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In C. A. S. Almeida, R. Casana, M.M. Ferreira, Jr., and A. R. Gomes, Phys. Rev. D 79, 125022 (2009),

the simplest Yukawa coupling � ����� was considered for a two-scalar-generated Bloch brane model.

Fermionic resonances for both chiralities were obtained, and their appearance is related to branes with

internal structure. Inspired on this result, we investigate the localization and resonance spectrum of

fermions on a one-scalar-generated de Sitter thick brane with a class of scalar-fermion couplings � ���k�

with positive odd integer k. A set of massive fermionic resonances for both chiralities is obtained when

provided large coupling constant �. We find that the masses and lifetimes of left and right chiral

resonances are almost the same, which demonstrates that it is possible to compose massive Dirac fermions

from the left and right chiral resonances. The resonance with lower mass has longer lifetime. For a same

set of parameters, the number of resonances increases with k and the lifetime of the lower level resonance

for larger k is much longer than the one for smaller k.
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I. INTRODUCTION

During the last two decades, the idea of embedding our
Universe in a higher dimensional space has received much
attention. The suggestion that extra dimensions may not be
compact [1–6] or large [7,8] can provide new insights for
solving several puzzling phenomena such as the gauge
hierarchy [8], i.e., the large difference in magnitude be-
tween the Planck and electroweak scales, the dark matter
origin, and the long-standing cosmological constant prob-
lem [2,4,9–11]. According to the brane scenarios, gravity is
free to propagate in all dimensions, while all the matter
fields (electromagnetic, Yang-Mills, etc.) are confined to a
3-brane in a larger dimensional space. In Randall-Sundrum
(RS) brane model [5], an alternative scenario of the com-
pactification had been proposed. In this scenario, the inter-
nal manifold does not need to be compactified to the
Planck scale anymore; it can be large, or even infinite
noncompact, which is one of the reasons why this new
compactification scenario has attracted so much attention.

Recently, an increasing interest has been focused on the
study of thick brane scenario in higher dimensional space-
time [12–19], since in more realistic models the thickness
of the brane should be taken into account. In this scenario
the scalar field provides a thick brane realization of the
brane world as a domain wall in the bulk. For a compre-
hensive review on the thick brane solutions and related
topics please see Ref. [20]. However, there are not so many
analytic solutions of a dynamic thick domain wall. The
de Sitter (dS) branes have been studied in five and higher
dimensional space-times, for example in [16,21–23]. The

localization problem of spin half fermions on thick branes
is interesting and important. The problem of fermion lo-
calization and the generation puzzle in six-dimensional
models were studied in Ref. [24]. Usually, fermions do
not have normalizable zero modes in five dimensions
without the scalar-fermion coupling [25–34]. In five di-
mensions, with the scalar-fermion coupling, there may
exist a single bound state and a continuous gapless spec-
trum of massive fermion Kaluza-Klein (KK) states [26,35],
while for some other brane models, there exist finite dis-
crete KK states (mass gap) and a continuous gapless spec-
trum starting at a positive m2 [36,37]. In Ref. [32], the
authors obtained trapped discrete massive fermion states
on the brane, which are in fact quasibound and have a finite
probability of escaping into the bulk. In fact, fermions can
escape into the bulk by tunnelling, and the rate depends on
the parameters of the scalar potential [33]. In [38], the
simplest Yukawa coupling between two scalars and a
spinor field was considered for a two-scalar-generated
Bloch brane model [39]. Fermionic resonances for both
chiralities were obtained, and their appearance is related to
branes with internal structure.
In Ref. [40], we addressed the localization and mass

spectra of various bulk matter fields on the dS thick branes.
It was shown that, all bulk matters (scalars, vectors, and
fermions) can be localized on these branes and the corre-
sponding mass spectra have a mass gap. However, for spin
half fermions the scalar-fermion coupling should not be the

usual Yukawa coupling � ���� in order to trap the zero
modes. In this paper, inspired on the results obtained in
Refs. [32,33,38], we reinvestigate the localization problem
of fermions on a one-scalar-generated dS thick brane
[16,40–43] with a class of scalar-fermion couplings

� ���k� with positive odd integer k. We shall show that
a set of massive fermionic resonances for both chiralities
could be obtained when provided large coupling constant
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�, and it is possible to compose massive Dirac fermions
from the left and right chiral resonances.

The organization of the paper is as follows: In Sec. II, we
first review the one-scalar-generated dS thick brane in a
five-dimensional space-time. Then, in Sec. III, we study
localization and mass spectra of fermions on the thick
brane by presenting the shapes of the mass-independent
potentials of the corresponding Schrödinger problem of
fermionic KK modes. We consider two different types of
scalar-fermion interactions. Finally, the discussion and
conclusion are given in Sec. IV.

II. ONE-SCALAR-GENERATED DE SITTERTHICK
BRANE

Let us consider the de Sitter thick brane arising from a
real scalar field� with a scalar potential Vð�Þ. Our system
is described by the action

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
1

2�2
5

R� 1

2
gMN@M�@N�� Vð�Þ

�
; (1)

where �2
5 ¼ 8�G5 with G5 the five-dimensional Newton

constant. Here we set �5 ¼ 1. The line-element for a five-
dimensional space-time with planar-parallel symmetry is
assumed as

ds2 ¼ e2Aðĝ��dx
�dx� þ dz2Þ

¼ e2Að�dt2 þ e2�tdxidxi þ dz2Þ; (2)

where z stands for the extra coordinate. The scalar field �
and the warp factor e2A are considered to be functions of z
only, i.e., � ¼ �ðzÞ and A ¼ AðzÞ. In the model, the po-
tential could provide a thick brane realization. The field
equations generated from the action (1) with the ansatz (2)
reduce to the following coupled nonlinear differential
equations:

�02 ¼ 3ðA02 � A00 � �2Þ; (3)

Vð�Þ ¼ 3

2
e�2Að�3A02 � A00 þ 3�2Þ; (4)

dVð�Þ
d�

¼ e�2Að3A0�0 þ�00Þ; (5)

where the prime denotes derivative with respect to z. For
positive and vanishing � one will obtain dynamic and
static solutions, respectively.

A de Sitter thick brane solution in a five-dimensional
space-time for the potential

Vð�Þ ¼ 1þ 3	

2	
3�2

�
cos

�

�0

�
2ð1�	Þ

(6)

was found in Refs. [41,42]:

e2A ¼ cosh�2	

�
�z

	

�
; (7)

� ¼ �0 arctan

�
sinh

�z

	

�
; (8)

where �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	ð1� 	Þp

, 0< 	< 1, �> 0. The soliton
configuration of the scalar field dynamically generates the
domain wall configuration with warped geometry. In this
system, the scalar field takes values ��0�=2 at z ! �1,
corresponding to two consecutive minima of the potential
with cosmological constant � ¼ 0. The scalar configura-
tion in fact is a kink. The thick brane has a well-defined
thin wall limit when 	 ! 0 [43] and can localize gravity
and matter fields on the wall [16,40]. For 1=2< 	< 1, the
hypersurfaces jzj ¼ 1 represent nonscalar space-time sin-
gularities [16]. The energy density 
 for the dS brane is
calculated as follows:


 ¼ 3e�2Að�2 � A02 � A00Þ

¼ 3�2ð1þ 	Þ
	

cosh2ð	�1Þ
�
�z

	

�
: (9)

III. FERMION LOCALIZATION AND
RESONANCESONTHEDE SITTERTHICKBRANE

Fermions on branes have been studied in a number of
articles such as in Refs. [44–54]. In this section let us
investigate whether spin 1=2 fermions can be localized
on the thick brane given in previous section. The Dirac
action of a massless spin 1=2 fermion coupled to the
background scalar � (8) is

S1=2 ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p ð ���Mð@M þ!MÞ�� � ��Fð�Þ�Þ:
(10)

The nonvanishing components of the spin connection !M

for the background metric (2) are

!� ¼ 1

2
A0���5 þ !̂�; (11)

with !̂� the spin connection derived from the metric

ĝ��ðxÞ. Then the equation of motion is given by

½��ð@� þ !̂�Þ þ �5ð@z þ 2A0Þ � �eAFð�Þ�� ¼ 0:

(12)

Note that the sign of the coupling � of the spinor � to the
scalar � is arbitrary and represents a coupling either to
kink or to antikink domain wall. For definiteness, we shall
consider in what follows only the case of a kink coupling,
and thus assume that �> 0.
By making the following general chiral decomposition:

� ¼ X
n

½c L;nðxÞfL;nðzÞ þ c R;nðxÞfR;nðzÞ�e�2A (13)

with c L ¼ ��5c L and c R ¼ �5c R the left-handed and
right-handed components of a four-dimensional Dirac
field, respectively, and demanding c L;R satisfy the four-
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dimensional massive Dirac equations ��ð@� þ
!̂�Þc L;R ¼ mc R;L, we obtain the following coupled equa-

tions:

½@z þ �eAFð�Þ�fLðzÞ ¼ mfRðzÞ; (14a)

½@z � �eAFð�Þ�fRðzÞ ¼ �mfLðzÞ; (14b)

which can be reduced to the Schrödinger-like equations for
the wave functions of left and right chiral fermions

ð�@2z þ VLðzÞÞfL ¼ m2fL; (15a)

ð�@2z þ VRðzÞÞfR ¼ m2fR; (15b)

where the effective potentials are given by

VLðzÞ ¼ ð�eAFð�ÞÞ2 � @zð�eAFð�ÞÞ; (16a)

VRðzÞ ¼ VLðzÞj�!��: (16b)

We have dropped the index n for convenience.
It can be seen that, in order to localize left or right chiral

fermions, there must be some kind of scalar-fermion cou-
pling, and the effective potential VLðzÞ or VRðzÞ should
have a minimum at the location of the brane. Furthermore,
for the kink configuration of the scalar �ðzÞ (8), Fð�ðzÞÞ
should be an odd function of �ðzÞ when one demands that
VL;RðzÞ are invariant under Z2 reflection symmetry z !
�z. Thus we have Fð�ð0ÞÞ ¼ 0 and VLð0Þ ¼ �VRð0Þ ¼
��@zFð�ð0ÞÞ, which results in the well-known conclu-
sion: only one of the massless left and right chiral fermions
could be localized on the brane. The spectra are determined
by the behavior of the potentials at infinity. For VL;R ! 0 as
jzj ! 1, one of the potentials would have a volcanolike
shape and there exists only a bound massless mode fol-
lowed by a continuous gapless spectrum of KK states,
while another could not trap any bound states and the
spectrum is also continuous and gapless. For VL;R ! V1 ¼
const as jzj ! 1, those modes with m2

n < V1 belong to
discrete spectrum and modes withm2

n > V1 contribute to a
continuous one. If the potentials increase as jzj ! 1 the
spectra are discrete.

The concrete behavior of the potentials is dependent on
the function Fð�Þ. In Ref. [40], two cases Fð�Þ ¼ � and

Fð�Þ ¼ sinð��0
Þcos�	ð��0

Þ were investigated in detail as

examples. For the first example with usual Yukawa cou-

pling � ����, there exists no mass gap but a continuous
gapless spectrum of KK states. For the second example
with a positive coupling constant �, there exist some
discrete bound KK modes and a series of continuous
ones. The total number of bound states increases with the
coupling constant �. If 0<�<�=	, there is only one left
chiral fermion bound state which is just the left chiral
fermion zero mode; if �> �=	, there are Nmax þ 1 left
chiral fermion bound states (including zero mode and
massive KK modes) and Nmax right chiral fermion bound
states (including only massive KK modes). Especially, the
spectrum of left chiral fermions

m2
L;n ¼

�

	2
ð2	�� n�Þn�

�> 0; n ¼ 0; 1; 2; . . . ; Nmax <
	�

�

� (17)

and of the right ones

m2
R;n ¼

�

	2
½2	�� ðnþ 1Þ��ðnþ 1Þ�

�>
�

	
; n ¼ 0; 1; 2; . . . ; Nmax � 1<

	�

�
� 1

� (18)

are the same except the massless mode, i.e., m2
L;nþ1 ¼

m2
R;n. In this paper, we would like to consider the case

Fð�Þ ¼ �k with k a positive odd integer, for the purpose of
investigating resonances of massive fermions.

A. Case I: Fð�Þ ¼ �

Firstly, we reconsider the simplest case Fð�Þ ¼ � for
the dS brane world solution (6)–(8). The explicit forms of
the potentials (16) are

VLðzÞ ¼ �2�2
0

arctan2 sinhð�z	 Þ
cosh2	ð�z	 Þ

� ���0

	cosh1þ	ð�z	 Þ

þ ���0

sinhð�z	 Þ arctansinhð�z	 Þ
cosh1þ	ð�z	 Þ

; (19a)

VRðzÞ ¼ VLðzÞj�!��: (19b)

The values of the potentials (19a) and (19b) at z ¼ 0 and
z ! �1 are given by

VLð0Þ ¼ �VRð0Þ ¼ ���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð	�1 � 1Þ

q
; (20)

VL;Rðz ! �1Þ ! 0; (21)

i.e., both potentials have same asymptotic behavior when
z ! �1, but opposite behavior at the origin z ¼ 0. In this
paper we take � ¼ 	 and �> 0 for simplicity. The shapes
of the potentials are shown in Figs. 1 and 2. It can be seen
that, for any 0< 	< 1 and �> 0, VLðzÞ is indeed a
modified volcano type potential. Hence, the potential of
left chiral fermions provides no mass gap to separate the
zero mode from the excited KK ones, and there exists a
continuous gapless spectrum of the KK modes for left
chiral fermions. However, the zero mode of the left chiral
fermions

fL0ðzÞ / exp

�
��

Z z
d�zeAð�zÞ�ð�zÞ

�
(22)

is non-normalizable [40], which is an example that nega-
tive value of potential at the brane location does not
guarantee the existence of a normalized zero mode. This
is different from the situation in Refs. [32,46], where the
corresponding potential of left chiral fermions is also a
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volcano type one and the zero mode can be localized on the
branes provided strong enough Yukawa coupling.

The potential VR is always positive at the brane location
and vanishes when far away from the brane. This shows
that the potential could not trap any bound fermions with
right chirality and there is no zero mode of right chiral
fermions. This agrees with the well-known fact that mass-
less fermions must be single-handed in brane models [30].
However, the shape of the potential is dependent on the
coupling constant �. With the increase of �, a potential
well around the brane location would appear and the well
becomes deeper and deeper. The appearance of the poten-
tial well could be related to resonances or to massive
fermions with a finite lifetime. In Ref. [38], a similar
potential and resonances for left and right chiral fermions
were found but in the background of two-field thick branes
with internal structure. In what follows, we follow
Ref. [38] and investigate the massive modes of fermions
by solving numerically Eq. (15) with potentials in (19).
Differently, we present another method to calculate the
probability for finding the massive modes on the brane.

In order to get the solutions of KK modes fL;RðzÞ from
the second order differential Eqs. (15), we need to impose
two initial conditions. The wave functions of a Schrödinger
equation with a finite smooth potential are continuous at
any position. Furthermore, considering the even parity of
the potentials, we can impose two kinds of initial condi-
tions:

fð0Þ ¼ c0; f0ð0Þ ¼ 0; (23)

and

fð0Þ ¼ 0; f0ð0Þ ¼ c1: (24)

The first and second conditions would result in even and
odd KK modes, respectively. The constants c0 and c1 for
unbound massive KK modes are arbitrary but will be set to
c0 ¼ 1 and c1 ¼ 5. The massive KKmodes would encoun-
ter the tunneling process across the potential barriers near
the brane. And the modes with different masses would
have different lifetimes. Some massive KK modes of left
chiral fermions for the case Fð�Þ ¼ � with different m2

are plotted in Fig. 3. These shapes show that there could
exist some resonant states at some m2. In what follows, we
would like to investigate this problem.

Since Eq. (15) can be rewritten as Oy
L;ROfL;RðzÞ ¼

m2fL;RðzÞ, one can interpret jfL;RðzÞj2 as the probability

for finding the massive KKmodes at the position z along an
extra dimension [38]. In Ref. [38], the authors suggested
that large peaks in the distribution of fL;Rð0Þ as a function
ofm would reveal the existence of resonant states. Here we
need to extend this idea for our two kinds of initial con-
ditions (23) and (24). This is because the value of fL;Rð0Þ is
zero for condition (24). We proposal that large relative
probabilities for finding massive KK modes within a nar-
row range �zb < z < zb around the brane location, called
PL;R, would indicate the existence of resonances. We can

-10 -5 5 10
z

1

2

3

4
VR

(a) = 3

-10 -5 5 10
z

10

20

30

40

VR

(b) = 10

FIG. 2. The potential VR for right chiral fermions with Fð�Þ ¼ �. The parameters are set to � ¼ 3 and � ¼ 10, 	 ¼ � ¼
0:1; 0:5; 0:9 for lines with thickness increases with 	.
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z
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0.2
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-10 -5 5 10
z

0.2

0.4

0.6

0.8
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FIG. 1. The potentials VL;R for left and right chiral fermions with Fð�Þ ¼ �. The parameters are set to � ¼ 1 and 	 ¼ � ¼
0:1; 0:5; 0:9 for lines with thickness increases with 	.
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consider the KK modes fL;RðzÞ in a box with borders jzj ¼
zmax located far from the turning point, beyond which
fL;RðzÞ are turned into plane waves. The relative probabil-

ities are defined as follows:

PL;RðmÞ ¼
R
zb�zb

jfL;RðzÞj2dzR
zmax�zmax

jfL;RðzÞj2dz
; (25)

where we choose zb ¼ 0:1zmax, for which the probability
for a plane wave mode with mass m would be 0.1. These
KK modes, with larger m2 than the maximum of the
corresponding potential, would be approximately plane
waves and the probabilities for them would trend to 0.1.
For 	 ¼ � ¼ 0:5 and � ¼ 10, we set zmax ¼ 30 and the
results are shown in Fig. 4. We find from the figure a series
of huge peaks located at m2 ¼ 16:013 742, 29.222 41, and
38.837 314 for both left-handed and right-handed fermions.
These peaks are related with resonances of fermions,
which are long-lived massive fermionic modes on the
brane. Except several peaks, the curve seemed to grow at

first, and then it plateaued around zb=zmax ¼ 0:1. The
reason is that KK modes with small m2ð� Vmax

L;R Þ will be
damped near the brane and oscillate away from the brane,
while those modes with large m2ð� Vmax

L;R Þ can be approxi-
mated as plane wave modes fL;R / cosmz or sinmz.
In Figs. 5 and 6, we plot the shapes of the resonances of

left and right chiral fermions for 	 ¼ � ¼ 0:5 and� ¼ 10.
It can be seen that the configurations of Figs. 5(a), 5(c), and
5(d) could present the n ¼ 1, n ¼ 2, and n ¼ 3 level KK
modes of left chiral fermions, which are in fact resonances.
The n ¼ 0 level mode (38) with left chirality, the only one
bound state, is not shown here. The configurations of
Figs. 6(a), 6(c), and 6(d), present the n ¼ 0, n ¼ 1, and
n ¼ 2 level resonances of right chiral fermions. It is worth
noting that the n level massive resonance with left chirality
and the n� 1 level one with right chirality have the same
mass, i.e., the spectra of massive left-handed and right-
handed fermionic resonances are the same. This demon-
strates that it is possible to compose a Dirac fermion from

-7.5 -5 -2.5 2.5 5 7.5
z

-300
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100

200

300
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(a) m2 = 15.9
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(b) m2 = 16

-7.5 -5 -2.5 2.5 5 7.5
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(c) m2 = 16.013
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(d) m2 = 16.0137
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z

-1

-0.5

0.5

1

fL

(e) m2 = 16.01372

-7.5 -5 -2.5 2.5 5 7.5
z
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-0.5
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1

fL

(f) m2 = 16.01374

FIG. 3. Massive KK modes of left chiral fermions for the case Fð�Þ ¼ � with different m2. The parameters are 	 ¼ � ¼ 0:5 and
� ¼ 10.
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the left and right KK modes. If we only consider one of the
initial conditions (23) and (24), then we could not get the
resonances of left-handed and right-handed fermions with
same mass at the same time. In fact, as mentioned before,
we found in Refs. [37,40] that the spectra of bound massive
KK modes of left and right chiral fermions are the same,
where the effective potentials for KK modes of fermions
are modified Pöschl-Teller potentials.

We can estimate the lifetime � for a resonance from the
width in mass � ¼ 	m at half maximum of the correspond-
ing peak in Fig. 7. This means that the fermion disappears
into the extra dimension with time �� ��1 [55]. The
peaks corresponding to the resonances shown in Figs. 5
and 6 are located at m ¼ 4:001 72, 5.405 78 and 6.231 96,
respectively. And the width and lifetime of the resonances
are listed in Table I. It can be seen that the resonances with

-4 -2 2 4
z

-1

-0.5

0.5

1

f L

(a) n = 1 , m 2 = 16.013742

4 6 8 10 12 14
z

0.0005

0.001

0.0015
f L

(b) Zoom in on (a)

-7.5 -5 -2.5 2.5 5 7.5
z

-1

-0.5

0.5

1
f L

(c) n = 2 ,m 2 = 29.22241

-7.5 -5 -2.5 2.5 5 7.5
z

-1

-0.5

0.5

1
f L

(d) n = 3 , m2 = 38.837314

FIG. 5. Massive KK modes of left chiral fermions fLðzÞ for the case Fð�Þ ¼ �. The parameters are 	 ¼ � ¼ 0:5 and � ¼ 10.
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FIG. 4. The probability for finding massive KK modes of left and right chiral fermions with massm2 around the brane location, PL;R,
and their differences PL � PR, as a function ofm

2, for the case Fð�Þ ¼ �. The parameters are 	 ¼ � ¼ 0:5 and � ¼ 10. For PL, gray
thick lines and black thin lines are plotted for the first and second initial condition, respectively. For PR, black thin lines and gray thick
lines are plotted for the first and second initial condition, respectively.
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lower mass have longer lifetime. And the lifetimes of left
and right chiral resonances are almost the same, which
confirms further that it is possible to compose a Dirac
fermion from the left and right KK modes.

In order to get the resonances of massive KK modes for
general parameters 	, �, and �, we expand the effective
potentials (19) around z ¼ 0 and retain terms up to order
z2. The differential equation for left chiral fermions is
reduced to

½@2z � ð�c0 �m2 þ c2z
2Þ�fLðzÞ ¼ 0; (26)

where

c0 ¼ �

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 	Þ	p

�; (27)

c2 ¼ 1

2

�3

	3
ð1þ 3	Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1�	Þ	p
�þ�2

	2
3ð1�	Þ	�2: (28)

4.00164 4.00172 4.0018
m

0.2

0.4

0.6

0.8

1

PL n 1, m 0.0000227

5.395 5.40578 5.417
m

0.2

0.4

0.6

0.8

1
PL n 2, m 0.003525
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PL n 3, m 0.0782

FIG. 7. The probability for finding massive KK modes of left chiral fermions around the brane location, PL, as a function of m. The
parameters are 	 ¼ � ¼ 0:5 and � ¼ 10.
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FIG. 6. Massive KK modes of right chiral fermions fRðzÞ for the case Fð�Þ ¼ �. The parameters are 	 ¼ � ¼ 0:5 and � ¼ 10.
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This is the harmonic oscillator approximation in the neigh-
borhood of the brane and the solution is

fL;nðzÞ / e�ð1=2Þ ffiffiffiffi
c2

p
z2Hnðc1=42 zÞ; (29)

where n ¼ m2þc0
2
ffiffiffiffi
c2

p � 1
2 is a nonnegative integer andHnðzÞ are

the Hermite polynomials. The possible values of m2 are
given by

m2
L;n ¼

1þ 2nffiffiffi
2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

	3
ð6ð1� 	Þ	2�þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 	Þ	p ð1þ 3	ÞÞ�

s

� �

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 	Þ	

p
� ðn ¼ 0; 1; 2; . . .Þ: (30)

For right chiral fermions, we have

m2
R;n ¼

1þ 2nffiffiffi
2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

	3
ð6ð1� 	Þ	2�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 	Þ	

p
ð1þ 3	ÞÞ�

s

þ �

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 	Þ	p

� ðn ¼ 0; 1; 2; . . .Þ: (31)

Note that this is only an approximate solution for the
spectra of left and right chiral fermions. For zero mode
of left chiral fermions, we should have m2

L;0 ¼ 0, which

results in the constrained condition for the approximate
solution:

� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 	Þ	p ð1þ 3	Þ
2

ffiffiffi
3

p ð1� 	Þ	2
: (32)

If we take � ¼ 	 ¼ 0:5, then we need to consider � �
1:44. Under the above condition, the mass spectra of
fermions are reduced to the following form:

m2
L;n ¼ 2

�

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 	Þ	

p
�n; (33)

m2
R;n ¼ 2

�

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 	Þ	p

�ð1þ nÞ: (34)

Now, it is clear that the spectra of left and right massive
fermions are the same and only lower n are available. The

mass of the first resonance of fermions is read as m2
0 ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 	Þ	p

��=	.
It should be pointed out that in order to get a better

approximate solution for the resonance spectra and KK
modes of left and right chiral fermions, we need to solve
the Schrödinger equation for the approximate potential at
both large z and small z, and match the two solutions to get
the spectrum. In this paper, we do not discuss the question
in detail.

B. Case II: Fð�Þ ¼ �k with odd k > 1

Next we consider a simple generalization of the usual
Yukawa coupling: Fð�Þ ¼ �k, where k is a positive odd
integer. We have shown in the previous subsection that, for
the usual Yukawa coupling (k ¼ 1), the appearance of a
well in the effective potential of right-handed fermions
needs a large coupling constant�, i.e., strong kink-fermion
coupling. However, the case Fð�Þ ¼ �k with k > 1 has a
very different characteristic from the k ¼ 1 case at the
brane location. This can be seen from the derivative of
Fð�ðzÞÞ with respect to z at z ¼ 0:

@zFð�ð0ÞÞ ¼ k�k�1ð0Þ@z�ð0Þ
�
� 0 for k ¼ 1;
¼ 0 for k > 1:

(35)

Together with �ð0Þ ¼ �kð0Þ ¼ 0, they would result in
different values of the effective potentials of fermions
(16) at the brane location for two kinds of coupling. For
the current case, the potentials (16) are now

VLðzÞ¼
arctan2k sinhð�z	 Þ

cosh2	ð�z	 Þ
�2k

0 �2�arctank�1 sinhð�z	 Þ
	cosh1þ	ð�z	 Þ

k�k
0��

þ arctank sinhð�z	 Þ
cosh	ð�z	 Þcothð�z	 Þ

�k
0��; (36a)

VRðzÞ¼VLðzÞj�!��: (36b)

Both potentials have same asymptotic behavior when z !
�1 and z ¼ 0:

VL;Rð�1Þ ¼ VL;Rð0Þ ¼ 0: (37)

Therefore, for any positive �, there is a potential well for a
right-handed fermion. Especially, the potential well for
left-handed fermions becomes a double-well. The shapes
of the two potentials are shown in Figs. 8 and 9 for different
values of �, 	, �, and k. The depth of the potential well
increases with �, � and k, and decreases when 	 ! 0 or 1.
It is remarkable that, even for a very small �, there is a
potential well for both left- and right-handed fermions. For
a large �, the potential bars for both fermions are almost
equal. However, for a small one, the potential bar of right-
handed fermions is much higher than that of the left-
handed ones.
There exists a continuous gapless spectrum of the KK

modes for both the left chiral and right chiral fermions. The
zero mode of the left chiral fermions

TABLE I. The mass, width, and lifetime for resonances of left
and right chiral fermions. The parameters are 	 ¼ � ¼ 0:5 and
� ¼ 10.

m2 m � �

n ¼ 1 (left) 16.013 742 4.001 72 0.000 022 7 44052.9

n ¼ 0 (right) 16.013 742 4.001 72 0.000 022 8 43 859.6

n ¼ 2 (left) 29.222 41 5.405 78 0.003 525 283.688

n ¼ 1 (right) 29.222 41 5.405 78 0.003 534 282.965

n ¼ 3 (left) 38.837 314 6.231 96 0.0782 12.7877

n ¼ 2 (right) 38.837 314 6.231 96 0.0804 12.4378
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fL;0ðzÞ / exp

�
��

Z z
d�zeAð�zÞ�kð�zÞ

�
(38)

is also non-normalizable. We also expand the effective
potential (36b) of right chiral fermions in the neighborhood
of the brane for the purpose of obtaining the resonance
solutions of massive KK modes:

VR ¼ k���k
0

	

�
�z

	

�
k�1 � ðkþ 2Þðkþ 3	Þ���k

0

6	

�
�z

	

�
kþ1

þOðzkþ3Þ ðk � 3Þ: (39)

Note that another term �2�2k
0 ð�z	 Þ2k should be included for

the case k ¼ 1. Now we see that the case k ¼ 3 is special,
for which the Schrödinger equation with lowest order
potential can be solved analytically, and the solution is

fR;n / e�ð1=2Þ ffiffi
2

p
z2Hnða1=4zÞ; (40)

m2
R;n ¼ ð1þ 2nÞ ffiffiffi

a
p

; (41)

where a ¼ 3�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 	Þ	p

�=	Þ3, n ¼ 0; 1; 2; . . . . For
lowest state, we have

m2
R;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� 	Þ	p
�=	Þ3

q
: (42)

This is very different from the case of k ¼ 1, where the

mass of the first resonance is decided by m2
R0 ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 	Þ	p

��=	. Note that we cannot get the similar
approximate spectrum solution for left-handed fermions
for the case k � 3 because of the negative derivative of
VLðzÞ at z ¼ 0. But we can also expect that the spectrum of
left-handed fermions is the same as that of the right-handed
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FIG. 9. The potentials VL;R for left and right chiral fermions with Fð�Þ ¼ �k. The parameters are set to � ¼ 0:001, 	 ¼ � ¼ 0:5
and k ¼ 3; 5; 7 for lines with thickness increases with k.
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FIG. 8. The potentials VL;R for left and right chiral fermions with Fð�Þ ¼ �3. The parameters are set to � ¼ 1 and 	 ¼ � ¼
0:1; 0:5; 0:9 for lines with thickness increases with 	.
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FIG. 10. The probability for finding massive KK modes of left and right chiral fermions with mass m2 around the brane location,
PL;R, as a function of m2, for the case Fð�Þ ¼ �3. The parameters are 	 ¼ � ¼ 0:5 and � ¼ 10. For PL, gray thick lines and black

thin lines are plotted for the first and second initial condition, respectively. For PR, black thin lines and gray thick lines are plotted for
the first and second initial condition, respectively.
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ones. This can be checked by numerical results (see
Fig. 10). The numerical calculation shows that the spec-
trum (41) for large coupling � is a good approximation.
For example, for the parameters 	 ¼ � ¼ 0:5, k ¼ 3, and
� ¼ 10, the resonance spectrum calculated from the for-
mula (41) is m2

n ¼ ð4:4; 13:2; 22:1; 30:9; 39:7; 48:6; 57:4Þ,

while the numerical result is m2
n ¼ ð4:1; 12:3; 20:8; 29:8;

38:6; 46:8; 53:6Þ. The lifetimes for the n ¼ 0; 1; 2; 4; 6 reso-
nances are estimated as � ¼ 1:39� 1010, 5:81� 107,
9:57� 105, 1:49� 103, 15.5, respectively. It shows that
the resonances with lower n would have longer lifetimes
and may be found in future high energy experiments. For
small� and�, the potential also has similar well shape, but
the numerical calculation shows that there is no resonances
with long lifetime. This is because the depth of the well is
not deep enough.
Comparing Fig. 4 with Fig. 10, we see that the number of

resonances of the case Fð�Þ ¼ �3 is more than that of the
case Fð�Þ ¼ � for the same set of parameters. In Table II,
we list the relation of the number of the resonances N, the
mass square m2

N�1, the probability PN�1, the width

�mN�1, and the lifetime �N�1 of the ðN � 1Þ-th resonance
of right-handed fermions with k for the set of parameters
	 ¼ � ¼ 0:5 and � ¼ 10. In Fig. 11 the shapes of the n ¼
ðN � 1Þ-th resonance modes of right chiral fermions for

TABLE II. The relation of the number of the resonances N, the
mass square m2

N�1, the probability PN�1, the width �mN�1, and

the lifetime �N�1 of the ðN � 1Þ-th resonance of right-handed
fermions with k. The parameters are 	 ¼ � ¼ 0:5 and � ¼ 10.

k N PN�1 m2
N�1 �mN�1 �N�1

1 3 0.66 38.84 0.0782 12.8

3 7 0.70 53.64 0.0644 15.5

5 13 0.83 114.1 0.0361 27.7

7 24 0.37 287.8 0.0383 26.1

9 44 0.31 784.0 0.0443 22.6

11 79 0.33 2200 0.0171 58.4

-4 -2 2 4 z

-1

-0.5

0.5

1
fR
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FIG. 11. The n ¼ ðN � 1Þ-th resonance modes of right chiral fermions for the case Fð�Þ ¼ �k. The parameters are 	 ¼ � ¼ 0:5
and � ¼ 10.
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the case Fð�Þ ¼ �k are plotted. The numerical results
show that the lifetimes of the ðN � 1Þ-th resonances for
different k are the same order. However, the lifetime of the
lower level (i.e., lower n) resonance for larger k is much
longer than the one for smaller k.

IV. DISCUSSION AND CONCLUSION

In this paper, by presenting the shapes of the mass-
independent potentials of KK modes in the corresponding
Schrödinger equations, we have investigated the localiza-
tion and resonance spectrum of fermionic fields on a one-
field generated dS thick brane. It is shown that, in order to
localize left or right chiral fermions on the brane, some
kind of kink-fermion coupling should be introduced. A

class of kink-fermion couplings � ���k� with positive �
and positive odd integer k are investigated in detail. It is
worth pointing out that, in this dS thick brane scenario, the
potential of KK modes of left chiral fermions is very
different from the potentials of KK modes of the fields
with spin 0, 1, and 2. For other spin fields, the potentials of
KKmodes are the modified Pöschl-Teller potentials, which
suggests that there exist a mass gap and a series of con-
tinuous spectra starting at positive �2 [16,40]. The poten-
tial of KK modes of left chiral fermions is a modified
volcano type potential. The potentials for both left and
right chiral fermions vanish asymptotically when far
away from the brane, hence all values of �2 > 0 are
allowed, and there exists no mass gap but a continuous
gapless spectrum of KK states with �2 > 0. The massive
KK modes asymptotically turn into continuous plane
waves when far away from the brane.

For the simplest kink-fermion coupling � ����, the
potential of KK modes of right chiral fermions is always
positive at the brane location and vanishes when far away
from the brane. This shows that the potential could not trap
any bound fermions with right chirality and there is no zero
mode of right chiral fermions. However, with the increase
of�, a potential well around the brane location appears and
the well becomes deeper and deeper. A set of massive
fermions with a finite lifetime (resonances) is obtained.
We find that the masses and lifetimes of left and right chiral
resonances are almost the same, which demonstrates that it
is possible to compose a massive Dirac fermion from the
left and right chiral resonances. This conclusion agrees
with the case of bound massive fermionic KK modes given
in Refs. [37,40], where mass spectra of left and right chiral
massive fermions are the same.

For the case Fð�Þ ¼ �k with odd k > 1, the appearance
of a well in the effective potential of right-handed fermions
does not need a large coupling constant �. Especially, the
potential well for left-handed fermions becomes a double-
well. It is also shown that the spectrum of left-handed
fermionic resonances is the same as that of the right-
handed ones. The resonance with lower mass has longer
lifetime. For the same set of parameters, the number of

resonances increases with k and the lifetime of the lower
level resonance for larger k is much longer than the one for
smaller k. For small � and �, there is no resonance with a
long lifetime.
Finally, we give a comment on the fact that either the left

or the right resonance peaks at the brane’s location itself.
From the coupled equations (14), it can be seen that the
massive KK modes with different chirality but the same
mass are in fact contacted with each other. Since
eAðzÞFð�ðzÞÞ is odd, an odd left chiral massive KK mode
will correspond to an even right one with same mass, and
vice versa. This results in the fact that either the left or the
right resonance peaks at the brane’s location itself. So, at
the brane location z ¼ 0, we cannot get a massive reso-
nance made of left and right chiral KK modes with same
mass. This is to say, if we allow measurements only at z ¼
0, the massive resonances found on the brane are all chiral,
and the evidence of Dirac fermions is lost. However, in
realistic thick brane models, branes are extended objects
along the extra dimension. So we can interpret the proba-
bility for finding the massive modes on the brane (not
necessarily at z ¼ 0) as

R
zb�zb

dzjfL;RðzÞj2 or more suitably

as (25), where the parameter zb is chosen in order to allow
the influence of the odd modes in small regions around the
brane location z ¼ 0. According to this idea, the formation
of metastable massive Dirac fermions is realized, and those
fermions are quasilocalized on the brane. Similar discus-
sions can also be found in Refs. [27,38,56–58] for massive
fermions or gravitons.
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APPENDIX A: CHECKING THE SOLUTION OF
THE EINSTEIN AND FIELD EQUATIONS

The solution for the Einstein and field equations (3)–(5)
is

A ¼ �	 ln

�
cosh

�
�

	
z

��
; (A1)

� ¼ �0 arctan

�
sinh

�
�

	
z

��
; (A2)

Vð�Þ ¼ 1þ 3	

2	
3�2cos2ð1�	Þð�=�0Þ; (A3)
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where �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	ð1� 	Þp

. So we have

@zA ¼ �� tanh

�
�z

	

�
; (A4)

@z;zA ¼ ��2

	
sech

�
�z

	

�
2
; (A5)

and

@z� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	ð1� 	Þp

�

	
sech

�
�z

	

�
; (A6)

@z;z� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	ð1� 	Þp

�2

	2
sech

�
�z

	

�
tanh

�
�z

	

�
: (A7)

With the expression of �ðzÞ, the scalar potential Vð�ðzÞÞ
and @�Vð�Þ can be explicitly written as functions of z:

Vð�ðzÞÞ ¼ 1þ 3	

2	
3�2cos2ð1�	Þð�=�0Þ

¼ 1þ 3	

2	
3�2

�
1þ sinh

�
�z

	

�
2
��ð1�	Þ

¼ 1þ 3	

2	
3�2cosh�2ð1�	Þ

�
�z

	

�
; (A8)

@�Vð�Þ ¼ 3�2ð�1þ 	Þð1þ 3	Þ
	�0

cos1�2	

�
�

�0

�
sin

�
�

�0

�

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	ð1� 	Þp ð1þ 3	Þ�2

	2
cosh�2þ2	

�
�z

	

�

� sinh

�
�z

	

�
: (A9)

Now, Eq. (3) is reduced to

Right ¼ 3ðð@zAÞ2 � @z;zA� �2Þ

¼ 3

�
�2 tanh

�
z�

	

�
2 � �2 þ �2

	
sech

�
�z

	

�
2
�

¼ 3

�
��2sech

�
z�

	

�
2 þ �2

	
sech

�
�z

	

�
2
�

¼ 3
�2ð1� 	Þ

	
sech

�
z�

	

�
2 ¼ ð@z�Þ2 ¼ Left:

(A10)

For Eq. (4), we have

Right ¼ 3

2
e�2Að�3ð@zAÞ2 � @z;zAþ 3�2Þ ¼ 3

2
cosh

�
�z

	

�
2	
�
3�2 � 3�2 tanh

�
�z

	

�
2 þ �2

	
sech

�
�z

	

�
2
�

¼ 3

2
cosh

�
�z

	

�
2	
�
3�2sech

�
�z

	

�
2 þ �2

	
sech

�
�z

	

�
2
�
¼ 1þ 3	

2	
3�2 cosh

�
z�

	

��2ð1�	Þ ¼ Vð�ðzÞÞ ¼ Left: (A11)

At last, Eq. (5) can be checked:

Right ¼ e�2Að3ð@zAÞð@z�Þ þ @z;z�Þ ¼ cosh

�
�z

	

�
2	
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	ð1� 	Þp ð1þ 3	Þ�2

	2

�
sech

�
�z

	

�
tanh

�
�z

	

�

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	ð1� 	Þp ð1þ 3	Þ�2

	2
cosh

�
�z

	

��2þ2	
sinh

�
�z

	

�
¼ @�Vð�Þ ¼ Left: (A12)
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