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In this paper we will implement the inverse seesaw mechanism into the noncommutative framework on

the basis of the AC extension of the standard model. The main difference from the classical AC model is

the chiral nature of the AC fermions with respect to a Uð1ÞX extension of the standard model gauge group.

It is this extension which allows us to couple the right-handed neutrinos via a gauge invariant mass term to

left-handed A particles. The natural scale of these gauge invariant masses is of the order of 1017 GeV

while the Dirac masses of the neutrino and the AC particles are generated dynamically and are therefore

much smaller (� 1 to �106 GeV). From this configuration, a working inverse seesaw mechanism for the

neutrinos is obtained.
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I. INTRODUCTION

We present an extension of the standard model in its
noncommutative formulation [1], which implements the
inverse seesaw mechanism [2]. As with previous exten-
sions of the standard model within the noncommutative
framework [3–6], this model is based on the classification
of finite spectral triples [7–12]. It is a variant of the AC
model found in [3], which contains the standard model
fermions as well as a two new species of particles, the A
and the C particles. In this paper we work with a spectral
triple where the KO dimension of the internal part is taken
to be six [13,14]. In the original AC model [3], the new
particles were electrically charged with twice the electron
charge and turned out to be viable candidates for dark
matter [15]. Here, we will assume them to posses chiral
charges of a new Uð1ÞX gauge group.

An open problem in noncommutative geometry is the
realization of the mass mechanism for neutrinos. The
spectral action implies not only the standard model action
and the Einstein-Hilbert action but also a set of conditions
imposed on the couplings of the bosonic and fermionic
fields. One finds [14,16] that the condition imposed on the
Yukawa couplings demands that the top quark coupling is
accompanied by at least a second Yukawa coupling of the
order of 1. This fact strongly suggests a seesawlike mecha-
nism where the additional large Yukawa coupling is taken
to be one of the neutrino couplings.

While in KO-dimension zero, the neutrino masses are of
a Dirac type [17–19]; KO-dimension six also allows for
Majorana masses [13,14] and the seesaw mechanism. The
price to be paid for the Majorana mass is a violation of one
of the axioms of noncommutative geometry, namely, the
axiom of orientability [20]. This problem can be overcome
by introducing a second layer for the internal algebra in the
finite part of the spectral triple [1,14], or by a modification
of the spectral action [21].

Nevertheless, a numerical analysis of the standard model
with seesaw mechanism [14,22,23] shows that at least one
of the gauge invariant seesaw masses is of the order of
�1014 GeV. One would expect the elements of the
Majorana mass matrix to be of the order of �1017 GeV,
the cutoff scale of the spectral action. The inverse seesaw
shifts this discrepancy to an intermediate energy scale
associated with the vacuum expectation value of a new
scalar field. Furthermore, the present version of the AC
model is completely compatible with the axioms of non-
commutative geometry [1] and can, in principle, be em-
ployed in models based on spectral triples with
KO-dimension six or zero (although a specific model for
KO-dimension zero does not yet exist).
The model presented here has as a gauge group G ¼

Uð1ÞY � SUð2Þ � SUð3Þ �Uð1ÞX, where the standard
model subgroup GSM ¼ Uð1ÞY � SUð2Þ � SUð3Þ is bro-
ken by the usual Higgs mechanism to Uð1Þem � SUð3Þ and
the new subgroup Uð1ÞX is broken to Z2 by a decoupled
Higgs mechanism associated with a new scalar field. It is
therefore the second extension of the standard model
within the noncommutative framework after [6] which
has an enlarged scalar sector. This new scalar field gener-
ates the masses in the AC sector. Previous attempts to
extend the standard model within the framework of non-
commutative geometry proved to be extremely difficult.
Most of the early attempts, unfortunately, failed to produce
physically interesting models [24].
It would, of course, also be desirable to gain a deeper

understanding of the origin of the internal space, i.e. the
source of the matrix algebra. There are hints that a con-
nection to loop quantum gravity exists [25]. Also double
Fell bundles seem to be a plausible structure in noncom-
mutative geometry [26]. They could provide a deep con-
nection to category theory and give better insights into the
mathematical structure of almost-commutative geometries
such as the standard model.
This paper is organized as follows: In Sec. II we give the

construction of the internal space based on a minimal*christophstephan@gmx.de
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Krajewski diagram. We calculate the lift of the gauge
group and the fluctuated Dirac operator. This fluctuation
leads to the standard model Higgs and a new scalar field.
We then calculate the relevant parts of the spectral action,
which provides the potential for the Higgs and the scalar
field, the new parts in the fermionic Lagrangian as well as
constraints on the quadratic couplings and the quartic
couplings of the scalar fields, the Yukawa couplings of
the fermions, and the gauge couplings of the non-Abelian
subgroup of the gauge group.

In Sec. III we analyze the mass matrix for the neutrino
sector coupled to the AC sector and calculate the mass
eigenvalues for the light mass eigenstates and the heavy
mass eigenstates. We then estimate the scale of the vacuum
expectation value of the new scalar field and also give a few
estimations of the range of masses in the AC sector.

II. THE MODEL

The model proposed in this paper is a variant of the AC
model [3] but with a different charge assignment for the
Uð1Þ subgroups of the gauge group. The internal Hilbert
space, which encodes the multiplet structure of the gauge
group, consists of the usual chiral standard model multip-
lets [i.e. six quarks as SUð2Þ doublets/singlets and SUð3Þ
triplets and six leptons as SUð2Þ doublets/singlets] plus A
and C particles being SUð2Þ and SUð3Þ singlets.

Internal spaces of almost-commutative geometries are
conveniently encoded in Krajewski diagrams [27]. The
Krajewski diagram for this model is depicted in Fig. 1.

Note that the allowed mass term connecting right-handed
C particles to right-handed A antiparticles does not appear
explicitly since we have left out the antiparticles to keep
the diagram simple. This Krajewski diagram is based on a
minimal diagram that can be obtained by deleting the
arrow for the right-handed neutrino.
As matrix algebra for the internal space, we choose

A ¼ C �M2ðCÞ �M3ðCÞ � C � C � C � C � C. This
is exactly the AC-model algebra [3] in KO-dimension
six. From the Krajewski diagram, we read off the repre-
sentation for A 3 ða; b; c; d; e; f; g; hÞ:

�L ¼
b � 13 0 0 0

0 b 0 0
0 0 g 0
0 0 0 �g

0
BBB@

1
CCCA;

�R ¼

c � 13 0 0 0 0 0
0 �c � 13 0 0 0 0
0 0 �c 0 0 0
0 0 0 g 0 0
0 0 0 0 e 0
0 0 0 0 0 h

0
BBBBBBBB@

1
CCCCCCCCA
;

�c
L ¼

12 � a 0 0 0
0 d12 0 0
0 0 e 0
0 0 0 f

0
BBB@

1
CCCA;

�c
R ¼

a 0 0 0 0 0
0 a 0 0 0 0
0 0 d 0 0 0
0 0 0 d 0 0
0 0 0 0 e 0

0 0 0 0 f

0
BBBBBBBB@

1
CCCCCCCCA
:

(1)

The internal part D of the Dirac operator can be decom-
posed as follows:

D ¼ � T
�T ��

� �
; with � ¼ 0 M

M� 0

� �
; (2)

where the submatrix M is given by

M ¼
ðMu;MdÞ � 13 0 0 0

0 ðMe;M�Þ 0 0
0 ð0;M�AÞ MA 0
0 0 0 MC

0
BBB@

1
CCCA: (3)

Here, ðMu;MdÞ is the mass matrix of the quarks, ðMe;M�Þ
is the mass matrix of the leptons, andMA (MC) is the mass
matrix of the A particles (C particles). The gauge invariant
mass matrix connecting the right-handed neutrinos to the
left-handed A particles is ð0;M�AÞ. The submatrix T is

T ¼
0 0 0 0
0 0 0 MAC

0 0 Mt
AC 0

0
@

1
A; (4)

with MAC a Majorana-type mass matrix connecting right-

FIG. 1. Krajewski diagram of the extended standard model.
The dotted line indicates the gauge invariant mass term connect-
ing the right-handed neutrino to the left-handed A particle.
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handed C particles to right-handed A antiparticles. It is not
a gauge invariant mass term and will be associated with the
new scalar field. We assume that the A and C particles
come, as with the standard model particles, in three gen-
erations, so M�A, MA, MC, MAC 2 M3ðCÞ.

The non-Abelian subgroup of unitarities of the matrix
algebra A is Unc ¼ Uð2Þ �Uð3Þ. It contains two Uð1Þ
subgroups via the determinant that may be lifted by central
extensions to the fermionic Hilbert space [28]. We will call
these two subgroups detðUð2ÞÞ ¼ Uð1ÞY and detðUð3ÞÞ ¼
Uð1ÞX. The first one is nothing but the standard model
hypercharge subgroup, and the second one is associated
with the AC particles. The AC particles are neutral with
respect to the standard model gauge group; i.e. the AC
particles are SUð2Þ � SUð3Þ singlets and have zero hyper-
charge. On the other hand, the standard model particles are
neutral with respect to the Uð1ÞX. It follows that the gauge
group of our model is G ¼ Uð1ÞY � SUð2Þ � SUð3Þ �
Uð1ÞX.

An anomaly-free lift of Unc to the Hilbert space is
achieved by the following central charge assignment, nor-
malized to unity of A and C for the Uð1ÞX subgroup:

AL AR CL CR

QX 0 1 1 0

It is remarkable that the representation (1) allows for a
charge assignment which produces a new particle sector
sterile to the standard model gauge group yet chiral under
the new Uð1ÞX subgroup while at the same time allowing
for the gauge invariant mass term M�A. The anomaly-free
lift L decomposes into the usual standard model lift LSM,
which can be found in [28], and the lift LX, acting on the
AC particles. This can be written as

LðdetðuÞ; detðvÞ; u; vÞ ¼ LSMðdetðvÞ; u; vÞ � LXðdetðuÞÞ;
(5)

where u 2 Uð2Þ, v 2 Uð3Þ. For the new part of the lift LX,
we find

LXðdetðuÞÞ ¼ diagð1; detðuÞ1; detðuÞ1;
1; 1; detðuÞ�1; detðuÞ�1; 1Þ: (6)

The semicolon divides the particles from the antiparti-
cles, and the Uð1ÞX charges of A and C have been used.

Next, we need to fluctuate the Dirac operator [1] to
obtain the gauge bosons as well as the Higgs field � and
the new scalar field ’. We define the fluctuated Dirac
operator fD according to [7]

fD ¼ X
i

riLðdetðuiÞ; detðviÞ; ui; viÞDLðdetðuiÞ;

detðviÞ; ui; viÞ�1; ri 2 R: (7)

One obtains the standard Higgs doublet �, embedded into
a quaternion and a new complex scalar field ’, because the
lift does not commute with the Dirac operatorD. The only

part of the mass matrixM ofD commuting with the lift is
M�A, which is therefore a gauge invariant mass. We find for
the fluctuated mass matrices

fM ¼
�ðMu;MdÞ � 13 0 0 0

0 �ðMe;M�Þ 0 0
0 ð0;M�AÞ ’MA 0
0 0 0 ’MC

0
BB@

1
CCA

(8)

and

fT ¼
0 0 0 0
0 0 0 �’MAC
0 0 �’Mt

AC 0

0
@

1
A; (9)

with ’ ¼ P
iri detðuiÞ�1. The new scalar field ’ is also

neutral with respect to the standard model gauge group and
has Uð1ÞX-charge QX ¼ �1. From these mass matrices,
we can calculate the spectral action which will give us the
kinetic term of the scalars as well as the potential for the
Higgs field and the new scalar field.
According to [1], the spectral action SCC is given by the

number of eigenvalues of the Dirac operator D up to a
cutoff energy �. D ¼ @6 � 1dimH f

þ �5 �D is the Dirac

operator of the full almost-commutative geometry. The
spectral action can be written approximately with help of
a positive cutoff function f and then be calculated asymp-
totically via a heat-kernel expansion:

SCC ¼ tr

�
f

�
D2

�2

��

¼ 1

16�2

Z
dVða4f4�4 þ a2f2�

2 þ a0f0 þ oð��2ÞÞ:
(10)

Here, fi are the first moments of the cutoff function f.
They enter as free parameters into the model. The heat-
kernel coefficients ai are well known [29], and for the
present calculation only a2 and a0 will be of concern.
Note that we use the numerating convention of [14], where
the number of the coefficient ai corresponds to the power
of �.
The coefficient a2 will give us the mass terms of the

potential for the scalar fields while a0 will provide for the
kinetic terms for the scalar fields, the quartic couplings of
the potential, and, also, mass terms. All the following
relations hold at the cutoff energy � and are not stable
under the renormalization group flow.
To calculate the relevant parts of a2 and a0 we need the

traces of fD2 and fD4. These calculations are very similar
to those presented in detail in [6]. Therefore we will only
present the final results.
One observes that the scalar fields so far have mass

dimension zero. We have to normalize the scalar fields

�ðMu;MdÞ ! ~�ðY;YÞ and ’M ! ~’Y to obtain the stan-
dard kinetic terms of the Lagrangian. Here, ðY;YÞ and Y
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are the Yukawa coupling matrices of the quarks/leptons
and the AC particles. It is very convenient to immediately

drop the ~�=~’ notation for the normalized scalar fields and
return to�=’ since only the normalized fields appear from
now on.

For the real scalar fields �i and ’j, we use the standard

normalization

� ¼ 1ffiffiffi
2

p �1 þ i�2

�3 þ i�4

� �
and ’ ¼ 1ffiffiffi

2
p ð’1 þ i’2Þ: (11)

All the standard model fields acquire their well-known
standard model Lagrangian; for details, see [14]. For ex-
ample, the Higgs field Lagrangian is

L Higgs ¼ ðD��Þ�ðD��Þ þ�2
1j�j2 � �1

6
j�j4: (12)

For the new scalar ’, we find the following standard
Lagrangian:

L scalar ¼ ðD�’Þ�ðD�’Þ þ�2
2j’j2 �

�2

6
j’j4: (13)

The potential for ’ will have a nontrivial minimum, just as
the Higgs potential. It follows that the Uð1ÞX subgroup is
broken dynamically. Notice that there is no term propor-
tional to j�j2j’j2 mixing the standard model Higgs� with
the new scalar ’ as it was the case in the model presented
in [6]. We also get the standard Lagrangian LX ¼
�1=4FX;��F

��
X for the new subgroup Uð1ÞX with coupling

g4 as well a conformal coupling of the new scalar ’ to the
curvature scalar R. These terms will not concern us in the
following. The symmetry breaking pattern of the gauge
group G is

Uð1ÞY � SUð2Þ � SUð3Þ �Uð1ÞX ! Uð1Þew � SUð3Þ:
(14)

The fermionic action ðc ; fDc Þ, where ð�; �Þ denotes the
scalar product on the Hilbert space, provides for the mass
terms of the model. Apart from the Yukawa terms of the
standard model, we have the following terms in the
Lagrangian:

L Yukawa ¼ ð�R;M�AALÞ þ ðAL; ’YAARÞ
þ ðCL;’YCCRÞ þ ð �AR; �’YACCRÞ þ c:c:

(15)

It will be the gauge invariant mass term ð�R;M�AALÞ,
connecting the right-handed neutrinos to the left-handed
A particles, which is responsible for the inverse seesaw
mechanism. The vacuum expectation value of the scalar
field ’ is a free parameter of the model. Later, we will
estimate the vacuum expectation value of ’ by using the
requirement that the entries of M�A should be of the order
of the cutoff � in the spectral action.

For all the parameters in the Lagrangian, the spectral
action provides a set of constraints [14,16]. Let us first

regard the constraints on the dimensionful and dimension-
less couplings of the Higgs and the new scalar field. For the
quadratic couplings, we find

�2
1 ¼ 2

f2
f0

�2 � 2
trðY�

�Y�M
�
�AM�AÞ

Y2

and

�2
2 ¼ 2

f2
f0

�2 � trðY�
AYAM

�
�AM�AÞ

~Y2

;

(16)

where as usual Y2 ¼ trðY�
uYu þY�

dYd þY�
eYe þY�

�Y�Þ
is the trace of the standard model Yukawa matrices squared
and ~Y2 ¼ trðY�

AYA þY�
CYC þY�

ACYACÞ is its analogue

for the AC sector.
Since M�A is gauge invariant, the entries of the matrix

should be of the order of the cutoff scale, so ðM�AÞij ��.

We observe that trðY�
�Y�M

�
�AM�AÞ� trðY�

AYAM
�
�AM�AÞ�

�2 allows us to decouple the vacuum expectation values of
� and ’ from the cutoff scale �. This means especially
that the W mass is decoupled from the cutoff scale.
For the dimensionless quartic couplings, we find

�1 ¼ 24
�2

f0

H

Y2
2

; �2 ¼ 24
�2

f0

~H
~Y2
2

; (17)

with H¼ trððY�
uYuÞ2þðY�

dYdÞ2þðY�
eYeÞ2þðY�

�Y�Þ2Þ
and ~H¼ trððY�

AYAÞ2þðY�
CYCÞ2þðY�

ACYACÞ2Þ.
The constraints for the Yukawa couplings are Y2 ¼

~Y2 ¼ 4�2=f0, which, together with g23 ¼ g22 ¼ �2=f0,
gives the final set of constraints for the dimensionless
couplings at the cutoff �:

g22 ¼ g23 ¼
�1

24

Y2
2

H
¼ �2

24

~Y2
2

~H
¼ Y2

4
¼ ~Y2

4
; (18)

where g2 is the SUð2Þ coupling and g3 is the SUð3Þ
coupling.
From these relations, it is now possible to deduce the

cutoff scale � using renormalization group techniques
[14]. From the constraint g2 ¼ g3 follows � ¼
1:1� 1017 GeV. With �1 ¼ 24g22H=Y2

2 at �, a Higgs
mass of the order of 170 GeV follows [14]. The latest
data from the Tevatron [30] strongly suggest that this value
of the standard model Higgs mass is excluded. But to
obtain the above value only, one-loop renormalization
group equations have been used, and considering the enor-
mous energy range from �� 1017 to mZ � 100 GeV,
more refined methods from perturbation theory may
change the value of the Higgs mass sufficiently.
Furthermore, the effects of the new particles of the model
have not been taken into account, although they will only
change the results through contributions in higher loop
orders. The value of the Higgs mass may also change
considerably for different models beyond the standard
model [4–6]. With the same procedure we could also
calculate the low energy value of �2. But since only the
overall scale of the ’ vacuum expectation values matters
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here, we will postpone these investigations to a later
publication.

III. THE INVERSE SEESAW MECHANISM

The relevant mass terms for the inverse seesaw mecha-
nism are the Dirac masses m� of the neutrinos, the Dirac
masses mA of the A particles, and the gauge invariant mass
termM�A connecting the right-handed neutrinos to the left-
handed A particles. To simplify the model a bit, we will
assume that the Dirac masses of the C particles, as well as
the mass terms connecting A particles and C antiparticles,
are much smaller than the A particle masses.

It follows from the constraints (18) that the neutrino
Yukawa couplings should be of the order of 1, so the
Dirac masses are m� � 100 GeV. We assume that the
same holds for the Yukawa couplings of the A particles;
therefore their masses should be of the order of the vacuum
expectation value of the scalar field ’, which is a free
parameter.

From the Lagrangian LYukawa (15), we can deduce the
following mass matrix for the neutrinos and the A particles:

M ¼
0 m� 0 0
m� 0 M�A 0
0 M�A 0 mA

0 0 mA 0

0
BBB@

1
CCCA: (19)

This type of matrix is well known [2]. To transparently
calculate the eigenvalues of M, we will take m�, M�A, and
mA to be the Dirac masses of the first standard modelþ
AC family.

As was shown in [2], the eigenvalues of M are given by

m2
1=2 ¼ m2

�

m2
A

M2
�A

and m2
3=4 ¼ M2

�A: (20)

One sees immediately that one obtains two light mass
eigenstates and two heavy mass eigenstates M�A �� ¼
1:1� 1017 GeV.

Assuming that the light mass eigenstates correspond to
the light neutrino, which we assume to be of the order of
1 eV, we can deduce that the approximate mass scale for
the vacuum expectation value of the new scalar field ’
should be of the order of 106 GeV.

Speculating further, we may assume that the variation of
the masses in the AC sector is similar to the standard
model, i.e.

mC

mA
� me

mtop

� 10�6; (21)

where mC is a generic C-particle mass, me is the electron
mass, andmtop is the top quark mass. This would imply that

the mass of the lightest C particle could be as low as mC �
mA � 10�6 � 1 GeV. These particles can easily escape
detection since they do not couple to the standard model
on a tree level. Only couplings in higher loops to the right-
handed neutrino are possible, which can be seen from the
Lagrangian (15). And these couplings are mediated by the

ð�R;M�AALÞ part of the Lagrangian which is strongly sup-
pressed by the assumptions that the eigenvalues ofM�A are
of the order of �. An interesting question for further
investigation regards the stability of the lightest new par-
ticle, i.e. one of the C particles, and its ability to play the
role of dark matter. The mass of the X boson would be
mX � ffiffiffiffiffi

g4
p

106 GeV, where the Uð1ÞX gauge coupling g4 is
essentially a free parameter.

IV. CONCLUSION AND OUTLOOK

We have shown in this publication that the noncommu-
tative framework [1] allows us to successfully implement
the inverse seesaw mechanism [2] on the basis of the AC
extension of the standard model [3]. The main difference to
the classical AC model is the chiral nature of the AC
fermions with respect to a Uð1ÞX extension of the standard
model gauge group. It is this extension which allows us to
couple the right-handed neutrinos via a gauge invariant
mass term to left-handed A particles. Since the natural
scale of these gauge invariant masses is of the order of
the cutoff scale of the spectral action (� 1017 GeV), while
the Dirac masses of the neutrino and the AC particles are
generated dynamically and therefore much smaller (� 1
to �106 GeV), a working inverse seesaw mechanism is
obtained. In the usual realization of the seesaw mechanism,
at least one of the Majorana mass terms has to be several
orders of magnitude smaller than the cutoff scale (MM �
1014 GeV, [22,23]).
Compared to the usual seesaw mechanism [1,13], there

are several differences, some of which could turn out to be
advantageous:
(i) The spectral triple on which the model is based

fulfils all axioms of noncommutative geometry [1].
(ii) There is no principle obstacle to realize this or a

similar mechanism in KO-dimension zero.
(iii) The AC particles could produce stable or sufficiently

long-lived particles that could serve as dark matter.
(iv) Since the A particle mixes with the standard model

neutrino, its Dirac mass matrix as well as the mass
matrix connecting the two particles introduce the
new CP violating phases. This may be interesting
for leptogenesis.

An inconvenience of the model is the Higgs mass of the
order of 170 GeV. This mass range is now practically
excluded by Tevatron [30]. It will be interesting to see if
the inverse seesaw mechanism can be implemented into
other models beyond the standard model within the frame-
work of noncommutative geometry. These models usually
provide stronger constraints on the coupling constants [3–
6] and may therefore be very predictive.
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[28] S. Lazzarini and T. Schücker, Phys. Lett. B 510, 277

(2001).
[29] P. Gilkey, Invariance Theory, the Heat Equation, and the

Atiyah-Singer Index Theorem (Publish or Perish,
Wilmington, 1984).

[30] Tevatron New Phenomena, Higgs Working Group for the
CDF Collaboration, and DZero Collaboration,
arXiv:0903.4001.

CHRISTOPH A. STEPHAN PHYSICAL REVIEW D 80, 065007 (2009)

065007-6


