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We embed the loop quantum gravity Barbero-Immirzi parameter and field within an action describing

4D, N ¼ 1 supergravity and thus within a low-energy effective action of superstring/M theory. We use

the fully gauge-covariant description of supergravity in (curved) superspace. The gravitational constant is

replaced with the vacuum expectation value of a scalar field, which in local supersymmetry is promoted to

a complex, covariantly chiral scalar superfield. The imaginary part of this superfield couples to a

supersymmetric Holst term. The Holst term also serves as a starting point in the loop quantum gravity

action. This suggest the possibility of a relation between loop quantum gravity and supersymmetric string

theory, where the Barbero-Immirzi parameter and field of the former play the role of the supersymmetric

axion in the latter. Adding matter fermions in loop quantum gravity may require the extension of the Holst

action through the Nieh-Yan topological invariant, while in pure, matter-free supergravity their super-

symmetric extensions are the same. We show that, when the Barbero-Immirzi parameter is promoted to a

field in the context of 4D supergravity, it is equivalent to adding a dynamical complex chiral (dilaton-

axion) superfield with a nontrivial kinetic term (or Kähler potential), coupled to supergravity.
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I. INTRODUCTION

Currently, there are mainly two mathematical constructs
which are often presented in adversarial positions to one
another for the role of providing a road to a completely
consistent quantum theory of gravity. One of these, pos-
sessing a larger community of supporters among theoreti-
cal physicists, is superstring/M theory (SSMT), and the
other, with a corresponding smaller community of support-
ers, is loop quantum gravity (LQG). Theoretical physics is
not a democracy as nature possesses the final and only vote
to serve as the arbiter on the value of any theoretical
construct. From this standpoint, the number of supporters
is irrelevant when deciding which model better describes
nature. It is not the purpose of this work to debate whether
one or the other of these proposals has been most success-
fully argued. Relevant to this work, there have appeared
both arguments against the combination of these ap-
proaches [1,2] as well as attempts to carry out such a
combination [3–6]. To our knowledge, however, there is
no completely rigorous exclusion principle that forbids the
ultimate theory of quantum gravity to be the result of a
combination of these approaches (and perhaps others),
which we believe makes it worthwhile to investigate pos-
sible regions of overlap.

LQG searches for the unification of general relativity
(GR) and quantum mechanics by postulating that space-

time itself is discrete [7–9]. This model is formulated in
terms of so-called connection variables, two versions of
which currently exist: the Ashtekar connection [self-dual

SLð2; CÞ] [10] and the Ashtekar-Barbero connection [real
SUð2Þ] [11]. Both formalisms can be derived from the
Holst action which modifies the Einstein-Hilbert action
through the addition of a surface term that consists of the
product of a parameter � [known as the Barbero-Immirzi
(BI) parameter] times the fully contracted dual Riemann
curvature tensor [12].
The BI parameter is a constant related to the minimum

eigenvalue of the discrete area and discrete volume opera-
tors [13] and whose value is determined by the entropy-
area relation when studying black hole thermodynamics.
Regardless of the numerical choice of this parameter, it
does not affect the classical field equations since it appears
solely through the addition of a surface term to the
Einstein-Hilbert action.
Recently, however, the possibility of promoting this

parameter to a scalar field (‘‘scalarization’’) was proposed
[14]. Replacing the BI parameter by the BI field has the
important consequence that the modification of the
Einstein-Hilbert action is no longer by the addition of a
pure surface term. Instead, the field equations are now
modified at the classical level, since integration by parts
of the Holst term leads to corrections to the field equations
that depend on derivatives of the BI field. One can easily
show that these corrections reduce to GR in the presence of
a scalar field stress-energy tensor [14] upon field redefini-
tion. Shortly after its introduction, the canonical formula-
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tion of the quantum theory with a BI field was studied [15],
followed by its relation to the Peccei-Quinn mechanism
[16] and a possible topological interpretation [17].

In the presence of spacetime torsion (e.g., as induced by
fermions), however, the Holst extension must be further
augmented by the addition of another term to avoid clas-
sical modifications to the field equations. Such an augmen-
tation consists of adding a torsion squared term to the
action, which thus transforms the Holst term to the so-
called Nieh-Yan invariant [18]. When the BI parameter is
promoted to a scalar field in the Nieh-Yan invariant, one
finds generically that the Pontryagin topological density
arises naturally in LQG [19]. The effective action of LQG
with a BI field is then equivalent to dynamical Chern-
Simons modified gravity (DCSMG) [20–22], which inter-
estingly has already been connected to heterotic string
theory [23].

Though the possibility of any direct link between SSMT
and LQG may be deemed remote by some, we believe it is
of interest to probe for any such interconnection possessing
the property of supersymmetry. Supergravity appears to be
the natural crossing because, on the one hand, supergravity
is the least ad hoc way to include fermions into any field
theory with gravity, while, on the other hand, supergravity
arises as the low-energy effective action of superstrings. In
this paper, we shall attempt to make the possibility of
interconnections among LQG, DCSMG, and SSMT more
clear and explicit, in the context of 4D, N ¼ 1 (pure)
supergravity. Our choice of the four-dimensional (4D),
N ¼ 1 supergravity theory is for the sake of simplicity.

Let us first recall the basic (standard) motivation for
supergravity. Supergravity is the theory of local supersym-
metry, and the latter is a symmetry that converts bosons
into fermions and vice versa. Supersymmetry seems well
motivated in particle physics for unification of bosons and
fermions, as well as for the consistency of SSMT. From the
viewpoint of quantum gravity, supersymmetry is the tool
for its consistent coupling to matter as well as the improve-
ment of its ultraviolet (UV) behavior (e.g., UV divergen-
ces). Supergravity is the only known consistent route to
couple spin-3=2 particles (gravitinos) to gravity in field
theory. In addition, supergravity (with matter) naturally
arises as the low-energy effective action of SSMT. Such
considerations therefore suggest that supergravity might
also be unavoidable in LQG, if one desires to couple LQG
to matter and fermions, in particular. As regards discretiz-
ing supersymmetry on a lattice, see, e.g., [24–26].

The above relations are schematically portrayed in
Fig. 1. LQG and modified Holst or modified Nieh-Yan
gravity are connected through the promotion of the BI
parameter into a scalar field. In turn, we here show that
modified Holst gravity also generically arises in SSMT,
where the BI field is related to the string theory axion (for
real values of the BI parameter). In the presence of fermi-
ons, modified Nieh-Yan gravity can also be mapped to

DCSMG. In turn, the latter has already been shown to be
generically unavoidable in string theory [23]. In this way,
we reinforce the possibility of interconnection between the
seemingly disparate LQG and SSMT.
A deep comparison between LQG and SSMT requires

not only the embedding of Holst or Holst-like actions in
supergravity as discussed in this paper but also a mapping
of the connection-triad variables at the classical level and
the background independent, non-Fock quantization pro-
cedure at the quantum level to some SSMT equivalent. In
all irreducible off-shell supergravity theories known, the
connection variables do not appear in any superspace for-
mulation. Thus, any attempt to reconcile LQG and SG
theories begins with an intrinsic disagreement over the
fundamental variables of the theory. Relinquishing any of
the requirements of irreducibility, off-shell structure or a
superspace formulation, however, will open the way to the
introduction of connection variables. Such issues are rele-
gated to future work.
The remainder of this paper is divided as follows: Sec. II

discusses the Holst action in LQG and its coupling of
fermions with the Nieh-Yan invariant; Sec. III describes
the basics of 4D, N ¼ 1 supergravity in superspace;
Sec. IV presents the relation between the BI parameter
and 4D, N ¼ 1 supergravity; Sec. V shows how the BI
field is related to superstring theory; Sec. VI discusses the
Nieh-Yan invariant in supergravity; Sec. VII concludes and
points to future research.
We shall employ the following conventions in this paper:

lowercase middle Greek letters �; �; . . . ¼ 0; 1; 2; 3 are
used for curved spacetime vector indices; the lowercase
middle Latin letters m; n; . . . ¼ 0; 1; 2; 3 are used for flat
(target) space vector indices; the lowercase early Greek
letters �;�; . . . ¼ 1; 2 are used for chiral spinor indices of
one chirality, whereas the lowercase early Greek letters
with dots _�; _�; . . . ¼ _1; _2 are used for chiral spinor indices
of the opposite chirality. Symmetrization and antisymmet-
rization on the indices is denoted via AðabÞ :¼ ðAab þ
AbaÞ=2 and A½ab� :¼ ðAab � AbaÞ=2, respectively. We also

use natural units where @ ¼ c ¼ 1, and the gravitational
coupling constant is introduced via �2 ¼ 8�GN.

FIG. 1 (color online). Schematic diagram of the relations
drawn in this paper between SSMT and LQG.
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II. LOOP QUANTUM GRAVITY

A. The Holst action

The Holst action with the BI field is defined as the sum
of three terms: the Einstein-Hilbert term, a term involving
the fully contracted dual Riemann tensor, and terms in-
volving coupling to matter. Its explicit form can be written
as follows:

SHolst ¼ 1

4�2

Z
�mnpqe

m ^ en ^ Fpq

þ 1

2�2

Z
��em ^ en ^ Fmn þ Smat; (2.1)

where �mnpq is the Levi-Civita tensor, e is the determinant

of the tetrad (vierbein) em and em is its inverse, with
spacetime indices here suppressed, Fpq is the curvature
tensor constructed with the Lorentz spin connection wmn,
while �� ¼ 1=� is the inverse of the BI field. We shall use
exterior calculus in this section, and we refer the reader to
Refs. [14,27] for details of its implementation in LQG. The
quantity Smat represents additional matter degrees of
freedom.

The field equations can be derived by varying the action
of Eq. (2.1) with respect to the tetrad and the connection.
Variation with respect to the tetrad leads to the torsion
condition

2T½m ^ en� ¼
@q ��

2 ��2 þ 2
½�rpmne

r ^ ep ^ eq

� 2 ��em ^ en ^ eq�; (2.2)

which is solved to obtain

Tm ¼ 1

2

1

��2 þ 1
½�mnpq@

q ��þ ��	m
½n@p� ���en ^ ep: (2.3)

Clearly, in the limit as the BI field becomes constant, one
recovers the standard torsion-free limit of GR.

Variation of the action with respect to the connection
leads to the modified field equations. The on-shell field
equations can be shown to reduce to the Einstein equations
in the presence of a scalar field

G�� ¼ k2½ð@�
Þð@�
Þ � 1
2g��ð@�
Þð@�
Þ� (2.4)

upon the field redefinition


 ¼ ffiffiffi
3

p
sinh�1 ��: (2.5)

Variation of the action with respect to this new field leads
simply to the massless Klein-Gordon equation h
 ¼ 0.
When the BI field is a constant, the field equations classi-
cally reduce to the Einstein equations.

The scalarization of the BI parameter has also been
studied in the quantum theory [15]. In fact, at a quantum
level, the closing of the algebra requires that the Ashtekar-
Barbero connection be defined with a constant BI parame-
ter [15]. This constant value can be thought of as the

expectation value of the BI field on the states of the theory
or as the asymptotic value of this field [28].
The introduction of torsion to the connection suggests

that higher-order curvature corrections to the action will
lead to noncanonical kinetic terms for the scalar field. If the
scalar field 
 is then identified with the inflaton, one could
possibly arrive at a realization of K inflation from LQG
[14,29]. Of course, these comments are speculative as LQG
does not require as of now higher-order curvature correc-
tions to the Holst action. Moreover, not just any modifica-
tion to the kinetic energy of 
 suffices to induce K
inflation, as precise conditions would have to be satisfied
[14].

B. The Nieh-Yan action

The Holst action has been shown to lead to certain
problems when coupling the theory to fermions. Even
when the BI parameter is treated as constant, fermion
couplings have been shown to lead to torsion, which in
turn leads to a classical effective action with fermion
interaction terms that depend on the BI parameter at a
classical level [30,31]. Since the BI parameter is thought
to be related to the quantum effect of spacetime discretiza-
tion, its appearance at the level of an on-shell effective
action has been thought somewhat problematic [32,33].
For this reason, it was suggested that the Holst term should
by replaced by the Nieh-Yan invariant in the presence of
fermions [18,32,33]:

SNieh-Yan ¼ Smat þ 1

4k2

Z
�mnpqe

m ^ en ^ Fpq

þ 1

2k2

Z
��ðem ^ en ^ Fmn � Tm ^ TmÞ: (2.6)

In the absence of fermions, this formulation is equivalent to
the Holst one since torsion vanishes, thus also leading to
the Ashtekar and Ashtekar-Barbero connections. In the
presence of fermions, this formulation also leads to torsion,
but the fermion interactions induced in the effective action
are independent of the BI parameter [32,33].
Inspired by the scalarization of the BI parameter in the

Holst action [14], there has been recently an effort to also
study the scalarization of this parameter in the Nieh-Yan
action. When doing so, it was found again that variation of
the action with respect to the tetrad leads to a torsion
condition similar to Eq. (2.2), whose solution is again
nonvanishing torsion [16]:

Tm ¼ �1
2�

m
npqð@n ��Þep ^ eq þ � � � ; (2.7)

where the dots stand for possible fermion contributions.
The inclusion of the Tm ^ Tm term in the action simplifies
the torsion tensor, removing the prefactor in Eq. (2.3).
Naturally then, the on-shell variation of the action with
respect to the connection leads to the field equations of
Eq. (2.4) with the identification of 
 ! ��. Variation of the
action with respect to the BI field reveals that the BI field in
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the Nieh-Yan formulation satisfies a source-free, massless
Klein-Gordon equation.

One of the advantages of the Nieh-Yan action is the
ability to consistently include fermions, which when com-
bined with a BI field lead to BI field-fermion interactions
that are proportional to ?JA ^ d ��, where JA is the axial
fermion current. Upon integration by parts, one can relate
such terms to ��R ^ R, where R is the (torsion-free)
Riemann tensor, because the axial fermion current is
anomalous due to quantum effects [16].

The anomalous Pontryagin density (R ^ R) can be used
to cancel other CP-violating terms that arise in gauge
theories that are also proportional to this density. For
example, such terms arise by the local gauge group due
to the diagonalization of the quark mass matrices by a
chiral rotation. Through the analog of the Peccei-Quinn
mechanism of quantum chromodynamics (QCD) [16,34],
the BI field could be used to remove such CP violation
from the action. In fact, the analogy to the Peccei-Quinn
mechanism is so strong that the BI field could be inter-
preted as the QCD axion to solve the strong CP problem
through the chiral anomaly [16,34].

The interaction terms, arising due to the coupling of
fermions with the BI field, also naturally lead to a topo-
logical interpretation. Indeed, in Yang-Mills theories, the
requirement that states be invariant under large gauge
transformations leads to CP-violating anomalous terms
of the form �R ^ R, where � is the Yang-Mills angle.
Such a term has been shown to also arise in LQG [35].
Since the BI field-fermion coupling leads to the same type
of terms in the effective action, one can then identify the
expectation value of the BI field with the � angle [17].

The casting of the effective action of modified Nieh-Yan
theory with a BI field in terms of the Pontryagin density
leads to a interesting connection with DCSMG [19].
Indeed, the latter is precisely defined by the sum of the
Einstein-Hilbert action and the Pontryagin density multi-
plied by a dynamical field [20–22]. This connection be-
comes yet more interesting when one realizes that DCSMG
contains terms that generically arise in the low-energy
limit of heterotic and type IIb string theories. In the latter,
these terms arise due to a ten-dimensional generalization of
the Abbott-Deser-Jackiw anomaly, required for the Ward
identities to be preserved. This then suggests a deep con-
nection between string theory and LQG, which is at the
heart of this paper, but before such a connection can be
established, we shall briefly review supergravity in
superspace.

III. 4D, N ¼ 1 SUPERGRAVITY IN SUPERSPACE

A concise, manifestly supersymmetric and gauge-
invariant description of supergravity is provided by super-
space [36–38]. The 4D,N ¼ 1 superspace is an extension
of spacetime, parametrized by (bosonic) spacetime coor-
dinates xm and by extra fermionic (Grassmann) anticom-

muting spinor coordinates �� and �� _�. General coordinate
transformations of GR are extended in curved superspace
to general supercoordinate transformations mixing x’s and
�’s. A superfield amounts to a finite set (supermultiplet) of
the ordinary fields (called superfield components) appear-
ing as the coefficients in the superfield expansion in powers
of �’s. Superspace supergravity is the most natural way of
unifying gravity and supersymmetry. We refer the reader to
the available textbooks [36–39] for details about super-
gravity, superfields, and their field components. In this
section we formulate some basic ideas and give a few
equations needed for the purposes of this paper.
An off-shell solution to the superspace Bianchi identities

and the constraints, defining the N ¼ 1 Poincaré-type
minimal supergravity, gives rise to only three relevant
tensor superfields: R, Gm, and W ��� (as parts of the

supertorsion field). These fields are subject to the relations
[36–38]

G m ¼ �Gm; W ��� ¼ W ð���Þ;
�r _�R ¼ �r _�W ��� ¼ 0;

(3.1)

and

�r _�G� _� ¼ r�R;

r�W ��� ¼ i

2
r�

_�G� _� þ i

2
r�

_�G� _�;
(3.2)

where ðr�;
�r _�:r� _�Þ represent the curved superspace

N ¼ 1 supercovariant derivatives and bars denote com-
plex conjugation. For instance, the covariantly chiral com-
plex scalar superfield R has the scalar curvature R as the
coefficient of its �2 term. Similarly, the real vector super-
field G� _� has the traceless Ricci tensor 2RðmnÞ � 1

2mnR as

the coefficient of its ��m �� term.1 The covariantly chiral,
complex, totally symmetric, fermionic superfield W ���

has the Weyl tensor W���	 as the coefficient of its linear

�	-dependent term.
Gauge-fixed, off-shell, pureN ¼ 1 supergravity can be

also formulated in terms of the more conventional field
components of supergravity superfields in spacetime (of
Minkowski signature). We shall here consider the minimal
(Poincaré) N ¼ 1 supergravity in a Wess-Zumino (WZ)
supersymmetric gauge [36–38]. The physical fields are a
vierbein (or tetrad) em�ðxÞ and a Majorana gravitino c �ðxÞ,
while the auxiliary fields are a complex scalar BðxÞ and a
real vector AmðxÞ.2 The tetrad is dimensionless, while the
gravitino field is of canonical (mass) dimension 3=2, while

1Here �m ¼ ð1; i ~�Þ stand for Pauli matrices.
2There are no physical degrees of freedom associated with

auxiliary fields by definition, and, thus, these fields are non-
propagating. These fields are needed in supersymmetry, how-
ever, for an off-shell closure of the supersymmetry algebra and to
make supersymmetry manifest. The auxiliary fields can become
propagating in the presence of generic higher derivative mod-
ifications to the supergravity action.
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the auxiliary fields are of dimension 2. All of the auxiliary
fields vanish on the pure supergravity equations of motion;
i.e. on-shell we have B ¼ Am ¼ 0.

The off-shell superspace constraints, defining a Poincaré
supergravity, are necessary to reduce a curved superspace
geometry to a geometry of supergravity. These constraints
include the following: the representation-preserving con-
straints, which allow for the existence of covariantly chiral
superfields; the conventional constraints, which fix the
vector covariant derivative in terms of the spinor ones
and the spinor superconnections in terms of the spinor
supervielbeins; and the Einstein (or WZ) constraints,
which allow the passage from conformal supergeometry
to Poincaré supergeometry in curved superspace. In par-
ticular, the minimal Poincaré supergravity constraints im-
ply that the spin connection !�

mnðxÞ has the following

structure [36–39]:

!�mn ¼ !�mnðeÞ þ k�mnðc Þ � 2
3"�mnpA

p; (3.3)

where !�mnðeÞ is the torsion-free spin connection of GR,

and the gravitino-induced contorsion tensor k�mnðc Þ is

given by

k�mn ¼ �2

4
ð �c m��c n þ �c ��mc n � �c ��nc mÞ: (3.4)

In other words, we are in the 2nd-order formalism with a
fixed spin connection !�

mnðe; c ; AÞ, where we are now

explicitly including spacetime indices. The physical (on-
shell) spacetime torsion in supergravity is given by

Tp
�� ¼ 1

2
r½�ð!Þep�� ¼

�2

4
�c ��

pc �; (3.5)

which obeys the identity

"����Tp
��T

p
�� ¼ 0; or trðT ^ TÞ ¼ 0; (3.6)

as the consequence of Fierz identities for the Majorana
gravitino field. Hence, though the gravitino-induced tor-
sion does not vanish in pure supergravity, its contribution
to the Nieh-Yan invariant in the last term of Eq. (2.6)
vanishes on-shell because of Eq. (3.6).

The gauge-invariant action of pure supergravity in
superspace is given by [36–38]

Ssg ¼ � 3

�2

Z
d8zE�1

¼ � 3

2�2

Z
d6zERþ H:c: (3.7)

The form of the action on the first line of Eq. (3.7) is the
well-known, standard one of the superspace supergravity
action [37] in terms of the supervielbein density E�1 ¼
sDetEM

A in full curved superspace3 zð4þ2þ2Þ ¼ ðx; �; ��Þ,

where sDet is the superdeterminant. The second line in
Eq. (3.7) is an equivalent representation of the same pure
supergravity action in chiral superspace. The quantities E
and R are supersymmetric generalizations of the volume
element and the Lagrangian density in the chiral
superspace.
The chiral superspace density (in WZ gauge) reads

E ðx; �Þ ¼ eðxÞ½1� �2i��m
�c mðxÞ þ ��2BðxÞ�; (3.8)

where e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg��

p
, g�� ¼ mne

m
�e

n
� is a spacetime

metric of Minkowski signature, c m
� ¼ em�c

�
� is a chiral

gravitino, and B � S� iP is the complex auxiliary field,
with S and P defined as its real and imaginary parts,
respectively.
The chiral density integration formula, relating a curved

superspace action to the corresponding component action
in spacetime, reads [36–38]

Z
d4xd2�EL ¼

Z
d4xefLlast þ BLfirstg þ � � � ; (3.9)

where the dots stand for the gravitino-dependent terms.
Here we have introduced the field components of the
covariantly chiral superfield Lagrangian Lðx; �Þ and
�r _�L ¼ 0 (the vertical bars denote the leading component
of a superfield) as

L j ¼ LfirstðxÞ; r2Lj ¼ LlastðxÞ: (3.10)

Noting thatL / R in Eq. (3.7), we must then computeRj
and r2Rj, which reduce to [36–38]

R j ¼ 1
3
�B ¼ 1

3ðSþ iPÞ; (3.11)

r2Rj ¼ 1

3

�
R� i

2
"mn

pqR
pq

mn

�
þ 4

9
�BB; (3.12)

where the spacetime curvature is given by

Rpq
mn ¼ e�me�nR

pq
��

¼ e�me�nð@�!pq
� þ!pr

� !rq
� �� $ �Þ (3.13)

and the scalar curvature is R ¼ e�me�nR
mn

��.

Combining all of these ingredients, Eq. (3.7) gives rise to
the standard supergravity action in components in WZ
gauge [36–39]:

Ssg ¼
Z

d4xe

�
� 1

2�2
R½e;!ðe; c Þ�

þ i

2
"���� �c ��5��r�c � � 1

3
�BBþ 4

3
AnAn

�
:

(3.14)

The auxiliary terms B �B and AnAn arise here from the
integration formula in Eq. (3.12) and from the decomposi-
tion of the spin connection in Eq. (3.3), respectively. The
dual Riemann contribution in Eq. (3.12) cancels in the

3In the next sections we are going to use the supergravity
action in chiral curved superspace zð4þ2Þ ¼ ðx; �Þ only, with the
chiral supervielbein density E. The meaning of x and � is
different in full and chiral superspace [36–38].
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action of Eq. (3.7) because of the identities for the torsion-
free Riemann tensor.

IV. HOLSTACTION IN SUPERGRAVITYWITHABI
PARAMETER

The gauge-invariant supergravity action in Eq. (3.7) in
chiral superspace can be slightly generalized by complex-
ifying the gravitational coupling constant in front of the
first term via

1

�2
! 1

�2
ð1þ iÞ (4.1)

with the new dimensionless real parameter . Such a
complexification makes sense in supersymmetry since
the second line of Eq. (3.7) is the sum of a term (which
is in general complex) and its complex conjugate.

The complexification gives rise to a modified superfield
supergravity action of the form

SsgH ¼ � 3

2�2

Z
d6zEð1þ iÞRþ H:c:; (4.2)

which induces new terms proportional to . When using
the component expansion of the WZ-gauge-fixed super-
gravity superfields (see, e.g., Sec. 5.8 of Ref. [38]), one can
find these extra -dependent terms:

SsH ¼ �

2

Z
d4x"����

�
1

�2
R����ðe;!Þ þ �c ���r�c �

�
:

(4.3)

The -independent terms in Eq. (4.2) [not shown in
Eq. (4.3)] are just the standard supergravity action.

The first gravitational term of Eq. (4.3) coincides with
the second term of the Holst action in the second line of
Eq. (2.1) [12] with a constant BI parameter. This identi-
fication allows us to relate the reciprocal of  with �,
namely, �� ¼  ¼ ��1 [11,40]. Therefore, the action

SsgH ¼ � 3i

2�2

�Z
d6zER� H:c:

�
(4.4)

is to be identified with the gauge-invariant and manifestly
supersymmetric extension of the second term of Eq. (2.1)
in superspace. In WZ gauge, Eq. (4.3) just represents the
relevant (i.e. depending upon physical fields only) part of
that supersymmetric extension in components, in agree-
ment with the first calculation of the component super-
symmetric Holst action (without auxiliary fields) [41]. The
auxiliary fields of the pure N ¼ 1 supergravity theory
vanish on-shell (in the absence of supersymmetric matter).
The off-shell superfield action in Eq. (4.2), which repre-
sents the full supersymmetric extension of the Holst action,
depends, of course, on the auxiliary fields.

The original significance of the bosonic part of the
action in Eq. (4.3) stems from dealing with the reality
conditions required in the Ashtekar formulation of
Euclidean quantum gravity [10]. Since we work with a

Minkowski signature, our BI parameter  must be real, in
accordance with the Ashtekar-Barbero formulation of
LQG. In Euclidean space, however,  is purely imaginary,
and the (anti)self-dual case  ¼ �i just leads to the
Ashtekar formulation of LQG.
The purely gravitational Lagrangian

"����R����ðe;!ðeÞÞ with the standard (no-torsion) con-

nection!�
mnðeÞ vanishes because of Bianchi identities for

the curvature. In supergravity, with the gravitino-induced
torsion and !�

mnðe; c Þ of Eq. (3.3), the supersymmetric

Holst-Tsuda Lagrangian in Eq. (4.3) in components
amounts to a total derivative [41]

� 1

2
"����@�ð �c ���c �Þ ¼ 2

�2
"��pq@�T�pq; (4.5)

where we have used the spacetime torsion tensor of Eq.
(3.5). Therefore, adding the supersymmetric (Holst) term
with a constant BI parameter to pure N ¼ 1 supergravity
has no effect on its supergravitational equations of motion
(though it is relevant in quantum supergravity), in agree-
ment with Refs. [41,42].
The independence of the supergravitational equations of

motion upon a constant BI parameter in the extendedN ¼
2 andN ¼ 4 pure supergravities without their coupling to
supermatter (and for N ¼ 1 as well) was established by
Kaul [42]. Our analysis in N ¼ 1 superspace confirms
those conclusions in the case of pure N ¼ 1 supergravity
without its coupling to N ¼ 1 matter superfields. In a
matter-coupledN ¼ 1 supergravity, the supergravity aux-
iliary fields couple to matter fields, so that they do not
vanish generically. Accordingly, the BI dependence (or
independence) of the equations of motion in supergravity
theories coupled to matter at the classical level should be
checked separately and is beyond the scope of this paper.

V. HOLST ACTION IN SUPERGRAVITY WITH
A BI FIELD

The gravitational constant can be thought of as the
vacuum expectation value (VEV) of a real scalar field,
which leads to the well-known Brans-Dicke (BD) gravita-
tional theories. In N ¼ 1 supersymmetry, the BD real
scalar field must be promoted to a complex chiral scalar
superfield Zðx; �Þ, for the same reasons that the gravita-
tional constant was complexified in the previous section.
The leading field component of this complex chiral scalar
superfield is the complex scalar

Z ðx; �Þj ¼ 
ðxÞ þ iaðxÞ: (5.1)

The real part 
ðxÞ of the complex BD scalar couples to the
scalar curvature, and, therefore, it should be identified with
a dilaton. The imaginary part aðxÞ of the BD complex
scalar field couples to the 2nd term in the Holst action
(the dual scalar curvature), and, therefore, it should be
identified with an axion.
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The independence of the Holst action on a (constant) BI
parameter is crucial for claiming an associated Peccei-
Quinn (PQ) symmetry. Such a symmetry of the Holst
action with a BI field (cf. Ref. [16])

aðxÞ ! aðxÞ þ const (5.2)

is often taken as the defining property of the axion field.
From this perspective, it is clear that the BI field should be
identified with the supergravity axion.

More specifically, let us replace the coupling constants
in the supergravity action of Eq. (4.2), inside the super-
space integration, by a complex covariantly chiral BI (or
BD) superfield Zðx; �Þ as

� 3

2k2
ð1þ iÞ ! Zðx; �Þ: (5.3)

Such a replacement gives rise to the modified N ¼ 1
supergravity action

SZ ¼
Z

d6zEZRþ H:c: (5.4)

in chiral N ¼ 1 superspace. The action in Eq. (5.4) ap-
pears to be the very special case of the modified super-
gravity actions introduced recently in Refs. [43,44]—see,
e.g., Eq. (5.19) in Ref. [43]—with the superpotential V ¼
0. We shall thus employ the results of Refs. [43,44] when
V ¼ 0.

A super-Weyl transform of the superfield action in
Eq. (5.4) can also be performed entirely in superspace,
i.e. with manifest local N ¼ 1 supersymmetry. In terms
of field components, the superfield Weyl transform
amounts to a Weyl transform, a chiral rotation, and a
(superconformal) S-supersymmetry transformation [45].
The chiral density superfield E is a chiral compensator of
the super-Weyl transformation

E ! e3�E; (5.5)

whose parameter� is an arbitrary covariantly chiral super-

field �r _�� ¼ 0. Under the transformation (5.5) the cova-
riantly chiral superfield R transforms as

R ! e�2�ðR� 1
4
�r2Þe ��: (5.6)

The super-Weyl chiral superfield parameter � can be
traded for the chiral Lagrange multiplier Z by using a
simple holomorphic gauge condition

Z ¼ �: (5.7)

With all of these ingredients at hand, the super-Weyl
transform of the action in Eq. (5.4) results in the classically
equivalent action

S� ¼
Z

d4xd4�E�1e�þ ��½�þ ��� (5.8)

in full curved superspace of N ¼ 1 supergravity.
Equation (5.8) has the standard form of the action of a

chiral matter superfield coupled to supergravity [36–38]

S½�; ��� ¼
Z

d4xd4�E�1�ð�; ��Þ; (5.9)

with the kinetic potential�ð�; ��Þ, where we have defined
�ð�; ��Þ ¼ e�þ ��½�þ ���: (5.10)

The Kähler potential Kð�; ��Þ is given by [37,38]

K ¼ �3 ln

�
��

3

�
or � ¼ �3e�K=3: (5.11)

The proposed action in Eq. (5.4) with the chiral BI
superfield Z is classically equivalent to the standard action
of a chiral matter superfield � coupled to the minimal
N ¼ 1 supergravity and having a noncanonical kinetic
term, i.e. a nontrivial Kähler potential. The equivalent
action in Eq. (5.9) may be suitable as the starting point
for generating K inflation in the BI-field-modified super-
gravity along the lines of Ref. [14].

VI. NIEH-YAN ACTION IN SUPERGRAVITY WITH
A BI FIELD

In this section we comment on the embedding of the
Nieh-Yan action with a BI field into supersymmetry. The
Nieh-Yan invariant was defined by the integrand of the last
term in Eq. (2.6), without the BI field. Because of the
identity in Eq. (3.6) it is clear that the supersymmetric
extension of the Nieh-Yan density should be the same as
the supersymmetric extension of the Holst action; i.e. both
are given by Eq. (4.4) in superspace, up to an overall
normalization factor, as far as the pure supergravity with
a constant BI term is concerned. Moreover, because of Eq.
(4.5), the Nieh-Yan density (neglecting the Einstein-
Hilbert term) can be rewritten as a divergence of the axial
gravitino current J� ¼ 1

2"
���� �c ���c �:

SNieh-Yan ¼ � 1

2

Z
d4xr�J

�; (6.1)

where r� is the covariant derivative. Equation (6.1) is

again in agreement with Ref. [42]. In superspace super-
gravity, it appears to be the consequence of the on-shell
identity

iðr2R� H:c:Þ / r�J
�; (6.2)

where the H.c. stands for the Hermitian conjugate of the
preceding term.
The invariance of an action in supersymmetry and su-

pergravity is usually defined modulo a surface term or up to
a total derivative in the Lagrangian. A supersymmetric
completion of a topological term in supersymmetry is often
ambiguous (i.e. defined up to a surface term) since it does
not change the bosonic value of a topological action. The
superspace approach can, nevertheless, be effectively used
in selecting the most natural (or minimal) consistent super-
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symmetric topological action that should be used in quan-
tum gravity. When a constant BI parameter is promoted to
a (spacetime-dependent) BI field, there is no ambiguity in
defining a (nontopological) supersymmetric action.

When supergravity is coupled to matter superfields, as is
the case with a BI superfield, the supergravity auxiliary
fields do not vanish, while their (algebraic) equations of
motion determine them in terms of the physical (super-
gravity and matter) fields. In particular, the matter contri-
bution to the spin connection enters via the vector auxiliary
field in Eq. (3.3), giving rise to matter-generated contribu-
tions to spacetime torsion and rendering Eq. (3.6) no longer
valid contrary to the pure supergravity case. As a result, the
supersymmetric Holst action in components gets modified
by matter-dependent terms. We believe that the modifica-
tion should be precisely in the form of the Nieh-Yan-type
extra term, though we did not verify it by an explicit
calculation. The reason for this belief is the PQ symmetry
[e.g. Eq. (5.2)] of the superspace formulation of Holst
supergravity with the BI superfield: the action in Eq.
(5.8) is invariant with respect to the transformations in Eq.

(5.2) as the former merely depends on the sum (�þ ��).
We have thus established a direct mathematical relation

between the Nieh-Yan action with a BI field and theN ¼
1 supergravity action in superspace. This mapping relates
the BI field �� to the supergravity axion. In the nonsuper-
symmetric four-dimensional theory, when the axion is
coupled to the Holst term only, its kinetic energy becomes
noncanonical, while with the Nieh-Yan term one recovers
the standard canonical kinetic term. In the supersymmetric
case of a BI superfield coupled to supergravity, we get the
genuine (supersymmetric) nonlinear sigma model repre-
senting the BI kinetic terms in the action of Eq. (5.8).

VII. CONCLUSIONS

We have shown that the possibility of migrating con-
cepts and constructs across the LQG/SSMT boundary can
yield interesting perspectives on issues that can arise.

While there is currently no known requirement of the
presence of supersymmetry in the LQG program, embed-
ding LQG considerations within supergravity theory may
offer hints on the possibility of a synthesis, daunting
though this may seem. If supersymmetry were ever to be
found as a requirement in the LQG program, then the stage
would be set for a fascinating line of investigation on the
issue of Bekenstein-Hawking black hole entropy within the
two distinct approaches represented by LQG and SSMT. In
the former all indications are that the axion must have a
nonvanishing VEV, while in the latter no such requirement
arises.
A connection between the BI field and the axion also

leads to two possible and interesting interpretations: either
the BI field and the axion field are one and the same, or the
BI field is another massless degree of freedom that happens
to possess similar couplings to curvature relative to the
axion coupling. In the former case, one can then attempt to
constrain the BI field by studying the effect of its potential
on cosmological observables. Work along these lines is
currently underway [46].
Should the identification of the BI field with the axion

hold true generically, one may recall the possibility of dark
matter composed at least in part of axions. In such a case,
the BI field/particle might become a viable candidate for
dark matter.
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