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We uncover a novel solution of the ’t Hooft anomaly matching conditions for QCD. Interestingly in the

perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical

number of flavors above which QCD in the nonperturbative regime, develops an infrared stable fixed

point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime

via the all-orders conjectured beta function for nonsupersymmetric gauge theories.
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I. INTRODUCTION

Strong dynamics poses a formidable challenge. For
decades physicists have been working on several aspects
associated to the strongly coupled regime of gauge theories
of fundamental interactions such as QCD.

Perhaps one of the most fascinating possibilities is that
QCD or a similar model has magnetic dual gauge theories.
In fact, in the late nineties, in a series of exceptional papers
Seiberg [1,2] provided strong support for the existence of a
consistent picture of such a duality within a supersymmet-
ric framework. Supersymmetry is, however, quite special
and the existence of such a duality does not automatically
imply the existence of a QCD dual. One of the most
relevant of Seiberg’s results, for the present purpose, has
been the identification of the boundary of the conformal
window for supersymmetric QCD as function of the num-
ber of flavors and colors. The dual theories proposed by
Seiberg pass a set of mathematical consistency relations
known as ’t Hooft anomaly conditions [3]. Another im-
portant tool has been the knowledge of the all-orders
supersymmetric beta function [4–6]

Recently we provided several analytic predictions for
the conformal window of nonsupersymmetric gauge theo-
ries using different approaches [7–9]. It is natural, at this
point, to start exploring the possible existence of a QCD
dual theory in the hope that it helps to provide a consistent
picture of the QCD phase diagram as a function of number
of colors and flavors.

Arguably, the existence of a possible dual of QCD able
to reproduce its infrared dynamics must match the ’t Hooft
anomaly conditions [3]. We will exhibit several solutions
of these conditions for QCD. An earlier exploration al-
ready appeared in the literature [10]. These conditions are,
per se, not sufficiently constraining to select a unique QCD
dual. However, we have found a new solution with the
property that in the perturbative regime predicts the critical

number of flavors above which QCD, in the electric vari-
ables, enters the conformal regime as predicted using the
all-orders conjectured beta function for nonsupersymmet-
ric gauge theories [9].

II. QCD GLOBAL ANOMALIES AND
CONFORMALWINDOW

The underlying gauge group is SUð3Þwhile the quantum
flavor group is

SULðNfÞ � SURðNfÞ �UVð1Þ; (1)

and the classical UAð1Þ symmetry is destroyed at the
quantum level by the Adler-Bell-Jackiw anomaly. We in-
dicate with Qi

�;c the two component left spinor where � ¼
1, 2 is the spin index, c ¼ 1; . . . ; 3 is the color index while

i ¼ 1; . . . ; Nf represents the flavor. ~Q
�;c
i is the two compo-

nent conjugated right spinor. We summarize the transfor-
mation properties in Table I.
The global anomalies are associated to the triangle dia-

grams featuring at the vertices three SUðNfÞ generators

(either all right or all left), or two SUðNfÞ generators (all
right or all left) and one UVð1Þ charge. We indicate these
anomalies for short with

SUL=RðNfÞ3; SUL=RðNfÞ2UVð1Þ: (2)

For a vectorlike theory there are no further global anoma-
lies. The cubic anomaly factor, for fermions in fundamen-

tal representations, is 1 for Q and �1 for ~Q while the
quadratic anomaly factor is 1 for both leading to

SUL=RðNfÞ3 / �3; SUL=RðNfÞ2UVð1Þ / �3: (3)

Several analytic predictions for the lower end of the con-

TABLE I. Field content of an SU(3) gauge theory with quan-
tum global symmetry SULðNfÞ � SURðNfÞ �UVð1Þ.
Fields ½SUð3Þ� SULðNfÞ SURðNfÞ UVð1Þ
Q h h 1 1
~Q �h 1 �h �1
G� Adj 1 1 1
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formal window for nonsupersymmetric gauge theories
with matter transforming according to several SU, SO,
and Sp representation have been made [7–9,11,12]. Here
we add another method which uses exact anomaly match-
ing conditions and demonstrate that one of the earlier
analysis, i.e. the one based on the all-orders beta function
conjecture, leads to a perfect match with the exact results.

Recently we have conjectured an all-orders beta func-
tion which allows for a bound of the conformal window [9]
of gauge theories for any matter representation. Other
approaches yield compatible results. In this paper we
provide one more piece of evidence in support of our
conjecture.

Consider an SUðNÞ gauge group with Nf Dirac flavors

belonging to the representation r of the gauge group. The
conjectured beta function [9] is given in terms of the
anomalous dimension of the fermion mass � ¼
�d lnm=d ln� where m is the renormalized mass. At the
zero of the all-orders beta function one has

2
11TðrÞNfðrÞð2þ �Þ ¼ C2ðGÞ; (4)

The generators Ta
r a ¼ 1 . . .N2 � 1 of the gauge group in

the representation r are normalized according to
Tr½Ta

r T
b
r � ¼ TðrÞ�ab while the quadratic Casimir C2ðrÞ is

given by Ta
r T

a
r ¼ C2ðrÞI. The trace normalization factor

TðrÞ and the quadratic Casimir are connected via
C2ðrÞdðrÞ ¼ TðrÞdðGÞ where dðrÞ is the dimension of the
representation r. The adjoint representation is denoted by
G. Hence, specifying the value of the anomalous dimen-
sions at the infrared fixed point yields the last constraint
needed to construct the conformal window. Requiring the
absence of negative norm states at the conformal point
requires � < 2 resulting in the maximum possible exten-
sion of the conformal window bounded from below by

NfðrÞBF � 11

8

C2ðGÞ
TðrÞ � ¼ 2: (5)

Specializing to three colors and fundamental representa-
tion we find

NfðrÞBF � 33
4 ¼ 8:25; for QCD with � ¼ 2: (6)

The actual size of the conformal window can, however, be
smaller than the one determined above without affecting
the validity of the beta function. It may happen, in fact, that
chiral symmetry breaking is triggered for a value of the
anomalous dimension less than two. If this occurs, the
conformal window shrinks. The ladder approximation ap-
proach [13–16], for example, predicts that chiral symmetry
breaking occurs when the anomalous dimension is larger
than 1. Remarkably the all-orders beta function encompass
this possibility as well [9]. In fact, it is much more practical
to quote the value predicted using the beta function by
imposing � ¼ 1:

NfðrÞ � 11

6

C2ðGÞ
TðrÞ ; � ¼ 1: (7)

For QCD we have

NfðrÞBF � 11; for QCD with � ¼ 1: (8)

The result is very close to the one obtained using directly
the ladder approximation, i.e. Nf � 4N, as shown in

[9,11].
Lattice simulations of the conformal window for various

matter representations [17–33] are in agreement with the
predictions of the conformal window via the all-orders beta
function.
It would be desirable to have a novel way to determine

the conformal window which makes use of exact matching
conditions.

III. DUAL SETUP

If a magnetic dual of QCD does exist one expects it to be
weakly coupled near the critical number of flavors below
which one breaks large distance conformality in the elec-
tric variables. Determining a possible unique dual theory
for QCD is, however, not simple given the few mathemati-
cal constraints at our disposal, as already observed in [10].
The saturation of the global anomalies is an important tool
but is not able to select out a unique solution. We shall see,
however, that one of the solutions, when interpreted as the
QCD dual, leads to a prediction of a critical number of
flavors corresponding exactly to the one obtained via the
conjectured all-orders beta function.
We seek solutions of the anomaly matching conditions

for a gauge theory SUðXÞ with global symmetry group
SULðNfÞ � SURðNfÞ �UVð1Þ featuring magnetic quarks

q and ~q together with SUðXÞ gauge singlet states identifi-
able as baryons built out of the electric quarks Q. Since
mesons do not affect directly global anomaly matching
conditions we could add them to the spectrum of the dual
theory. We study the case in which X is a linear combina-
tion of number of flavors and colors of the type �Nf þ 3�

with � and � integer numbers.
We add to the magnetic quarks gauge singlet Weyl

fermions which can be identified with the baryons of
QCD but massless. The generic dual spectrum is summa-
rized in Table II. The wave functions for the gauge singlet
fields A, C and S are obtained by projecting the flavor
indices of the following operator

�c1c2c3Qi1
c1Q

i2
c2Q

i3
c3 ; (9)

over the three irreducible representations of SULðNfÞ as
indicated in the Table II. These states are all singlets under
the SURðNfÞ flavor group. Similarly, one can construct the

only right-transforming baryons ~A, ~C, and ~S via ~Q. The B

states are made by two Q fields and one right field �~Q while

theD fields are made by oneQ and two �~Q fermions. y is the
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yet to be determined baryon charge of the magnetic quarks
while the baryon charge of composite states is fixed in units
of the QCD quark one. The ‘’s count the number of times
the same baryonic matter representation appears as part of
the spectrum of the theory. Invariance under parity and
charge conjugation of the underlying theory requires ‘J ¼
‘~J with J ¼ A; S; . . . ; C and ‘B ¼ �‘D.

Having defined the possible massless matter content of
the gauge theory dual to QCD, we compute the SULðNfÞ3
and SULðNfÞ2UVð1Þ global anomalies in terms of the new

fields:

SULðNfÞ3 / Xþ ðNf � 3ÞðNf � 6Þ
2

‘A

þ ðNf þ 3ÞðNf þ 6Þ
2

‘S þ ðN2
f � 9Þ‘C

þ ðNf � 4ÞNf‘BA
þ ðNf þ 4ÞNf‘BS

þ NfðNf � 1Þ
2

‘DA
þ NfðNf þ 1Þ

2
‘DS

¼ 3;

(10)

SULðNfÞ2UVð1Þ / yX þ 3
ðNf � 3ÞðNf � 2Þ

2
‘A

þ 3
ðNf þ 3ÞðNf þ 2Þ

2
‘S

þ 3ðN2
f � 3Þ‘C þ 3ðNf � 2ÞNf‘BA

þ 3ðNf þ 2ÞNf‘BS
þ 3

NfðNf � 1Þ
2

‘DA

þ 3
NfðNf þ 1Þ

2
‘DS

¼ 3: (11)

The right-hand side is the corresponding value of the
anomaly for QCD.

IV. A REALISTIC QCD DUAL

We have found several solutions to the anomaly match-
ing conditions presented above. Some were found previ-
ously in [10]. Here we start with a new solution, shown in
Table III, in which the gauge group is SUð2Nf � 5NÞ with
the number of colors N equal to 3. It is, however, conve-
nient to keep the dependence on N explicit. The solution
above corresponds to the following value assumed by the
indices and y baryonic charge in Table II.

X ¼ 2Nf � 5N; ‘A ¼ 2; ‘DA
¼ �‘BA

¼ 2;

‘S ¼ ‘BS
¼ ‘DS

¼ ‘C ¼ 0; y ¼ N
2Nf � 5

2Nf � 15
;

(12)

with N ¼ 3. X must assume a value strictly larger than 1,
otherwise it is an Abelian gauge theory. This provides the
first nontrivial bound on the number of flavors:

Nf >
5N þ 1

2
; (13)

which for N ¼ 3 requires Nf > 8.

A. Conformal window from the dual magnetic theory

Asymptotic freedom of the newly found theory is dic-
tated by the coefficient of the one-loop beta function

�0 ¼ 11
3 ð2Nf � 5NÞ � 2

3Nf: (14)

To this order in perturbation theory, the gauge singlet states
do not affect the magnetic quark sector and we can hence
determine the number of flavors obtained by requiring the
dual theory to be asymptotic free. i.e.:

Nf � 11

4
N dual asymptotic freedom: (15)

Quite remarkably this value coincides with the one pre-
dicted by means of the all-orders conjectured beta function
for the lowest bound of the conformal window, in the
electric variables, when taking the anomalous dimension
of the mass to be � ¼ 2. We recall that for any number of
colors N the all-orders beta function requires the critical
number of flavors to be larger than

NBF
f j�¼2 ¼ 11

4N: (16)

For N ¼ 3 the two expressions yield 8.25 [34]. We con-
sider this a nontrivial and interesting result lending further
support to the all-orders beta function conjecture and si-
multaneously suggesting that this theory might, indeed, be
the QCD magnetic dual. The actual size of the conformal
window matching this possible dual corresponds to setting
� ¼ 2. We note that although for Nf ¼ 9 and N ¼ 3 the

TABLE II. Massless spectrum of magnetic quarks and baryons
and their transformation properties under the global symmetry
group. The last column represents the multiplicity of each state
and each state is a Weyl fermion.

Fields ½SUðXÞ� SULðNfÞ SURðNfÞ UVð1Þ # of copies

q h h 1 y 1

~q �h 1 �h �y 1

A 1 1 3 ‘A

S 1 1 3 ‘S

C 1 1 3 ‘C

BA 1 h 3 ‘BA

BS 1 h 3 ‘BS

DA 1 h 3 ‘DA

DS 1 h 3 ‘DS

~A 1 1 �3 ‘ ~A

~S 1 1 �3 ‘~S

~C 1 1 �3 ‘ ~C
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magnetic gauge group is SUð3Þ, the theory is not trivially
QCD given that it features new massless fermions and their
interactions with massless mesonic type fields.

To investigate the decoupling of each flavor at the time,
one needs to introduce bosonic degrees of freedom. These
are not constrained by anomaly matching conditions.
Interactions among the mesonic degrees of freedom and
the fermions in the dual theory cannot be neglected in the
regime when the dynamics is strong. The simplest mesonic

operator Mj
i transforming simultaneously according to the

antifundamental representation of SULðNfÞ and the funda-
mental representation of SURðNfÞ leads to the following

type of interactions for the dual theory:

LM ¼ Yq~qqM~qþ YABA
AM �BA þ YCBA

CM �BA þ YCBS
CM �BS

þ YSBS
SM �BS þ YBADA

BAM �DA þ YBADS
BAM �DS

þ YBSDA
BSM �DA þ YBSDS

BSM �DS þ H:c: (17)

The coefficients of the various operators are matrices tak-
ing into account the multiplicity with which each state
occurs. The number of operators drastically reduces if we
consider only the ones linear in M. The dual quarks and
baryons interact via mesonic exchanges. We have consid-
ered only the meson field for the bosonic spectrum because
it is the one with the most obvious interpretation in terms of
the electric variables. One can also envision adding new
scalars charged under the dual gauge group [10] and in this
case one can have contact interactions between the mag-
netic quarks and baryons. We expect these operators to
play a role near the lower bound of the conformal window
of the magnetic theory where QCD is expected to become
free. It is straightforward to adapt the terms above to any
anomaly matching solution.

In Seiberg’s analysis it was also possible to match some
of the operators of the magnetic theory with the ones of the
electric theory. The situation for QCD is, in principle, more
involved, although it is clear that certain magnetic opera-

tors match exactly the respective ones in the electric var-
iables. These are the meson M and the massless baryons,

A; ~A; . . . ; S shown in Table II. The baryonic type operators
constructed via the magnetic dual quarks have baryonic
charge which is a multiple of the ordinary baryons and,
hence, we propose to identify them, in the electric varia-
bles, with bound states of QCD baryons.
The generalization to a generic number of colors is

currently under investigation [35]. It is an interesting issue
and to address it requires the knowledge of the spectrum of
baryons for arbitrary number of colors. It is reasonable to
expect, however, a possible nontrivial generalization to any
number of odd colors [36].

V. EARLIER SOLUTIONS

It is worth comparing the solution above with the ones
found already in the literature [10]. These are:

X ¼ Nf � 6; ‘A ¼ ‘DA
¼ �‘BA

¼ 1;

‘S ¼ ‘BS
¼ ‘DS

¼ ‘C ¼ 0; y ¼ 3
Nf � 2

Nf � 6
;

(18)

corresponding to � ¼ 1 and � ¼ �2, when taking the
magnetic quark flavor symmetry assignment as in
Table II. However, assigning the magnetic quarks q to
the complex representation of SULðNfÞ one has also the

solution:

X ¼ Nf þ 6; ‘S ¼ ‘DS
¼ �‘BS

¼ 1;

‘A ¼ ‘BA
¼ ‘DA

¼ ‘C ¼ 0; y ¼ �3
Nf þ 2

Nf þ 6
:

(19)

Assuming the gauge group to be SUðNf � 6Þ the one-loop
coefficient of the beta function is

�0 ¼ 11
3 ðNf � 6Þ � 2

3Nf; (20)

where the sign corresponds to the two possibilities for X,
i.e. Nf � 6 and we have only included the magnetic quarks

[37]. The critical number of flavors where asymptotic free-
dom is lost, in the case of the Nf � 6 gauge group, corre-

sponds to 7.33. On the other hand, we have a stronger
constraint from the fact that the gauge group must be at
least SUð2Þ and hence Nf � 8 while no useful constraint

can be obtained for the Nf þ 6 gauge group. It was argued

in [10] that by taking SO or Sp as possible gauge group
rather than SU one might increase the critical number of
flavors to around 10. However choosing SO and Sp rather
than SU implies that the global symmetry group is en-
larged to SUð2NfÞ and hence it is not clear how one can

still match the anomaly conditions, unless one assumes a
simultaneous dynamical enhancement of the QCD global
symmetries at the fixed point.

TABLE III. Massless spectrum of magnetic quarks and bary-
ons and their transformation properties under the global sym-
metry group. The last column represents the multiplicity of each
state and each state is a Weyl fermion.

Fields ½SUð2Nf � 5NÞ� SULðNfÞ SURðNfÞ UVð1Þ
# of

copies

q h h 1
Nð2Nf�5Þ
2Nf�5N 1

~q �h 1 �h � Nð2Nf�5Þ
2Nf�5N 1

A 1 1 3 2

BA 1 h 3 �2

DA 1 h 3 2

~A 1 1 �3 2
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VI. CONCLUSIONS

We uncovered a novel solution of the ’t Hooft anomaly
matching conditions for QCD. We have shown that in the
perturbative regime the new gauge theory, if interpreted as
a possible QCD dual, predicts the critical number of flavors
above which QCD in the nonperturbative regime, develops
an infrared stable fixed point. The value is identical to the
maximum bound predicted in the nonpertubative regime
via the all-orders conjectured beta function for nonsuper-
symmetric gauge theories. Recent suggestions to analyze
the conformal window of nonsupersymmetric gauge theo-
ries based on different model assumptions [38] are in
qualitative agreement with the precise results of the all-
orders beta function conjecture. It is worth noting that the
combination 2Nf � 5N appears in the computation of the

mass gap for gauge fluctuations presented in [38,39]. It
would be interesting to explore a possible link between
these different approaches in the future.

Interestingly, the present solution of the anomaly match-
ing conditions indicate a substantial larger extension of the
conformal window than the one predicted using the ladder

approximation [13–16] and the thermal count of the degree
of freedom [40]. The prediction is, however, entirely con-
sistent with the maximum extension of the conformal
window obtained using the all-orders beta function [9]
together with a value of the anomalous dimension of the
quark mass close to 2. Our main conclusion is that the
’t Hooft anomaly conditions alone do not exclude the
possibility that the maximum extension of the QCD con-
formal window is the one obtained for a large anomalous
dimension of the quark mass.
By computing the same gauge singlet correlators in

QCD and its suggested dual, one can directly validate or
confute this proposal via lattice simulations.
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