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We prove that while the total cross section is bounded by ð�=m2
�Þln2s, where s is the square of the c.m.

energy and m� the mass of the pion, the total inelastic cross section is bounded by ð1=4Þð�=m2
�Þln2s,

which is 4 times smaller. We discuss the implications of this result on the total cross section itself.
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The Froissart bound [1], proved later from local massive
field theory and unitarity [2], is generally written as

�T <
�

m2
�

ln2s; (1)

where s is the square of the c.m. energy and m� the pion
mass.

The constant in front of ln2s was obtained by Lukaszuk
and myself [3]. Many of my friends, especially Peter
Landshoff, complained that this constant was much too
large. It is true that some fits of the proton-proton and
proton-antiproton cross sections [4] indicate the possible
presence of a lns square term with, however, a much
smaller coefficient, about 500 times smaller. Joachim
Kupsch, Shasanka Roy, David Atkinson, Porter Johnson,
and myself are planning to try to improve this constant by
taking into account analyticity and unitarity, including
elastic unitarity in the elastic region. To date, there is no
example of amplitude satisfying these requirements.
Atkinson [5] has produced amplitudes satisfying all re-
quirements but where �T / ln�3s.

If we want to undertake such a program a preliminary
requirement is to start on a well-defined basis. It was
recognized long ago that the Froissart bound is nonlocal
by Common [6] and Yndurain [7]; see also [8,9]. Namely,
one has, in fact,

sN
Z sþ1=sN

s
�Tðs0Þds0 <CNln

2s: (2)

The constant CN , however, depends on N. The narrower is
the interval, the larger is CN. This comes from the fact that
the basic ingredient of the Froissart bound is the conver-
gence of the integral

Z 1

s0

Asðs; tÞ
s3

ds <1; (3)

for 0< t � 4m2
� (sometimes only 0< t < 4m2

�, strictly),
where As is the absorptive part of the scattering amplitude,
and t the square of the momentum transfer

t ¼ 2k2ðcos�� 1Þ; s ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

A þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B þ k2
q

Þ2:
(4)

We have explained in [9] and will show elsewhere [10]
that, if one wants to preserve the value of the constant in
(1), the average should be taken on a large interval, for
instance,

��TðsÞ ¼ 1

s

Z 2s

s
�Tðs0Þds0 < �

m2
�

ln2sþ A lnsþ B; (5)

where A and B are determined by low energy parameters in
the t channel.
Here we want to report something different and seeming

naively obvious, namely, that for the inelastic cross section
�I,

�I <
�

4m2
�

ln2s: (6)

The bound is 4 times smaller than the one on the total cross
section.
If there was a strictly sharp cutoff in the partial wave

distribution, this would indeed be obvious, because if the
scattering amplitude Fðs; tÞ is given by

Fðs; tÞ ¼
ffiffiffi
s

p
2k

X
‘

ð2‘þ 1Þf‘ðsÞP‘

�
1þ t

2k2

�
; (7)

then

�T ¼ 4�

k2
X
‘

ð2‘þ 1ÞImf‘ðsÞ; (8)

and

�I ¼ 4�

k2
X
‘

ð2‘þ 1ÞðImf‘ðsÞ � jf‘ðsÞj2Þ: (9)

Hence

�I <
4�

k2
X
‘

ð2‘þ 1ÞðImf‘ � ðImf‘Þ2Þ: (10)

So while

0 � Imf‘ � 1; (11)

0 � Imf‘ � ðImf‘Þ2 � 1=4: (12)

However, there is no sharp cutoff in the partial wave
distribution and it is not the same distribution which max-
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imizes �T and �I for a given absorptive part:

As ¼ ImF; for t < 4m2
�: (13)

Here, for simplicity, we shall not use the average given
by (5), and make the traditional assumption that As is a
continuous function of s for fixed t < 4m2

�. Then, from (3),
we have

0< Asðs; tÞ< s2

lns
; (14)

on a set of values of s of asymptotic density unity.
We recall the method to get the bound on �T total. One

tries to maximize

�T / X
‘

ð2‘þ 1ÞImf‘; (15)

for a given As, with x ¼ 1þ t=ð2k2Þ
Asðs; tÞ ¼

X
‘

ð2‘þ 1ÞImf‘P‘ðxÞ; (16)

neglecting the deviation of
ffiffiffi
s

p
=ð2kÞ from unity.

It is known that the optimal distribution is

Im f‘ ¼ 1; for 0 � ‘ � LT;

ImfLTþ1 ¼ �; 0 � � � 1:
(17)

Then we have from (16)

P0
LT
ðxÞ þ P0

LTþ1ðxÞ<
s2

lns
: (18)

Using standard bounds on Legendre polynomials one gets

LTðAsÞ � kffiffi
t

p lns: (19)

The Froissart bound follows from that:

�T � 4�

t
ln2s; (20)

giving (1) for t ¼ 4m2
�. A recent new derivation of this

result has been proposed [11].
If, on the other hand, we want to maximize �I, where

�I ¼
X
‘

ð2‘þ 1ÞðImf‘ � ðImf‘Þ2Þ; (21)

we find that the optimal distribution for given As is (see
Appendix A)

Im f‘ ¼ 1
2½1� P‘ðxÞ=P �LðxÞ� (22)

for 0 � ‘ � LI, with

LI < �L < LI þ 1: (23)

It is obvious that

LIðAsÞ> LTð2AsÞ>LTðAsÞ: (24)

Starting from (22) one can get a closed expression for As:

As ¼ 1

2

�
P0
LI
ðxÞ þ P0

LIþ1ðxÞ

� ðLI þ 1Þ2P2
LI
ðxÞ � ðx2 � 1ÞP0

LI

2

P �LðxÞ

�
: (25)

In fact, we shall not use this expression. However, since

LTðs2= lnsÞ ’ kffiffi
t

p lns; (26)

LI > ðk= ffiffi
t

p Þ lns. The sum
1

2

XLI

0

ð2‘þ 1Þ
�
1� P‘

�
1þ t

2k2

��
P �L

�
1þ t

2k2

��
P‘ðxÞ;

(27)

can split into
PLI��

‘¼0 þPLI

‘¼LI�� . We choose

� ¼ �k: (28)

For ‘ < LI � �,

P‘ðxÞ
P �LðxÞ

� P‘ðxÞ
PLI

ðxÞ<
PLI��ðxÞ
PLI

ðxÞ : (29)

We prove, in Appendix B that

PLI��ðxÞ
PLI

ðxÞ < 4 expð��
ffiffiffiffiffiffiffiffiffiffiffiffi
x� 1

p Þ; (30)

(this is a very crude bound, but sufficient for our purpose).
Hence, with the choice (28), we get

1

2

XLI��k

‘¼0

ð2‘þ 1Þ½1� P‘ðxÞ=P �LðxÞ�P‘ðxÞ

>
1

2
½1� 4 expð��

ffiffiffiffiffiffiffi
t=2

p
Þ� XLI��k

‘¼0

ð2‘þ 1ÞP‘ðxÞ: (31)

So taking � ¼ ffiffiffiffiffiffiffi
2=t

p
ln8 and t < 2k2, we get

XLI��k

‘¼0

ð2‘þ 1ÞP‘ðxÞ< 4s2

lns
: (32)

Hence we are back to the same problem as for �T , except
for a change of scale, and we get

LI � �<
kffiffi
t

p ðlnsþ CÞ: (33)

Now, from (28),

LI <
kffiffi
t

p ðlnsþ C0Þ; (34)

so that

�I <
XLI

‘¼0

ð2‘þ 1Þ 1
4
¼ k2ln2s

4t
; (35)
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and

�I <
�

t
½ln2sþOðlnsÞ�; (36)

and, if t ¼ 4m2
�,

�I <
�

4m2
�

ln2s: (37)

There remains of course the fact that (37) holds only on a
set of asymptotic density unity if As is a continuous func-
tion of s for fixed t. The scale in s cannot be fixed, as was
the case for the total cross section. As we said before, the
only thing we know is that the integral (3) converges for
0 � t < 4m2

�, sometimes also for t ¼ 4m2
�. For �I, one

would like to have the analog of (5), but, so far, we have not
been able to get it. Another way out is to assume that,
beyond a certain energy, As is monotonous. The case where
it is monotonous decreasing is uninteresting, and so we
take As to be monotonous increasing. If

IðtÞ ¼
Z 1

s0

Asðs; tÞ
s3

ds; then Asðs; tÞ< 2s2IðtÞ: (38)

Then, all constants can be fixed in the bounds on �T and
�I, and the scale problem is removed. Further, if IðtÞ goes
to infinity as t approaches 4m2

�, we know that IðtÞ behaves
like a negative power of (4m2

� � t). By taking t ¼ 4m2
� �

1= lns, one can manage to prove that (1) and (32) still hold,
with corrective terms of the order of lns lnðlnsÞ. It is a
matter of taste to decide if this monotonicity assumption is
acceptable. Here we shall not give detailed calculations,
because we hope to find the analog of (5) for the inelastic
cross section, and to get the best possible estimates without
any artificial assumption.

This ends the rigorous part of this paper. Now comes the
fact that most theoreticians believe that the worse that can
happen at high energies is that the elastic cross section
reaches half of the total cross section, which corresponds to
an expanding black disk. This is the case in the model of
Chou and Yang [12], and in the model of Cheng and Wu
[13], later developed by Bourrely, Soffer, and Wu [14], and
also in general considerations by Van Hove [15] who
introduced what became known as the ‘‘overlap function’’
which is X

‘

ð2‘þ 1Þ½Imf‘ � ðImf‘Þ2�P‘ðcos�Þ; (39)

which represents the overlap between inelastic final states
produced by two two-body states corresponding to differ-
ent directions. Here Van Hove neglects the real part of the
elastic amplitude. From

o‘ ¼ Imf‘ � ðImf‘Þ2; (40)

one gets

Im f‘ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4o‘

p
2

; (41)

For large ‘ one has to choose the minus sign, and
Van Hove argues that by continuity, or, better analyticity
in ‘, one has to keep the minus sign down to ‘ ¼ 0, which
means that Imf‘ is less than 1=2. However, not everybody
agrees with this. See, for instance, the talk of Troshin in La
Londe-les-Maures [16]. In his view, the scattering ampli-
tude becomes dominantly elastic in the high energy limit.
To say the least, this seems to me extremely unlikely and,
therefore, I tend to believe that we have

�T <
1

2

�

m2
�

ln2s: (42)

Certainly, this is not enough to satisfy Landshoof, but it
represents, nevertheless, progress.

I would like to thank Jacques Soffer for his invitation to
the workshop of La Londe-les-Maures in September 2008.
I would also like to thank David Atkinson, Porter Johnson,
Peter Landshoff, Jean-Marc Richard, Shasanka Roy, and
Tai Tsun Wu for stimulating discussions.

APPENDIX A

Calling Imf‘ ¼ y‘, we try to maximize

�I ¼
X
‘

ð2‘þ 1Þðy‘ � y2‘Þ; (A1)

for given

As ¼
X
‘

ð2‘þ 1Þy‘P‘ðxÞ; x > 1: (A2)

We start with a heuristic variational argument. We have

�As ¼ 0 ¼ X
‘

ð2‘þ 1Þ�y‘P‘; (A3)

��I ¼ 0 ¼ X
‘

ð2‘þ 1Þ�y‘ð1� 2y‘Þ: (A4)

Hence, using a Lagrange multiplyer:

y‘ ¼ 1
2½1� cP‘ðxÞ�: (A5)

This is, in fact, the correct answer. We shall prove it.
Assume that fy‘g is the maximizing distribution.

Consider only two terms, y‘ and yL. Another distribution
contains y‘ þ �y‘ and yL þ �yL. As is fixed. Hence,

ð2‘þ 1Þ�‘P‘ þ ð2Lþ 1Þ�LPL ¼ 0: (A6)

On the other hand,

��I ¼ ð2‘þ 1Þ�‘ð1� 2y‘Þ þ ð2Lþ 1Þ�Lð1� 2yLÞ
� ð2‘þ 1Þ�2

‘ � ð2Lþ 1Þ�2
L: (A7)

If we choose
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1� 2y‘ ¼ cP‘; 1� 2yL ¼ cPL; (A8)

we get, from (A6)

��I ¼ �ð2‘þ 1Þ�2
‘ � ð2Lþ 1Þ�2

L < 0: (A9)

Hence the choice (A8) maximizes �I. Therefore, we take

y‘ ¼ 1
2½1� cP‘ðxÞ�: (A10)

Now, what is c? If the sum is

As ¼ 1

2

X‘¼LI

‘¼0

ð2‘þ 1ÞP‘ðxÞ½1� cP‘ðxÞ�; (A11)

obviously 0< c< 1=PLI
because 0< Imf‘ < 1. But it is

not possible for c to be less than 1=PLIþ1, because we

could apply our previous reasoning to the last two partial
waves, the last one being zero. This would lead to changing
c. So

1

PLI

< c <
1

PLIþ1

: (A12)

Now we give, for completeness, in the case where c ¼
1=PLI

exactly, the complete expression for As, even though

we do not use it. From Gradshtein and Ryzhik [17], we get

XL
‘¼0

ð2‘þ 1ÞP2
‘ ¼ ðLþ 1ÞðP0

Lþ1PL � P0
LPLþ1Þ; (A13)

and so

As ¼ 1
2½P0

L þ P0
Lþ1 � ðLþ 1ÞðP0

Lþ1 � P0
LPLþ1=PLÞ�:

(A14)

Notice that As vanishes for x ¼ 1. It is possible to get an
expression with x� 1 explicitly factored out, using the
Legendre differential equation and recursive relations.

APPENDIX B

We derive an upper bound on

PL��ðxÞ=PLðxÞ; x > 1: (B1)

From

P‘ ¼ 1

�

Z �

0
ðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
cos�Þ‘d�; (B2)

we get, using the Minkowsky-Hölder inequality, for x > 1,

PL��ðxÞ< ½PLðxÞ�ðL��Þ=L; (B3)

so

PL��ðxÞ
PLðxÞ

<
1

½PLðxÞ��=L
: (B4)

Now, we need a lower bound for P‘. A very crude lower
bound is enough: cutting the integral (B2) at � ¼ �=4, we
get

P‘ðxÞ> 1

4

�
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

2

s �
‘
; (B5)

and, for 1< x< 7,

P‘ðxÞ> 1
4 expð‘

ffiffiffiffiffiffiffiffiffiffiffiffi
x� 1

p Þ: (B6)

Since x ¼ 1þ t=ð2k2Þ and t < 4m2
�, this corresponds to

k > 0:4m�, ridiculously small in these high energy
considerations.
One could do much better than that. For instance, Roy

[18] quotes an unpublished optimal result of mine:

P‘ðxÞ> 2N!

ðN!Þ2
�

N þ 1

2ð2N þ 1Þ
�
N
�
xþ N

N þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p �
‘
;

(B7)

for N ¼ 1; 2; 3; 4; . . . . For instance,

P‘ðxÞ> 54

100

�
xþ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p �
‘
: (B8)

If we take ‘ ¼ 2 and ‘ ¼ 3, we see that this bound is
saturated for x ! 1. However, these refinements are not
really needed for our purpose. Inequality (B6) is enough.
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