetric double
thick branes in five dimensions for the potential

V() = 32%sin> /%) (¢ / py)cos*(¢/ by)

X [2s — 1 — 4tan*(¢/ b)), (6)
was presented and discussed in Refs. [43,44]:
1
. — , 7
[+ QT v
¢ = ¢yarctan(Az)?, (8)

where ¢, = 4/3(2s — 1)/s, A is a positive real constant,
and s is a positive odd integer. This solution represents a

family of plane symmetric static single (s = 1) or double
(s > 1) domain wall space-times, being asymptotically
AdSs with a cosmological constant —6A2. Similar solu-
tions can be found in [45].
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The shapes of the kink ¢(z) and the potential V(¢) for a = 0 and 0.2. The parameters are setto A = 1, s = 1

for the red dashed lines, s = 3 for the green thick lines, and s = 7 for the blue thin lines.

Based on the symmetric solution above, and in concord-
ance with the approach presented in [42], a three-parameter
family of asymmetric thick branes in five dimensions was
constructed in Ref. [42]:

1
214 _
0+ A FQ ®
¢ = ¢ arctan(Az)®, (10)
V(g) = —3sin®(¢/o)tan™>*(¢p/ o) K(¢h)
X {16atan!/*(¢ /o) + cos >/*(¢/ )
X [5 =25 — (34 25)cos(2¢/ o) | K(p)}
— 6a%cos?*(p/ by), (11)

where the asymmetric factor a satisfies

FIG. 2 (color online).

T(1/5)A A
0 <4< F0/29T + 1/25) (> 5)’ (12)
and F(z) and K(¢) are defined as
11 1
Fl@=1+ azzFl(Z_s’E’ 1+ 7 —()\z)z“'), (13)

K(p) = A+ atan'/*(¢p/ (), F,

11 1 ¢
X|=—, - 1+—,—t 2(—)) 14
(2s s 2s an b0 (14
The parameter a describes the asymmetry of the solution.
For a— 0 and s =1 the regularized version of the
Randall-Sundrum thin brane will be recovered [11,16].
For a > 0 and s > 1, this is a solution of an asymmetric

static double domain wall space-time interpolating be-
tween different AdSs; vacua. The scalar curvature R and

e?*(a=0.2)

The shapes of the warp factor ¢** and the energy density p for the symmetric (a = 0) and asymmetric (a =

0.2) thick branes. The parameters are setto A = 1, s = 1 for the red dashed lines, s = 3 for the green thick lines, and s = 7 for the blue

thin lines.
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the energy density p for the solution are read
40a(Az)* 20a?
- m F@) — 25\1/s
z(1 + (A2)*) (14 (Az)*)!

_4(A2)(2 — 4s +5(02)F) -,
22(1 + ()\Z)Zs)Z—l/s f (Z)’ (15)

_ 12a(Az)* B 6a’®
p=———""-=T() W

1+ ()
~3(A2)%(1 = 25 +2(A2)%) P (16)

22(1 + (AZ)Zs)zfl/s

The shapes of the kink ¢, the potential V(¢), the warp
factor e?4, and the energy density p are shown in Figs. 1
and 2. It is clear that the single brane is localized at z = 0,
while the two sub-branes are localized at z = *1/A and
the thickness of the double brane is 2/A. When s — oo,
each sub-brane is a thin brane. More detailed discussions
can be found in Ref. [42].

III. LOCALIZATION AND MASS SPECTRA OF
FERMIONS ON THE THICK BRANES

In this section let us investigate the localization problem
of spin 1/2 fermions on the family of symmetric and
asymmetric thick branes given in Sec. II by means of the
gravitational interaction and scalar-fermion couplings. We
will analyze the spectra of fermions on the thick branes by
presenting the potential of the corresponding Schrodinger
equation. It can be seen from the following calculations
that the mass-independent potential can be obtained con-
veniently with the conformally flat metric (2).

In five dimensions, fermions are four component spinors
and their Dirac structure is described by I'Y = ¢MT'™ with
{TM TN} = 2¢MN where M, N, --- =0, 1, 2, 3, 5 denote
the five-dimensional local Lorentz indices, and ' are the
flat gamma matrices in five dimensions. In our setup, ' =
(e"Ay*, e 4v°), where y* and y° are the usual flat gamma
matrices in the Dirac representation. The Dirac action of a
massless spin 1/2 fermion coupled to the scalar is

Si2 = [@xyTEAND Y — EF@W), (7)

where the covariant derivative D, is defined as D,V =
(0y + wy)¥  with the spin connection
o

1 w%’v I'j7I' 5. With the metric (2), the nonvanishing com-

ponents of the spin connection w,, are
@, =5(0:A)7,7s. (18)
Then the five-dimensional Dirac equation is read as

{y#o, + v (0, +29.4) — ne' F(H)}¥ =0, (19)

Wy =

where y#d,, is the Dirac operator on the brane. Note that
the sign of the coupling 7 of the spinor W to the scalar ¢ is
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arbitrary and represents a coupling either to the kink or
antikink domain wall. For definiteness, we shall consider in
what follows only the case of a kink coupling, and thus
assume that n > 0.

Now we study the above five-dimensional Dirac equa-
tion. Because of the Dirac structure of the fifth gamma
matrix >, we expect the left- and right-handed projections
of the four-dimensional part to behave differently. From
the equation of motion (19), we will search for the solu-
tions of the general chiral decomposition

\If(x, Z) = eizAZ(den(x)an(Z) + len(x)fRn(Z)): (20)

where ¢ 1,(x) = =y 1,(x) and ¢ g,(x) = > ¢hg,(x) are
the left-handed and right-handed components of a four-
dimensional Dirac field, respectively, the sum over n can
be both discrete and continuous. Here, we assume that
¥ (x) and ¢ g(x) satisfy the four-dimensional massive
Dirac  equations  y*d,¢,(x) =m,p (x)  and
Y#0 gy (x) = m, iy (x). Then a;(z) and ag(z) satisfy
the following coupled equations:

[az + neAF(¢)]an(Z) = mnfRn(Z)) (213)
[0. = ne*F()]fra(2) = —m,fra(2).  (21b)
From the above coupled equations, we get the

Schrodinger-like equations for the KK modes of the left
and right chiral fermions

(=02 + Vi) fLw = HafLn (22)

(=02 + V@) frn = Hif R (23)

where the effective potentials are given by

Vi(z) = (ne’ F($))* — 0.(ne’ F(¢)),
Vr(2) = V(D=

(24a)
(24b)

In order to obtain the standard four-dimensional action for
the massive chiral fermions

S = [ xRV 0y + on) — nFG)Y
=3 [P 1t = Bt
+ 3 [ @t o, = Pumaie)
= Z fd“xelfn(v“au — m) (25)

we need the following orthonormality conditions for f;
and fp :
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[j; JFim@Dfrn(2)dz = 8y
,[—Z Frm(2) fRa(2)dz = 8,y (26)
f_oow fim(Dfra(2)dz = 0.

Note that the differential equations (22) and (23) can be
factorized as

[—0. + ne* F($)][9. + ne* F(d)1f1n(z) = mif1,(2),
(27)

[_az - 77€AF(¢)][3Z - neAF(¢)]fRz1(Z) = m%fRn(Z)-
(28)

It can be shown that m? is zero or positive since the
resulting Hamiltonian can be factorized as the product of
two operators which are adjoints of each other. Hence the
system is stable against linear classical metric and scalar
fluctuations.

It can be seen that, in order to localize left or right chiral
fermions, there must be some kind of scalar-fermion cou-
pling, and the effective potential V;(z) or Vi(z) should
have a minimum at the location of the brane. Furthermore,
for the kink configuration of the scalar ¢(z) (8), F(¢(z))
should be an odd function of ¢(z) when one demands that
V. r(2) are invariant under Z, reflection symmetry z —
—z. Thus we have F(¢(0)) = 0 and V,(0) = —Vx(0) =
—nd.F(¢(0)), which results in the well-known conclu-
sion: only one of the massless left and right chiral fermions
could be localized on the brane. The spectra are determined
by the behavior of the potentials at infinity. For V; x — O as
|z| — oo, one of the potentials would have a volcanolike
shape and there exists only a bound massless mode fol-
lowed by a continuous gapless spectrum of KK states,
while another could not trap any bound states and the
spectrum is also continuous and gapless. The simplest
Yukawa coupling F(¢) = ¢ and the generalized coupling
F(¢) = ¢* with positive odd integer k(= 3) belong to this
type. For V;  — Vo, = constant as |z| — oo, those modes
with m2 < V,, belong to discrete spectrum and modes with
m2 > V,, contribute to a continuous one. For this case, the
simplest coupling is of the form F(¢) = tan'/5(¢p/ ;). If
the potentials increase as |z| — oo, the spectrum is discrete.
There are a lot of couplings for the case. The concrete
behavior of the potentials is dependent on the function
F(¢). In the following, we will discuss in detail three
typical couplings for the above three cases as examples.

A. Case I: F(¢p) = ¢p*

We mainly consider the simplest case F(¢) =
which the explicit forms of the potentials (24) are

¢, for
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32 (2s — 1) arctan?(A°z*)

VE(Z) S2 [] + (AZ)Z\](I/S)
65 =3 (X2)’[s — (A2)* arctan(A*z*)] (29)
n P Z[l + (AZ)Zs]H—(l/Zs) ’
V@) = Vi@l (30)
and
AL ,(2s = 1) arctan?(A*z%)
Vi(z) {3’7 2 [+ (A)>]0
V6s —3 arctan(ASz%) 1
e ey b e B
\/6s — 3 (A2)*[s — (Az)* arctan(A*z*)]
s Z[1+ (A)>] 029 F(z) (32)

Vi(2) = V)l
for the symmetric and asymmetric brane solutions,
respectively.

All potentials have the asymptotic behavior: Vf:g(z -
+o00) — 0. The values of the potentials for left and right
chiral fermions at z = 0 are given by

VIO = v = { P sl )

for s > 1.

So for a given coupling constant 1 and A, the values of the
potentials for left and right chiral fermions at z = 0 are
opposite for s = 1 and vanish for s > 1. Note that there are
a single brane and a double brane for s = 1 and s > 1,
respectively. The shapes of the potentials are shown in
Fig. 3 for given values of positive i and A. It can be seen
that V;(z) is indeed a modified volcano type potential for
the single brane scenario with s = 1, and it has a well.
While for the double brane case with s > 1, the corre-
sponding potential V;(z) has a double well, and the poten-
tial Vg(z) of right chiral fermions has a single “well,”
which indicates that there may exist resonances (qusilocal-
ized KK modes). The shape of the potentials is relative to
the inner structure of the brane, or equivalently, it depends
partly on the warp factor ¢*. Furthermore, the coupling
type of scalar and fermion also affects the structure of the
potentials. For example, for the case F(¢) = ¢* with
positive odd integer k = 3, we have V}4(0) = 0 for both
s = 1 and s > 1, and the potentials for left and right chiral
fermions have a double well and a single well even for s =
1, respectively (see Fig. 4).

Since V;*(z) — 0 when z — * o0, the potentials for left
chiral fermions provide no mass gap to separate the fer-
mion zero mode from the excited KK modes. Because the
potentials V3*(z) = 0, there is no bound right chiral fer-
mion zero mode. For both left and right chiral fermions,
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FIG. 3 (color online). The shapes of the symmetric potentials V} z(a = 0) and the asymmetric potentials V! z(a = 0.2) for the left
and right chiral fermions for the case F(¢) = ¢. The parameters are setto 7 = A = 1 and s = 1 for the red dashed lines, s = 3 for the

green thick lines, and s = 7 for the blue thin lines.

there exists a continuous gapless spectrum of the KK
modes.

For positive 7, only the potentials for left chiral fermi-
ons have a negative single well and a double well at the
location of the branes for single brane and double brane,
respectively, which could trap the left chiral fermion zero
mode solved from (21a) by setting mq = 0:

ful) = o= [(aze90@) 64

In order to check the normalization condition (26) for the
zero mode (34), we need to check whether the inequality

[ siotarz = [exp(-2n [ azer@0(@)az < o0 35)

is satisfied. For the integral [dze“¢, we only need to
consider the asymptotic characteristic of the function
ne’t¢ for z — oo, For the asymmetric brane scenario, we
have

24/3(2s — 1) arctan(Az)*(1 + (Az)?)~1/2s

s[1+ azyFi(55, 4, 1+ 55, —(A2)™)]

5’

e =
Mo<
where the constant 7, is given by

L1+ 1/25)(1/2s)
A'(1/5)

for 7 — oo, (36)

o= ) (37)

L(l +a
32 — D

For the symmetric brane case we only need to take a = 0.

175
P -
/7 [\ 10 / \\
4 \ / \
L \ st N
\
/7
, 6 N
.
v )
1l
5 4 = > 4 6 °

FIG. 4 (color online). The shapes of the potentials Vf‘ r for the left and right chiral fermions for the case F(¢) = ¢>. The parameters
are set to n = A = 1, s = 1 for the red dashed lines, s = 3 for the green thick lines, and s = 7 for the blue thin lines.
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So, when z — o0, we have
Finte) = exp(—2n [(dzeg(@) =z /w38

which indicates that the normalization condition (35) is

n > 1. (39)

Provided the condition (39), the zero mode of left chiral
fermions can be localized on the brane. In Refs. [39,46], it
was shown that the corresponding zero mode can also be
localized on the brane in the background of Sine-Gordon
kinks provided a similar condition as (39). While the
fermion zero mode cannot be localized on the de Sitter
brane with the same coupling F(¢) = ¢ [40]. Note that for
large s, 1 can be approximated as

(A +

2a)
Vo v

It is clear that in order for the potentials to localize the zero
mode of left chiral fermions for larger s, A or asymmetric
factor a, the stronger coupling of kink and fermions is
required. That is to say, the massless mode of the left chiral
fermion is easiest to be localized on the symmetric single
brane. The asymmetric factor ¢ may destroy the localiza-
tion of massless fermions. This is different from the situ-
ation of the zero modes of scalars and vectors on
symmetric and asymmetric de Sitter branes [40], where
increasing the asymmetric factor a does not change the
number of the bound vector KK modes but would increase
that of the bound scalar KK modes, and the zero modes of

Oz

(40)

Vi5, fro (s =1)

Vi, fro (s =1)
15
\

-

-1.5¢
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scalars and vectors are always localized on the de Sitter
branes.

In Fig. 5, we plot the left chiral fermion potentials
Vf’A(z) and the corresponding zero modes. We see that
the zero modes are bound on the brane. They represents the
lowest energy eigenfunction (ground state) of the
Schrédinger equation (22) since they have no zeros.
Since the ground state has the lowest mass square mg =
0, there is no tachyonic left chiral fermion mode. The zero
mode on both the symmetric and asymmetric double walls
is essentially constant between the two interfaces. This is
very different from the case of gravitons, scalars, and
vectors, where the massless modes on the asymmetric
double wall are strongly localized only on the interface
centered around the lower minimum of the potential. The
massive modes will propagate along the extra dimension
and those with lower energy would experience an attenu-
ation due to the presence of the potential barriers near the
location of the brane.

The potential Vy is always positive near the brane
location and vanishes when far away from the brane.
This shows that it could not trap any bound fermions
with right chirality and there is no zero mode of right chiral
fermions. However, the shape of the potential is strongly
dependent on the parameter s. For s = 3, a potential well
around the brane location would appear and the well
becomes deeper and deeper with the increase of 7. The
appearance of the potential well could be related to reso-
nances, i.e., massive fermions with a finite lifetime [47,48].
In Ref. [47], a similar potential and resonances for left and

Vs, fro (s =T7)
— VA
4 6
Vit fro (s=7)
a2
/)
7y
7 ' k
- = | —
6 4 2 ‘ll Vo2 4 6
I
I+ “
H ‘“
)
:;
(3

FIG. 5 (color online). The shapes of the zero modes f;(z) (blue thick lines) and the potentials V;*(z) (red dashing lines) for the
symmetric and asymmetric thick branes for the case F(¢) = ¢. The parameters are setto n = A = 1, s = 1 and 7, and a = 0 for the

above two figures and a = 0.2 for the under two figures.
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right chiral fermions were found in the background of two-
field generated thick branes with internal structure. We can
investigate the massive modes of fermions by solving
numerically Egs. (22) and (23).

In Ref. [47], the authors suggested that large peaks in the
distribution of f; (0) as a function of m would reveal the
existence of resonant states. In Ref. [48], we extended this
idea and proposed that large relative probabilities for find-
ing massive KK modes within a narrow range —z, < z <
Z, around the brane location, are called P; g, would in-
dicate the existence of resonances. The relative probabil-
ities are defined as follows:

fz_bzh |fLr(2)|?dz
Zmax |fL,R(Z)|2dZ ’

~ Zmax

Py p(m) = (41)

where we choose z;, = 0.1z,,,c. For the set of parameters:
n =4, A=1, and s =7, we find two resonances with
mass square 2.4503 and 8.917 for both left and right chiral
fermions (see Fig. 6). The configurations of Figs. 6(c) and
6(d) could present the n = 1 and n = 2 level KK reso-
nance modes of left chiral fermions. The n = 0 level mode
with left chirality is in fact the only one bound state (the
zero mode). While the configurations of Figs. 6(a) and 6(b)
present the n =0 and n = 1 level resonances of right
chiral fermions. We note that the spectra of massive left-
handed and right-handed fermionic resonances are the
same, which demonstrates that a Dirac fermion could be
composed from the left and right resonance KK modes
[48]. The lifetime 7 for a resonance can be estimated by the
width in mass I' = Am at half maximum of the corre-

Vil fr

\ m?=2.4503
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sponding peak in Fig. 7, which means that the fermion
disappears into the extra dimension with time 7~ I'"!
[49]. The lifetime of the resonances is listed in Table I.

B. Case II: F(¢) = tan'/*(¢p/ )

Next, we consider the case F(¢) = tan'/*(¢/ ), for
which the potentials take the forms of

B 7*(Az2)? nA
N T B T T B
B 7?(Az)? nA
Vg(Z) = [1 i (/\Z)zs](l/s) [1 + ()‘Z)Zs]]+(l/25)’ (43)
and
Al 7?(Az)? anAz !
VL (2) {[1 T (Az)zs](l/s) [1 + (AZ)Zs]G/Zs)}j:'z(Z)
B nA ! (44)
[1 + (AZ)Zs]l+(l/2x) "F(Z)’
V@) = VE@lye (45)

for the symmetric and asymmetric brane solutions,
respectively.

1. The symmetric potential

We first investigate the potential V9(z) (42) for the
symmetric brane. It has a minimum (negative value)
—mA at z = 0 and a maximum (positive value) n? at z =
*o00. The shapes of the potential for various parameters are
plotted in Fig. 8, from which we can see that they are

Vi, fr
20

' \

" \
B \
p \
rlo \
/ 10
FA A

. H [

z

FIG. 6 (color online). The shapes of the fermion resonances (massive modes) f; z(z) (blue thick lines) and the potentials Vf‘ r(2) (red
dashing lines) for the symmetric thick branes for the case F(¢) = ¢. The parameters are set to n =4, A = 1, and s = 7.
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= m

1.562 1.564 1.566 1.568 1.57
(a) n=0,Am = 0.001177

Py
|

0.8
0.6
0.4

0.2

m
3.05 3.1

1.562 1.564 1.566 1.568 1.57
(¢) n=1,Am = 0.001184

m
. 3.05 3.1
(d) n =2, Am = 0.04580

FIG. 7. The probability for finding massive KK modes of the right and left chiral fermions around the brane location, P, and P;, as
functions of m for the symmetric thick branes for the case F(¢) = ¢. The parameters are set to n =4, A = 1, and s = 7.

similar to that of a Péschl-Teller (PT) potential for finite s.
The massless KK mode can be solved as follows:

11 1

fro(z) = CXP{—%n/\zzzFl< 7 1 e —(Az)%)}. (46)

s
Because f7(z) * exp(—2mz) when z — oo, the massless
KK mode is normalizable without additional conditions,
and it would be strongly localized on the brane with large
coupling constant 1 [see Fig. 9(a)]. We note that the
potential V7(z) (42) and the zero mode f;((z) (46) are
very different from those given in (29) and (34) for left
chiral fermions:

(1) The potential (42) has a single well but the potential
(29) has a double well for s = 3, which results in
that the zero mode (46) is strongly localized at the
center of the double brane while the zero mode (34)
is localized between the two sub-branes of the
double brane.

TABLE I. The mass, width, and lifetime for resonances of left
and right chiral fermions. The parameters are 6 = 8 = 0.5 and
n = 10.

m? m r T
n = 0 (right) 2.4503 1.5653 0.001 177 849.6
n =1 (left) 2.4503 1.5653 0.001 184 844.5
n =1 (right) 8.9179 2.9863 0.04606 21.71
n = 2 (left) 8.9179 2.9863 0.04580 21.83

(2) The potential (42) tends to a positive constant but
the potential (29) runs to zero when far away from
the brane, which results in that the localization of
the zero modes here and (34) is unconditional and
conditional [with condition (39)], respectively.

(3) The potential here provides mass gap to separate the
zero mode from the excited KK modes.

We have known that the massless KK mode is the lowest
state. The massive bound KK modes would appear pro-
vided large 7). Here we take A = 1 for convenience. The
number of bound KK modes increases with the coupling
constant 7. For n = 0.1, only zero modes are bound for all
s. For n = 1, there are two bound KK modes for s = 1 and
one bound KK mode (zero mode) for any s = 3, and the
spectra of the KK modes are

m?, =1{0,0.94}U[1,0) fors = 1,

mi, = {0} U[1, o) for s = 3. S

For = 6, there are many bound KK modes for s = 1 and
four bound KK modes for any s = 3, and the spectra of the
KK modes are

m2, =1{0,10.59, 18.57,24.37, 28.44, 31.20, 33.01, 34.17,
34.89, 35.33, 35.60, 35.76, - - -} U[36, ) for s = 1,

m?, ={0,11.89,23.12,32.21}U[36,00) for s =3,

m2, =10, 11.99,23.85,34.49}U[36,0) for s — co. (48)

The spectra are plotted in Fig. 10. The continuous spectrum
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Vit

N
/
.8
!
0lo6
/
f0.04

0.02

(e)n=6

FIG. 8 (color online). The shapes of the potentials V7(z) and Vi(z) for the symmetric thick branes for the case F(¢) =
tan'/s(¢p/ o). The parameter s is set to s = 1 for the red dashed lines, s = 3 for the green thick lines, and s — oo for the blue
thin lines. The parameter A is set to A = 1.

fLO

(a) a=0, s=1and oo (b) s=1, a=0and 0.4

FIG. 9 (color online). The massless modes f;(z) of the left chiral fermions for the symmetric and asymmetric thick branes for the
case F(¢) = tan'/*(¢p/ ). The parameters are set to A = 1, n = 0.1, 1, and 6.
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starts at m> = n? and the KK modes asymptotically turn
into plane waves when far away from the brane, which
represent delocalized massive KK modes of fermions. It
can be seen that the spectrum structure for the single brane
scenario with s =1 is very different from that of the
double brane scenario with s = 3. The single brane could
trap more massive KK modes than the double brane.
Noting that

2s + 1
2s

Vi(z) = —mA + n*(A2)* + nA(Az)*

+ 0((A2)**2),

we have the following simple potential for double thin
brane scenario (s — ©0):

VS(z) = { —277/\ +7%(X2)%  Irz <1 49)

7%, [Az] > 1

which could be called ‘“‘the harmonic oscillator potential
well with finite depth.” Similar to the square potential well
with finite depth, the spectrum can be solved and there are
a finite number of bound KK modes.

The shape of the symmetric potential V3 (z) (43) for right
chiral fermions is more complex than that of left chiral
fermions. It has a positive value nA at z = 0 and trends to
n? at z = *=oo. The shapes of the potential for various
parameters are plotted in Fig. 8. For small 7, the potential
for any s has no well to trap bound KK modes. With the
increase of 7, the potential for s = 3 will appear a single
well, while the potential for s = 1 will first appear a double
well and then become a single well. For large 7, they are
similar to a PT potential only for small s [see Fig. 8(f)].
The massless KK mode for right chiral fermions is absent.
The number of bound KK modes increases with the cou-
pling constant 0. For n = 0.1, there is no bound KK mode
for all s. For n = 1, there is one bound KK mode for s = 1
and no bound KK mode for any s = 3, and the spectra of
the KK modes are

m3, ={0.94}U[1, ) fors=1,

my, = {}U[1, ) for s = 3. (50)
n=1
n=0 n=0 00
(s=1) (s=3) (5 —00)
(a)n=1

PHYSICAL REVIEW D 80, 065020 (2009)

n=2
n=2
n=3
n=2 n=1 n=1
n=1
n=0 n=0 n=0
(s=1) (5=3) (s >)

FIG. 11 (color online). The spectra m%, of bound KK modes
of right chiral fermions for the symmetric thick branes for the
case F(¢) =tan'/5(¢p/¢py) with s =1, 3, and s — co. The
parameters are set to A = 1 and n = 6. The dashed lines denote
the absence of the zero modes.

For n = 6, there are many bound KK modes for s = 1 and
three bound KK modes for any s = 3:

m%, = {10.59, 18.57,24.37,28.44,31.20,33.01, 34.17,
34.89,35.33,35.60, 35.76, - - -} U[36, ) for s = 1,

m% ={11.89,23.12,32.21}U[36,00) fors =3,

m%, = {11.99,23.85,34.49}U[36,0) fors—co.  (51)

The spectra are plotted in Fig. 11. The continuous spectrum
starts also at m> = 5. It can be seen that the single brane
could also trap more massive KK modes than the double
brane. By comparing the mass spectra of right chiral
fermions (50) and (51) with the ones of left chiral fermions
(47) and (48) for n = 1 and 1 = 6, respectively, we come
to the conclusion that the number of bound states of right
chiral fermions Ny, is one less than that of left ones N, , i.e.,
Ni = N; — 1. The mass spectra are almost the same, and
the only one difference is the absence of the zero mode of
right chiral fermions. Although a potential well around the
brane location appears for s = 3 in Fig. 8(d), we do not
find any resonance.

—_— n=3
e — n=3
n=4
n=3 n=2 n=2
n=2
n=1 n=1 n=1
n=0 n=0 n=0
(s=1) (s=3) (5 >o)
(b)n=6

FIG. 10 (color online). The spectra m?, of bound KK modes of the left chiral fermions for the symmetric thick branes with F(¢) =
tan'/5(¢p/ ). The parameters are set to A =1, p =1 and 6, s = 1, 3, and s — 0.
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2. The asymmetric potential

Next, let us turn to the potentials (44) and (45) for the
asymmetric brane. We note that, because of the appearance
of the asymmetric factor a, the potentials have different
limits at z = *oo:

2

n
VZ‘R(+oo) = = , (52)
, (1/25)T(141/25)
(1+a /AF(I/S) [2:))2
A n’
VL,R(_OO) - (1 F(1/2?)F(1+1/2s))2 (53)
AL(1/s)
For s = 1 and s — oo, we have
2
n
VZ\,R(iOO) = —(1 Tzap 54)
-2
and
2
VA p(£00) = # (55)
(1=29
respectively. The constrain condition (12), ie., 0<
7F(1/2/{1112§1/$1/2‘) < 1, implies
2
0< % < Vip(o0) < m? < Vi p(—00) < oo, (56)

Hence, comparing with the symmetric potentials V} 4(z)

(c)n=1,a=0.2

FIG. 12 (color online).

PHYSICAL REVIEW D 80, 065020 (2009)

(42) and (43), the value of the asymmetric potentials
V{ r(z) (44) and (45) are enlarged at z — +o0 and dimin-
ished at z — —oo, which would reduce the number of the
bound KK modes of left and right fermions. The shapes of
the potentials for various parameters are plotted in Figs. 12
and 13.

The massless KK mode of left chiral fermions

_T])\Z[l + (/\2)23‘]—(1/%) )
1+ az,F (L1, 1+ L, —(A2)%)
(57)

Fuote) = exi [z

s’

is also normalizable, and can be localized on the brane
without additional conditions. The effect of the asymmet-
ric factor a and the coupling constant 7 to the zero mode is
shown in Fig. 9(b). It can be seen that, with the increase of
71, the effect of the asymmetric factor a can be neglected.
However, the effect of a to the number of bound KK modes
is remarkable. We also take A = 1 here. For n = 0.1, only
zero modes of left chiral fermions are bound for all s and a.
For 7 = 1 and very small a, there is one bound massive
KK mode of both the right and left chiral fermions for s =
1, and no bound massive KK mode for s = 3. For n = 1
and large a, only massless modes of left chiral fermions are
bound for all s. For n = 6 and a = 0.2, there are only three
and two bound KK modes of left chiral fermions for s = 1
and s = 3, respectively, and the spectra of the KK modes
are

The shapes of the asymmetric potential V#(z) for the case F(¢)

= tan'/5(¢p/ ¢p). The parameter s is set to

s = 1 for the red dashed lines, s = 3 for the green thick lines, and s = 7 for the blue thin lines. The parameter A is set to A = 1.
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FIG. 13 (color online). The shapes of the asymmetric potential V#(z) for the case F(¢) = tan'/*(¢p/ ). The parameters are the

same as Fig. 11.

m3, = {0, 10.40, 17.42} U[20.85, 00) for s = 1,
m3, ={0,11.74}U[18.75, ) for s = 3, (58)
m3, ={0,11.77}U[18.37,0) for s — oo,

and

m%, = {10.40, 17.42} U[20.85,0) for s = 1,
m%, = {11.74}U[18.75,00) for s = 3, (59)
my, = {11.77}U[18.37,00) for s — oo,

for left and right chiral fermions, respectively. The spectra
for left chiral fermions are shown in Fig. 14. The continu-
ous spectrum starts at different values for different s. It can
be seen that the spectrum structure for the single brane case
with s = 1 is dramatically changed by the asymmetric
factor a, i.e., the number of bound KK modes quickly
decreases with the increase of a.

C. Case III: F(¢p) = tan*/*(¢p/ )

For the case F(¢p) = tan*/*(¢/¢,), considering the ex-
pression of ¢ (8), we have F(¢(z)) = (Az)*. The potential
(24a) for the asymmetric brane solution reads as

Vi) = { 7 (A2)* na(Az)* } 1
[1+ A= [1+ (A)¥P/%) F2(2)
nAA) [k + (k — D(A2)*] 1
QPR F
The special value kK = 1 belongs to case II considered in

Subsec. I1I B. Taking a = 0, we will get the potential of left
chiral fermions for the symmetric brane solution:

(60)

n=3
IIIIIIiiiiiiiioo L
eelbE3 n=2 ... n=2. ...
_____ n=2 ____.
nel n=1 n=1
n=0 n=0 n=0
(s=1) (s=3) (s »o)

FIG. 14 (color online). The spectra m?, (solid lines) of bound
KK modes of the left chiral fermions for the asymmetric thick
branes for the case F(¢) = tan'/*(¢/¢). The parameters are
settoa=0.2,A=1,n7=06,s5s = 1,3, and s — . The dashing
lines denote the corresponding spectra with a = 0.
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FIG. 15 (color online). The shapes of the symmetric potentials V3 (z) and V§(z) for the case F(¢) = tan*/5(¢p/ ¢b,) with odd k < 0.
The parameter s is set to s = 1 for the red dashed lines, s = 3 for the green thick lines, and s — oo for the blue thin lines.

n*(A2* A [k + (k — D(A2)*]

Vg,R(Z) = [1 + ()‘Z)Zx]l/s + [1 + ()\Z)Zs:|1+/l/2s

(61)

1. The symmetric potential
Let us first analyze the asymptotic property of the sym-
metric potential. When z — 00, 1 + (12)* — (A2)*, we
have
Vi r(z = 00) = n?(A2)* 72 T nAk(Az)f 272
F Ak — 1)(Ag)*2
n*(A2)*k"2 > 00 for k> 1
—{ >0 for k=1.
0 for k<1

(62)

When z — 0, 1 + (Az)* — 1, we have

Viglz—0)— nz(/\z)z"(l - %(/\z)“)
F Ak + (k— 1)(A2)>]

» (1 2+ 1(AZ)2S)

2s
0 fork>1
FnA for k=1
PN + (=2 £ inA)s, fork=—1"
00 for k< —1
(63)

For n>0,A>0,and k = —1,

Vi(z—0)— o0 (64)
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o] for n # A
V,Se(z—>0)—>{—%n2 formp=As=1.

(65)
0 foryp=A,s>1

The shapes of the symmetric potentials V3 (z) and V3(z) for

the case F(¢) = tan*/5(¢p/ ) with odd k <0 and k > 1
are plotted in Figs. 15 and 16, respectively. For the case
k < 0, the symmetric potential V; (z) of left chiral fermions

has no well and cannot trap any bound KK modes. For right
chiral fermions, the symmetric potential Vi(z) with k <

—lork = —1,n # A, has adouble well and a infinite high
bar, which can also not trap the massless mode. However,

the case k = —1, n = A >0 is very special, for which
Vg(z) has a single well (for s = 1) or a double well (for

VS
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-
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o
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o
-
e

o®

-
-
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s = 3) [see Fig. 15(b)]. The bound KK modes correspond-
ing to the potentials shown in Fig. 15(b) for s = 1, s = 3,
and s — oo have mass square —0.636, —0.1485, and
—0.119, respectively. Because all the potentials with k£ <
0 cannot trap zero modes, or even more, some of them
could result in tachyonic KK modes with m?> < 0, we do
not consider the corresponding kink-fermion coupling of
the type nWtan*/*(/ o)W with k < 0.

For k > 1, which is the case we are interested in here, the
potentials V; p(z) trend to infinite when far away from the
brane and vanish at z = 0, which shows that there exist
infinite discrete bound KK modes. We note from Fig. 16

that the influence of s is not important. For examples, the
spectra for k = 3 and k = 11 are calculated as

Vit
30

25

20

15

Z
2 1
(a) k=3 (b) k=3
V.S Vi
i 30 30
: 20 ] 25
L
. 20
: 10 ]
b 15
»
Z
| 0.5 0.5 1 10
; -10 5
-20 1 -0.5 0.5 1 z
(c) k=11 (d) k=11
175 Vi$
2000 2000
1750
1000 1500
, 1250
9 0.5 0.5 1000
-1000 750
500
-2000 250
Z
-3000 -1 0.5 0.5 1
(e) k — o0

(f) k — o0

FIG. 16 (color online). The shapes of the symmetric potentials V$(z) and V3(z) for the case F(¢) = tan*/s(¢p/ ) with odd k = 3.
The parameter s is set to s = 1 for the red dashed lines, s = 3 for the green thick lines, and s — oo for the blue thin lines. The other
parameters are set to 7 = A = 1 and k = 3, 11, oo.
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m?, ={0,1.57,4.80, 8.44, 12.61, 17.17, 22.08, 27.30, 32.78, 38.52, 44.49, - - -} for s = 1,
m?, ={0,1.76,5.39,9.33, 13.73, 18.56, 23.70, 29.14, 34.85, 40.80, 46.97, - - -} for s = 3, (66)
m?, ={0,1.81,5.52,9.44,13.77, 18.65, 23.81, 29.19, 34.93, 40.88, 47.02, - - -} for s — o,

and

m?, = {0, 1.86,7.30, 16.02, 27.68, 42.03, 58.93, 78.30, 100.08, 124.22, - - -} for s = 1,
m?, = {0,1.93,7.59, 16.66, 28.77,43.67, 61.21, 81.30, 103.87, 128.88, - - -} for s = 3, (67)
m?, = {0, 1.96,7.69, 16.87, 29.12, 44.15, 61.81, 82.00, 104.68, 129.82, - - -}  for s — oo,

respectively, and shown in Fig. 17.

With the increase of k, the potentials vanish in a more
wide range around z = 0. Especially, for k — oo, we get an
infinite deep square well for right-hand fermions:

s _ 0, |z| > 1/)\
Cl P
The KK modes and the spectrum reads as
For = {ﬁcos(nwAz/z), n=135-
Rn VAsin(nmdz/2), n=24,6,---
2 LEWAT
my, = E)W n=1273-") (70)

The numeric result for k = 13111, s =n=A=11s
m%n = {2.46,9.85,22.16,39.39, 61.54, 88.62, - - -}, (71)

from which we have

m n
R {1,2.001, 3.001, 4.002, 5.002, 6.002, - - -}. (72)
Rl
For left-hand fermions, the spectrum also takes the form
(70) but withn = 0, 1, 2, - - -, the KK modes can be calcu-
lated from Egs. (21b) and (69) as

—Asin(nmAz/2), n=1235-""
A2 lzd<1/A _
=6/ @S =0 - @)
—JAcos(nmAz/2), n=246---
(s=1) (s=3) (s >c)
(a) k=3

|
The comparing of spectra of left chiral fermions for differ-
ent k is shown in Fig. 18.

2. Asymmetric branes

At last, we consider the asymmetric potential (60) for
left chiral fermions and the corresponding asymmetric
potential (24b) for right chiral fermions. The asymptotic
property is analyzed as follows. When z — *oo, 1+

(A2)* = (A2)*, F)— (1 = 041“(1/2:%1251/31/25))’ we have

72 (Az)22
T(1/2)T(1+1/25)\2
(1xa )fl‘(l/s) =)

A — 2
Ver®D = s >0 fork=1- 74
(=S )

— o0 fork>1

for k <1

Since V; p(z — *00) are finite for k = 3, we only consider
the case k=3 here, for which V§ . (z—0)— 0.
Comparison of the asymmetric potential V4(z) with the
symmetric one V3(z) for the case F(¢$) = tan*/*(¢/ )
with different k and s is shown in Fig. 19. We see that, for a
fixed finite &, the difference of the two potentials would
become large with the increase of s. For s — oo, the
difference is largest. While for a fixed s, the difference of
the two potentials would become small with the increase of
k. The spectra for k = 3 and k = 11 are calculated as

(s=1) (s=3)
(b) k=11

(s >o)

FIG. 17 (color online). The spectra m7, of the left chiral fermions for the case F(¢$) = tan*/*(¢p/ ) with k =3 and 11. The

parameters are settoa =0, n = A =1, s = 1, 3, and .
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(k=3) (k=11) (k) (k=3) (k=11) (k>e)

(a) m%n (b) Mpin

FIG. 18 (color online). The spectra m?, and m,, of the left chiral fermions for the case F(¢) = tan*/5(¢ /) with k = 3, 11, and oo.
The parameters are setto a =0, s =n = A = 1.
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FIG. 19 (color online). Comparison of the asymmetric potential V4 (z) (blue thin lines) with the symmetric potential Vf (z) (red
dashed lines) for the case F(¢) = tan*/*(¢ /o) with different k and s. The parameters are set to n = A = 1, a = 0 for the red dashed
lines and a = 0.5 for the blue thin lines, s = 1 and oo, k = 3, 7, and oo.
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(k=3, s=1, a=0) (k=3, s=1, a=05) (k=3, s>, a=0) (k=3, s >0, a=0.5)

(k=11, s=1, a=0) (k=11, s=1, a=0.5) (k=11, s>, a=0) (k=11, s>, a=0.5)

FIG. 20 (color online). Comparison of the spectra m%n of the asymmetric potential Vf(z) (a = 0.5) with that of the symmetric
potential V5(z) (a = 0) for the case F(¢) = tan*/s(¢p/po) with k = 3, 11 and s = 1, co. The parameters are set to 7 = A = 1.

m%n = {0, 1.59,4.77,8.50, 12.7, 17.4, 22.4, 27.7,33.3,39.2,45.4,51.7, - - -}, (s=1) (75)
m%n = {0, 1.83,5.09,9.27, 14.0, 19.4, 25.2, 31.5, 38.2, 45.3,52.7,60.4, - - -}, (s — o0) (76)
f1o
0.8
0.6
0.4
0.2
i 15 -1 05 05 1 15~
b) k=11,a=0
fro
0.8
0.6
0.4
0.2
2 4 - 15 -1 05 s 1 15
(©) k=3,a=0.5 (d) k=11,a=0.5

FIG. 21 (color online). Comparison of the zero modes of the asymmetric potential Vf(z) (down two) with that of the symmetric
potential V3 (z) (up two) for the case F(¢) = tan*/5(¢p/ ¢b,) with different k and 7. The parameters are setto s = 1, A = 1, a = 0, 0.5,
k=3,11, n = 0.1, 0.3, 1, 10. The thickness of lines increases with 7.
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and

m?, = {0, 1.88,7.40, 16.2, 28.1, 42.6, 59.8, 79.5, 102, 126, 153, 182, - - -},

m?, ={0,2.09,8.22,18.1,31.4,47.8,67.5,90.3, 116, 145,177,212, - - -},

respectively, where a = 0.5, and the comparing with that
of the symmetric potential is shown in Fig. 20. For k — oo,
the difference between V#(z) and V;(z) disappears, and the
spectrum is m;,, = nAw/2(n =0,1,2,3, ).

The normalizable zero mode of left chiral fermions

—p(ADH1 + (A7)>]~ /2 )
1+ ClZzFl(i,%, 1+ %, _()\Z)Z‘Y)
(79)

can also be localized on the brane without additional con-
ditions. The effect of 7, k, s, and the asymmetric factor a to
the zero mode is shown in Figs. 21 and 22. It can be seen
that, with the increase of 7 or k, the difference of zero
modes with different a would reduce, i.e., the effect of the
asymmetric factor could be neglected. While, with the
increase of a, the effect of s cannot be neglected. For the
case a = 0.5 and s — oo, our four-dimensional massless
left fermions cannot appear in the range z < —1/A [see
Fig. 22(d)], namely, the left sub-brane is the left boundary
of the region that the four-dimensional massless left fer-

Fuale) = exp [z

PHYSICAL REVIEW D 80, 065020 (2009)

(s=1) (77)

(s = ), (78)

I

mions could appear. The effect of k to the zero mode is
remarkable: with the increase of k (i.e., the increase of the
kink-fermion interaction), the region that the four-
dimensional massless left fermions can appear would re-
duce. Especially, for the limit case k — oo, we have

L, |azl <1

fro(z) = {0, IAz| > 1’ (80)

which shows that the four-dimensional massless left fer-
mions can only exist in between the locations of two sub-
branes and the probability that they would appear is equal
everywhere within the region.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have investigated the localization prob-
lem and the spectrum of spin half-fermions on a two-
parameter (s and A) family of symmetric branes and on a
three-parameter (s, A, and a) family of asymmetric thick
branes in an AdS background for three kinds of typical
kink-fermion couplings. The parameter a, which is called

Sfro fro
7
0.8
0.6
0.4
0.2
Z Z
3 2 1 1 2 3 -3 2 3
(a) a=0,s=1
fro Sfro
1
+ < [ <
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
VA Z
3 2 -1 1 2 3 -3 -2 -1 1 2 3

(d) a=0.5,s = o0

FIG. 22 (color online). Comparison of the zero modes of the asymmetric potential Vf(z) (down two) with that of the symmetric
potential V§(z) (up two) for the case F(¢) = tan*/*(¢/ ) with different k and s. The parameters are setto n = A = 1, k = 3 for the
thin lines, k = 7 for the thicker lines, and k — oo for the thickest lines.
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the asymmetry factor in this paper, decides the asymmetry
of the solution. The parameter A labels the thickness of the
brane. For s = 1, the solution denotes an usual thick 1-
brane, which is the regularized version of the Randall-
Sundrum thin brane. For ¢ = 0 (a # 0) and odd s > 1,
the solution stands for a symmetric (an asymmetric) static
double brane interpolating between the same (different)
AdSs vacua. The thickness of the double brane is 2/, the
two sub-branes are localized at z = *=1/A. The thickness
of the sub-brane decreases with the increase of s. For the
limit case s — oo, each thick sub-brane becomes a thin
brane.

By presenting the mass-independent potentials (24) of
KK modes in the corresponding Schrédinger equations, we
investigate the localization and mass spectra of bulk fer-
mions on the symmetric and asymmetric thick branes. The
formation of the potentials (24) have two sources: the
gravity-fermion coupling WI'w,, ¥ and the scalar-
fermion coupling — W F(¢)W. It can be seen that, without
the gravity-fermion coupling, namely, only considering
domain walls in a flat space-time, the potentials do not
disappear and hence fermions could be localized on the
domain walls (see, e.g., [1]). In fact, for a kink solution, it
is clear that the potential for one of the left and right chiral
fermions would be a PT-like potential, for which the mass-
less mode of left or right chiral fermion can be localized on
the domain wall without an additional condition. However,
without scalar-fermion coupling (n = 0), there is no
bound KK mode for both left and right chiral fermions.
Hence, in order to localize the massless and massive left or
right chiral fermions on the branes, some kind of Yukawa
coupling should be introduced.

The spectra are determined by the behavior of the po-
tentials at infinity. The potentials we are interested in have
three types:

(1) Vig(lzl = 0) =0,

(2) VL,R(|Z| — ) — C,

(3) VL,R(|Z| — 00) — 00,
where C is a positive constant. In order to realize the three
types of potentials, we have considered three typical
Yukawa couplings correspondingly in this paper:

Case I “weak” interaction with  F(¢) = ¢
(k = 1),Case II “critical” interaction with
F(¢p) = tan'/5(¢/ ,),Case III “strong” interaction with
F(¢) = tan**(¢/ o) (k> 1).

Note that, as discussed above, for a domain wall solution in
a flat space-time, a weak kink-fermion interaction would
become a strong interaction. This means that the interac-
tion with gravity would destroy the localization of fermi-
ons on the brane, in a way. So, the localization of fermions
on the brane is the result of the competition of two
interactions.

For the simplest Yukawa coupling with F(¢) = ¢ and
n > 0, the potentials for left chiral fermions provide no
mass gap to separate the fermion zero mode from the
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excited KK modes. Provided the condition (39), the zero
mode of left chiral fermions can be localized on the brane.
The massless mode of left chiral fermion is easiest to be
localized on the symmetric single brane (i.e., the a = 0
case). The asymmetric factor a may destroy the localiza-
tion of massless fermions. For s > 1 (the double brane
case), the potential for left chiral fermions has a double
well at the location of the branes. The corresponding zero
mode on both the symmetric and asymmetric double walls
is essentially constant between the two interfaces. This is
very different from the case of gravitons, scalars, and
vectors, where the massless modes on the asymmetric
double wall are strongly localized only on the interface
centered around the lower minimum of the potential. The
massive KK modes asymptotically turn into continuous
plane waves when far away from the brane, which repre-
sent delocalized massive KK fermions. The massive modes
with lower energy would experience an attenuation due to
the presence of the potential barriers near the location of
the brane. It is interesting to notice that, for s =3, a
potential well around the brane location for right chiral
fermions would appear and the well becomes deeper and
deeper with the increase of 7. We have shown that this
potential would result in a series of massive fermions with
a finite lifetime [47,48]. The spectra of left-handed and
right-handed fermionic resonances are the same, which
demonstrates that a Dirac fermion could be composed
from the left and right resonance KK modes [48].

For the critical interaction with F(¢) = tan!/*(¢/ )
and n > 0, we get a PT-like potential for left chiral fermi-
ons, which provides a mass gap to separate the zero mode
from the excited KK modes. The mass spectra for left and
right chiral fermions are almost the same, and the only one
difference is the absence of the zero mode of right chiral
fermions. The massless KK mode of left chiral fermions is
normalizable without additional conditions, and it would
be strongly localized on the brane with the large coupling
constant 7. The massive bound KK modes would appear
provided large 7. The spectra for the single brane and the
double brane are quite different. For large 7, there are
more bound massive KK modes on the single brane than
on the double brane. For the double thin brane (s — ), a
harmonic oscillator potential well with finite depth will get
for both left and right chiral fermions and there are finite
bound KK modes. For the asymmetric brane case, the
potentials V;§ .(z) are enlarged at z — +o0 and diminished
at z — —oo, which shows that the asymmetric factor would
reduce the number of the bound KK modes of left and right
fermions. The continuous spectrum starts at different val-
ues for different s. The spectrum structure for the single
brane case (s = 1) is dramatically changed by the asym-
metric factor: the number of bound KK modes quickly
decreases with the increase of a and the difference with
the double brane case is reduced.

For the strong interaction with F(¢) = tan*/5(¢p/¢b)
(k>1), the potentials Vf;’,‘é(z) trend to infinite when far
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away from the brane and vanish at z = 0, and there exist
infinite discrete bound KK modes. The influence of s is not
important for symmetric potentials V; ;(z), which indi-
cates that the spectra on the single brane and the double
brane are almost the same. While the increase of k will
dramatically change the shape of the potentials, especially
for k — oo, the potential for right hand fermions is an
infinite deep square well. For a fixed finite k, the difference
of the symmetric and asymmetric potentials would become
large with the increase of s. For s — oo, the difference is
the largest. While for a fixed s, the difference of the two
potentials would become small with the increase of k. The
normalizable zero mode of left chiral fermions can also be
localized on the brane without additional conditions. With
the increase of 7 or k, the effect of the asymmetric factor to
the zero mode can be neglected. While, with the increase of
a, the effect of s is obvious. For the limit case s — oo, the

PHYSICAL REVIEW D 80, 065020 (2009)

left sub-brane is the left boundary of the region that the
four-dimensional massless left fermions could appear.
With the increase of k, the region that the four-dimensional
massless left fermions can appear would reduce.
Especially, for the limit case k — oo, the four-dimensional
massless left fermions can only exist in between the loca-
tions of two sub-branes with equal probability.
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