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In recent work, we derived the long-distance confining dynamics of certain QCD-like gauge theories

formulated on small S1 � R3 based on symmetries, an index theorem, and Abelian duality. Here, we give

the microscopic derivation. The solution reveals a new mechanism of confinement in QCD(adj) in the

regime where we have control over both perturbative and nonperturbative aspects. In particular, consider

SUð2Þ QCD(adj) theory with 1 � nf � 4 Majorana fermions, a theory which undergoes gauge symmetry

breaking at small S1. If the magnetic charge of the Bogomol’nyi-Prasad-Sommerfield (BPS) monopole is

normalized to unity, we show that confinement occurs due to condensation of objects with magnetic

charge 2, not 1. Because of index theorems, we know that such an object cannot be a two identical

monopole configuration. Its net topological charge must vanish, and hence it must be topologically

indistinguishable from the perturbative vacuum. We construct such non-self-dual topological excitations,

the magnetically charged, topologically null molecules of a BPS monopole and KK antimonopole, which

we refer to as magnetic bions. An immediate puzzle with this proposal is the apparent Coulomb repulsion

between the BPS-KK pair. An attraction which overcomes the Coulomb repulsion between the two is

induced by 2nf-fermion exchange. Bion condensation is also the mechanism of confinement in N ¼ 1

SYM on the same four-manifold. The SUðNÞ generalization hints a possible hidden integrability behind

nonsupersymmetric QCD of affine Toda type, and allows us to analytically compute the mass gap in the

gauge sector. We currently do not know the extension to R4.
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I. INTRODUCTION

Probably the most important experimental and phe-
nomenological observation about SUð3Þ QCD is confine-
ment, i.e., the absence of the free colored particles in
isolation. Numerical lattice simulations unambiguously
establish confinement in pure Yang-Mills theory and
QCD. However, to date the analytical success had been
limited. For reviews, see [1–3].

The QCD of nature belongs to a subclass of asymptoti-
cally free and confining gauge theories without elementary
scalars. This class is referred to as vectorlike or QCD-like.
This is a sufficiently good reason to warrant the study of the
dynamics of such four-dimensional QCD-like theories. In
the last two decades, most theoretical efforts were concen-
trated into the dynamics of supersymmetric theories. It
would be fair to say that despite many remarkable results
obtained in such theories, their benefit to QCD-like theo-
ries is still in its infancy. There is a very good reason for
this. On R4, there only exists one QCD-like supersymmet-
ric theory, the pureN ¼ 1 SYM. All other supersymmet-
ric theories have scalars, and are hence non-QCD-like by
definition. In regimes where such theories are solved or
understood quantitatively, such as mass deformation of
N ¼ 2 SYM down to N ¼ 1 [4], the scalars never

decouple from the dynamics. If they are forced to decouple
by tuning certain parameters, one usually looses the theo-
retical control over the theory [5].
Our goal in this paper is more direct and motivated by

the following question: Is there any asymptotically free and
confining QCD-like theory in d ¼ 4 dimensions (with no
special properties such as supersymmetry) in which we can
understand its nonperturbative aspects exactly, and can
derive the long-distance (confining) dynamics starting
with microscopic theory?1

On R4, the answer seems to be out of reach currently.
However, on locally four-dimensional settings, such as
spatial S1 � R3, the answer is yes. In particular, QCD
with multiple adjoint representation fermions on small
S1 � R3, (S1 � R2;1 in Minkowski setting) [8] becomes
analytically tractable. Here, it is important that S1 is not a
thermal circle. It is a spatial circle along which fermions
are endowed with periodic spin connection, and the result-
ing QCD-like theory is a zero temperature field theory on a
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1Two archetypes of non-QCD-like theory in which the long-
distance theory can be derived starting with the microscopic
theory are Polyakov’s treatment [6] of the Georgi-Glashow
model on R3, a theory which confines, and Nekrasov’s derivation
[7] of the N ¼ 2 Seiberg-Witten prepotential, a theory which
does not confine. TheN ¼ 1mass deformation of the latter also
confines. Our goal is to find such quantitatively tractable ex-
amples among QCD-like theories.
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space with one compact dimension. The benefits of con-
sidering this setup are (i) weak coupling (due to asymptotic
freedom) and (ii) unbroken spatial center symmetry. The
latter is a consequence of the absence of thermal fluctua-
tions and the fact that the quantum fluctuations favor the
center symmetric vacuum.

A. A mechanism of confinement by non-self-dual
topological excitations

Below, we will briefly outline the results of [8], and
address fundamental questions regarding the microscopic
origin of confinement and chiral symmetry realization in
QCD(adj). Historically, (starting with the mid-1970s), con-
finement was thought to be related to self-dual topological
excitations which are solutions to Prasad-Sommerfield–
type first-order differential equations. For example, both
the Polyakov model [6] and Seiberg-Witten theory are of
this type [4]. In particular, the Seiberg-Witten solution may
be viewed as a very elegant realization of the mid-1970’s
dream of ’t Hooft, Polyakov, and Mandelstam. The picture
of confinement (which appears in a semiclassical regime)
of QCD(adj) does not directly fit to earlier ideas regarding
the subject. As we will demonstrate below, it is sourced by
non-self-dual, yet dynamically stable novel topological
excitations, that we will refer to as magnetic bions. What
makes these excitations more elusive than monopole-
instantons, monopoles, or instantons is that, magnetic bi-
ons, in the sense of topological charge, are indistinguish-
able from perturbative vacuum. Thus, there was no reason
to search for their existence. This is also what makes the
current work different from earlier (above-mentioned) pro-
posals of confinement in non-Abelian gauge theories.

Consider the setup of Ref. [8]. In the small S1 (weak
coupling) limit of SUð2Þ QCD(adj), the holonomy of the

spatial Wilson line along the S1 direction UðxÞ ¼
Pei

R
dx4A4ðx;x4Þ may be regarded as a compact adjoint

Higgs field. This field acquires a nontrivial (center sym-

metry respecting) vacuum expectation value, U ¼
Diagðei�=2; e�i�=2Þ, due to radiatively induced one-loop
Coleman-Weinberg potential. The photons and neutral
fermions ðA�; �

IÞ parallel to U remains massless to all

orders in perturbation theory, and all the other modes
acquire masses and hence decouple from the infrared
dynamics.

Nonperturbatively, there are topologically stable mono-
pole configurations which are a consequence of gauge
symmetry breaking. Since the adjoint Higgs field is com-
pact, other than the Bogomol’nyi-Prasad-Sommerfield
(BPS) monopole, there is also a KK monopole. The exis-
tence of KK monopoles, which are perhaps the most
crucial ingredient in our discussion of QCD(adj), was
discovered in 1997, independently by Lee and Yi using
D-branes in string theory [9] and by Kraan and van Baal by
using calorons configurations [10]. The magnetic and to-

pological charges ðRF;
R
F ~FÞ of these monopoles are nor-

malized as

BPS :

�
þ1;þ 1

2

�
; BPS:

�
�1;� 1

2

�

KK:

�
�1;þ 1

2

�
; KK:

�
þ1;� 1

2

� (1.1)

where a bar denotes antimonopoles.
In [8], we constructed the d ¼ 3 dimensional long-

distance theory for QCD(adj) formulated on R3 � S1 by
employing three tools: Abelian duality, symmetries, and
index theorem. This strategy is, in essence, similar to the
Seiberg-Witten construction of prepotential in N ¼ 2
SYM [4]. The unique Lagrangian to order e�2S0 dictated
by these considerations is

LdQCD ¼ 1

2
ð@�Þ2 � be�2S0 cos2�þ i �c I��@�c I

þ ce�S0 cos�ðdetI;Jc Ic J þ c:c:Þ (1.2)

where � and c I denote the dual photon and fermion.
Dimensionless coordinates, measured in units of compac-
tification circumference L, are used. A detailed micro-
scopic derivation of this Lagrangian will be given in
Sec. II. The mass gap for gauge bosons is manifest in
this Lagrangian. The inverse of the mass gap is the char-
acteristic size of the chromoelectric flux tube, hence con-
finement is also manifest in dual formulation [8].

B. Microscopic derivation

In this work, we will derive the dual Lagrangian (1.2) by
summing over all nonperturbative effects. Before doing so,
note a simple but important feature of (1.2). It is clear that
fermionic interaction terms arise due to the monopole
effects. Any monopole carries a net topological charge. If
massless fermions are present in the underlying theory, due
to the index theorem, a monopole must be associated with
2nf fermion zero-modes of one chirality and an antimono-

pole leads to 2nf zero-modes of the opposite chirality.

Consequently, the terms involving fermion zero-mode in-
sertions are the sum of the monopole operators:

BPS : ei�detI;Jc
Ic J; KK: e�i�detI;Jc

Ic J;

BPS: e�i�detI;J �c
I �c J; KK: ei�detI;J �c

I �c J;
(1.3)

where eiqm� is the pure monopole operator and qm ¼ �1
are magnetic charges of the corresponding (anti)monopole,
and detI;Jc

Ic J are compulsory zero-modes attached to it.

Now, let us inspect the bosonic potential. It is

Vð�Þ � cos2�� ei2� þ e�2i�: (1.4)

Because of the index theorem, a bosonic potential cannot
arise due to objects which carry a nonvanishing index.
Such objects, by construction, must have fermion zero-
mode insertions, and cannot appear in the bosonic poten-
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tial. It is easy to check that the functional integral Z ¼R
D�e�

R
d3x½1=2ð@�Þ2�be�2S0 cos2�� is equivalent to a plasma

of magnetically charged particles with long-range
Coulomb interaction,

VðrÞ ¼ 2ð�2Þ
4�r

; (1.5)

where charges are twice the one of the monopoles. In other
words, the Debye phenomena (which renders the dual
photon massive) is induced not due to excitations with
magnetic and topological charge ð�1;� 1

2Þ, but rather

with charges ð�2; 0Þ. Clearly, these are not elementary
monopoles. The first question we want to answer is, what
are these objects?

A fuller discussion of all pairs and their roles will be
given in Sec. II B. For now, let us observe that only a bound
state of BPS monopole, and KK antimonopole, BPSKK,
and its antiparticle can induce the bosonic potential. Such
an object has the correct quantum numbers ð1; 12Þ þð1;� 1

2Þ ¼ ð2; 0Þ and is the prime candidate for the mag-

netically charged object which leads to confinement in
QCD(adj) in the L� � 1 regime.

There is an immediate puzzle with this proposal. The
BPS and KK monopoles interact electromagnetically via
Coulomb repulsion, hence in order to have a bound state,
there must exist an attraction which may overcome the
Coulomb repulsion.2 In the QCD(adj) vacuum, a pairing
mechanism arguably as strange as the BCS theory [11]
takes place. An attraction which overwhelms the Coulomb
repulsion between BPS and KK is generated via (an even
number of) fermion exchange. In nf ¼ 1 QCD(adj)

(i.e., SYM), this is a fermion pair exchange. In nf > 1

QCD(adj), it is the exchange of 2nf fermions. The attrac-

tive potential is a logarithmical one

VeffðrÞ ¼ 4nf logrþ 1

4�r
; r � 1 (1.6)

and it easily overcomes the repulsive Coulomb force. This
forces the BPS and KK monopoles to form a charged
bound state. We refer to this molecule as a magnetic

bion, and to the BPS-KK molecule as antibion. The im-
portant point that is worth repeating is that the net topo-
logical charge of the BPS-KK pair is identically zero:R
R3�S1 F

~F ¼ 0, even though for individual (isolated)

BPS it is
R
R3�S1 F

~F ¼ 1
2 , and for KK it is

R
R3�S1 F

~F ¼
� 1

2 . Consequently, bions do not have fermion zero-modes

attached to them, and they are the leading contribution to
the effective bosonic potential for the dual photon.
Considerations along these lines also provide dynamical

explanations for the absence of confinement in a Yang-
Mills noncompact Higgs system with adjoint Dirac fermi-
ons formulated on R3. Affleck, Harvey, and Witten in
Ref. [12] showed that such systems do not confine despite
the presence of magnetic monopoles. Their argument is
based on symmetries and index theorems. Without much
recourse to the microscopic theory, they showed that the
photon arises as a Goldstone boson of spontaneously bro-
ken fermion number symmetry, hence remains massless
nonperturbatively. Here, we give a microscopic derivation
of this beautiful symmetry argument based on the dynam-
ics of monopoles (and bions). In one sentence, the absence
of magnetically charged, but topologically null configura-
tions (which may be the only source of a mass gap for a
dual photon in the presence of fermions) implies the ab-
sence of confinement in the SUð2Þ application. We also
provide a dynamical explanation for the absence of con-
finement in the N ¼ 2 SYM theory on R3 based on a
similar rationale.3

The discussion of nonsupersymmetric QCD(adj) can
also be applied to N ¼ 1 SYM on R3 � S1 with only
cosmetic changes. All one needs to be careful about is the
extra massless scalar, and keep it in the effective theory. In
fact, the long-distance effective theory for SYM (which is a
supersymmetric affine Toda theory) was derived far before
our work on the subject [13–16].4 In spite of that, the fact
that confinement was induced not due to (self-dual) mono-
poles, but rather via (non-self-dual) magnetic bions was
not understood earlier. Remarkably, the mechanism of
confinement for N ¼ 1 SYM and nonsupersymmetric
QCD(adj) is one and the same in the small S1 regime.
The second part of the paper discusses the SUðNÞ gen-

eralization of the nonsupersymmetric QCD(adj), and de-
rives the long-distance Lagrangian. The biggest surprise is
that the bosonic sector of QCD(adj) maps into an inte-
grable system, intimately related to possible integrable
generalization of the affine Toda theories. We identify
magnetic bions as bound states of magnetic monopoles
with charge �j and antimonopoles with charge ��jþ1.

The net effect of bions can be encoded into a prepotential,

2This situation is analogous to the BCS theory of supercon-
ductivity. There must exist a net attraction between electron pairs
which overcomes the shielded, yet repulsive Coulomb potential.
Such an attractive force is provided through the exchange of
phonons of the crystal lattice. A novel pairing mechanism is at
work in QCD(adj) formulated on small S1 � R3. Aswill be seen
explicitly, the pairing in QCD(adj) is a real-space phenomena,
unlike the BCS theory.

3These theories (formulated on R3) are as important as
QCD(adj) on R3 � S1. They exhibit that if massless fermions
are present, having monopoles is not sufficient to have
confinement.

4Our derivation of the bosonic potentials in SYM differs from
earlier work, which was based on using supersymmetry as a
completion device to obtain superpotential (hence bosonic po-
tential) from the monopole inducedfermionic terms. We instead
chose to delineate on the microscopic origin of the bosonic
potential, and obtained it directly without any recourse to super-
symmetry. The final result is the same of earlier work [13–16].
The real payoff of our approach is in its applicability to non-
supersymmetric theories.
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out of which we may derive the potential. Interestingly
enough, the relation between the prepotential and potential
is the same as the relation between the superpotential and
potential in N ¼ 1 SYM, modulo the absence of the
Higgs scalar in the former (where it is massive). We give
the analytic derivations of characteristic sizes of chromo-
electric flux tubes in QCD(adj) in the small S1 regime.

Let us complete the introduction by saying that closer
and deeper inspection of nonsupersymmetric QCD-like
theories may also be used to build the relation between
the inner goings-on of the supersymmetric and nonsuper-
symmetric gauge theories. Suffice it to say that the inte-
grable systems which emerge in the QCD(adj) are variants
of the affine Toda systems [17–19], which also appeared in
the discussions of N ¼ 1, 2 SYM, and elliptic curves
[20]. This direction will not be explored in this paper, but
is potentially interesting.5

II. DYNAMICS OF SUð2Þ QCD(ADJ) ON SMALL
S1 � R3

A. Perturbation theory

First, we wish to give the microscopic derivation of the
dual theory (1.2). The action of SUðNÞ QCD(adj) defined
on R3 � S1 is

S ¼
Z
R3�S1

1

g2
tr

�
1

4
F2
MN þ i ��I ��MDM�I

�
(2.1)

where �I ¼ �I;ata, a ¼ 1; . . . ; N2 � 1 is the Weyl fermion

in adjoint representation, FMN is the non-Abelian gauge
field strength, and I is the flavor index, and the generators
are normalized as trtatb ¼ �ab. The classical theory pos-
sesses a UðnfÞ flavor symmetry whose Uð1ÞA part is

anomalous. The symmetry of the quantum theory is

ðSUðnfÞ � Z2Nnf Þ=Znf : (2.2)

The quantum theory has the dynamical strong scale �,
which arises via dimensional transmutation, and is given

by �b0 ¼ �b0e�8�2=g2ð�ÞN where � is the renormalization
group scale and b0 ¼ ð11� 2nfÞ=3. We consider small nf
so that asymptotic freedom is preserved. The nf ¼ 1 case

(SYM) will be discussed separately. We first discussN ¼ 2
QCD(adj), and N 	 3 will be discussed in Sec. III.

At small S1 ðL� � 1Þ, due to asymptotic freedom, the
gauge coupling is small, and a perturbative Coleman-

Weinberg analysis is reliable [28]. Let UðxÞ ¼

Pei
R

dx4A4ðx;x4Þ be the path-ordered holonomy of the spatial
Wilson line wrapping the S1, and sitting at the point x 2
R3. Integrating out the heavy KK-modes along the S1

circle, j!nj 	 !1 where!n ¼ 2�
L n, n 2 Z, induces a non-

trivial effective potential for UðxÞ [29].

Vþ½U� ¼ ð�1þ nfÞ 2

�2L4

X1
n¼1

1

n4
jtrUnj2;

UðxÞ ¼ Pei
R

dx4A4ðx;x4Þ 
 eiL�:

(2.3)

Note that the stability of the center symmetry is induced by
massless adjoint fermions with periodic boundary condi-
tions. In this sense, this theory does not require the double-
trace deformations to achieve phases of unbroken center
symmetry [30–32]. The action for the classical zero-modes
reduces to

S ¼
Z
R3

L

g2
tr

�
1

4
F2
�� þ 1

2
ðD��Þ2 þ g2Vðj�jÞ

þ i ��Ið ���D� þ ��4½�; �Þ�I

�
: (2.4)

The minimum of the potential Veff is located at Lj�j ¼ �
2 ,

hence

U ¼ ei�=2

e�i�=2

 !
or L� ¼ �=2

��=2

� �
:

(2.5)

Since trU ¼ 0, the Z2 center symmetry is preserved. By
the Higgs mechanism, the gauge symmetry is broken down
as

SUð2Þ ! Uð1Þ: (2.6)

Because of adjoint Higgs mechanism, the neutral fields
aligned with U along the Cartan subalgebra ðA3;�; �

I
3Þ

remain massless, and off-diagonal components acquire
mass, given by the separation between the eigenvalues of
the Wilson line

mW� ¼ m�I;� ¼ �=L (2.7)

where � refers to the charges under unbroken Uð1Þ.
Therefore, in perturbation theory, the low-energy theory
is a d ¼ 3 dimensional Abelian Uð1Þ gauge theory with nf
massless fermions with a free action

S ¼
Z
R3

L

g2

�
1

4
F2
3;�� þ i ��I

3 ��
�@��3;I

�
: (2.8)

At distances shorter than L, the coupling constant flows
according to the four-dimensional renormalization group.

5There are also recent, interesting works on the dynamics of
four-dimensional gauge theories, in particular, for pure Yang-
Mills, see [21–23], and for lattice works, see [1,24] and refer-
ences therein. Also, good reviews covering different aspects of
monopoles and instantons can be found in [25–27].
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Since the heavy W�, �I;� which are charged under Uð1Þ
decouple from the long-distance physics at scale L and
above, the coupling constant ceases to run at 1=L � �
much before the strong coupling sets in, see Fig. 1. In
perturbation theory, this is the whole story.

B. Nonperturbative effects and Abelian duality

Nonperturbatively, the perturbatively free infrared fixed
point is unstable. This follows from the existence of mono-
poles (strictly speaking, these are monopole-instantons or
fractional instantons), at the cores of which the Uð1Þ
symmetry of the free theory enhances to the whole non-
Abelian SUð2Þ.

Because of gauge symmetry breaking via a compact
adjoint Higgs field, there are two types of monopoles,

BPS and KK, as well as their antimonopoles BPS, KK
[9,10,33,34].6 These four types of monopoles are distin-
guished by their quantized magnetic and topological
charges ðRF;

R
F ~FÞ normalized as

BPS:

�
þ1;

1

2

�
; BPS:

�
�1;� 1

2

�
;

KK:

�
�1;

1

2

�
; KK:

�
þ1;� 1

2

�
:

(2.9)

Because of the chiral anomaly relation [35],

@MJ
M5 ¼ g2ð2NnfÞ

32�2
trFMN

~FMN; (2.10)

each object with a nonvanishing topological charge is
associated with a certain number of fermionic zero-modes.
Integrating both sides over the space, we find

�Q5 ¼ n� � n �� ¼ 4nf
Z g2

32�2
trFMN

~FMN

¼
�
4nfð12Þ ¼ 2nf forBPS or KK

4nfð� 1
2Þ ¼ �2nf forBPS or KK

(2.11)

where the term inside the parenthesis is the topological
charge. As it should be clear, 4nf is the number of fermi-

onic zero-modes associated with a four-dimensional in-
stanton, whose topological charge is þ1. Since the
topological charges of monopoles are a fraction of the
one of the instanton, they are sometimes referred as frac-
tional instantons. Clearly, a BPS-KK pair has the correct
quantum numbers to be the constituents of the instanton
[33,34].
By Abelian duality [6,36], we know that the functional

integral in a gauge theory in the presence of a single
monopole with charge �1 located at the position x is

equivalent to the insertion of an operator e�i�ðxÞ in the
path integral of the dual theory. However, the index version
of the chiral anomaly relations (2.11) tells us that a mono-
pole acts as it contains a source for every fermion flavor,
and an antimonopole acts as if it contains a sink for all
fermion flavors. Adapting a combination of techniques
developed by ’t Hooft [37] and by Polyakov [6] to our
problem, we can sum up all the monopole effects. The

BPS KK

BPS KK
(2,0) (−2, 0)

(1, 1/2) (−1, 1/2)

(−1, −1/2) (1, −1/2)

FIG. 2 (color online). (Left) Magnetically and topologically
charged monopoles carry compulsory fermion zero-modes.
Consequently, they cannot induce a bosonic potential for the
dual photon. (Right) Topologically null, magnetically charged
bions have no external fermionic legs. Hence, they induce the
leading bosonic potential, which implies mass for the dual
photon and confinement. The figure is for SUð2Þ with nf ¼ 2.

The combination of the BPS-KK monopoles (which is not
depicted) is an instanton (or caloron). It is present in confined
phase, but is not the source of the dual photon mass term.

1

Λ µ1/L

g2 (µ)

G
H

FIG. 1 (color online). Summary of perturbative analysis: Solid
line indicates the running of the gauge coupling in QCD(adj)
compactified on a small circle S1 with circumference L, and
dashed line is the usual running on R4. In the regime 1=L � �
perturbative Coleman-Weinberg analysis is reliable, and leads to
a radiatively induced gauge symmetry breaking G ! H where
G ¼ SUð2Þ and H ¼ Uð1Þ. To all orders in perturbation theory,
the long-distance theory described by H is free due to absence of
charged massless excitations. This is reminiscent of the N ¼ 2
SYM theory on R4, for which gauge symmetry breaking takes
place on the semiclassical domain of the moduli space.

6Were the gauge symmetry broken by a noncompact Higgs
field, the KK monopole would not be there. As we will discuss,
this is the case in the extension of the Polyakov model in the
presence of adjoint fermions, a theory which does not confine.
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functional integral (with a source) in the presence of a
monopoleZ

DA�Dc ID �c Ie�Sone mon:ðA;c ; �c ÞþJ detc Ic Jþ �J det �c I �c J

(2.12)

is the same as having

e�S0
Z

D�Dc ID �c Ie�Sd;0ð�;c ; �c ÞþJ detc Ic Jþ �J det �c I �c J
ei�ðxÞ

� detI;Jc
Ic J (2.13)

where Sd;0ð�; c ; �c Þ ¼ R
R3½12 ð@�Þ2 þ i �c I��@�c I� is the

free kinetic term. Hence, a functional integral in the pres-
ence of a monopole can be translated into having a mono-

pole vertex ei�ðxÞ with accompanying fermionic zero-
modes. We can insert the monopole at any x 2 R3, and
we can consider an arbitrary number of them. The sum
over all possible monopole configurations is

X1
nBPS¼0

X1
n
BPS

¼0

X1
nKK¼0

X1
n
KK

¼0

e�ðnBPSþn
BPS

þnKKþn
KK

ÞS0

nBPS!nBPS!nKK!nKK!

�
�Z

d3xei�ðxÞdetI;Jc Ic J

�
nBPS

�
�Z

d3xe�i�ðxÞdetI;J �c I �c J

�
n
BPS

�
�Z

d3xe�i�ðxÞdetI;Jc Ic J

�
nKK

�
�Z

d3xei�ðxÞdetI;J �c I �c J

�
n
KK
: (2.14)

Performing the summation yields monopole induced terms
of order e�S0 in our effective Lagrangian

exp

�Z
d3xe�S0ðei� þ e�i�ÞðdetI;Jc Ic J þ detI;J �c

I �c JÞ
�
:

(2.15)

Therefore, the combined effect of BPS and KK monopoles
is cos� detc Ic J. This vertex is manifestly invariant under
continuous SUðnfÞ flavor symmetry, acting as c ! Uc
where U 2 SUðnfÞ. The microscopic theory also pos-

sesses a Z4nf discrete chiral symmetry.7 The effective

theory, in order to respect the Z4nf discrete chiral symme-

try, intertwines it with a discrete shift symmetry of the dual
photon:

c I ! ei2�=ð4nfÞc I; � ! �þ � (2.16)

both of which acts as negation on the determinantal fer-
mion vertex and cosine combinations

det I;Jc
Ic J ! �detI;Jc

Ic J; cos� ! � cos�

(2.17)

respectively, so that the effective theory respects the real
symmetries of the underlying theory.
In the effective Lagrangian, this is the set of all non-

perturbative effects at order e�S0 in the e�S0 expansion.
However, the discrete Z2 shift symmetry � ! �þ �,
unlike a continuous shift symmetry, cannot prohibit a
mass term for the scalar �. Clearly, a term e�S0 cos� is
forbidden by Z2. But its square is an allowed operator. If
fermions were not present,

e�S0 cos�� e�S0ðei� þ e�i�Þ (2.18)

would be an allowed term as in the Polyakov’s discussion
of the Georgi-Glashow model, and would induce a mass

term of order e�S0=2 for dual photon. However, because of
the index theorem (2.11), a monopole must come with
fermion zero-modes, and a term such as ei� cannot appear
on its own, but must appear in combination ei�detI;Jc

Ic J.

Symmetry principles also tell us that, at the e�2S0 order,
we can write

½e�S0 cos��2 � e�2S0ð1þ 1þ e2i� þ e�2i�Þ (2.19)

and this would generate a mass term for the dual photon,
hence leading to confinement. We wish to understand the
dynamical origin of this potential.
Let us first forget about the issues about fermion zero-

modes, and decide on the basis of quantum numbers, which
topological excitations may contribute to the nonperturba-
tive potential. Since we know that, due to index theorem,
such an object cannot be a monopole, let us enlist all
possible pairs of monopoles, the magnetic and topological
charges of constituents and pairs, and the types of the long-
range Coulomb interactions, repulsive or attractive. In
nonsupersymmetric QCD(adj) with 2 � nf � 4, the list

of all Coulomb interaction channels for monopoles is given
by

7More generally, consider SUðNÞ QCD(adj) with nf flavors.
The chiral symmetry is ½SUðnfÞ � Z2Nnf �=Znf , where the com-
mon Znf is factored out to prevent double counting. The Z2
subgroup of the Z2N is ð�1ÞF fermion number modulo 2, which
cannot be spontaneously broken so long as Lorentz symmetry is
unbroken. Thus, the only genuine discrete chiral symmetry of
SUðNÞ QCD(adj) which may potentially be broken is the re-
maining ZN , irrespective of the number of flavors. In small S1,
we explicitly demonstrate the existence of N vacua, and sponta-
neous breaking of chiral ZN symmetry (which is intertwined
with the discrete shift symmetry of the photon). This ZN sym-
metry should not be confused with the spatial center symmetry,
Gs ¼ ZN , which is unbroken in spatial compactification of
QCD(adj).
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In the presence of the fermion zero-modes, the (bosonic)
potential must arise due to the sector of the theory with
zero topological charge so that there will not be any
fermion zero-mode insertions in it. In other words, the
objects which may contribute to the potential must be
topologically indistinguishable from the perturbative
vacuum.

This immediately rules out the four possible monopoles,
and six of the ten pairs in our list from contributing to the
bosonic potential. In particular, the two identical monopole
configurations such as BPS-BPS with ð1; 12Þ þ ð1; 12Þ ¼ð2; 1Þ have the correct magnetic charge, but their topologi-
cal charge does not permit them to contribute to the bo-
sonic potential. Another interesting combination which
does not lead to the confining potential is a BPS-KK pair.
The BPS-KK pair in fact constitutes an instanton (some-
times called a caloron, [33,34]) with charge ð1; 12Þ þð�1; 12Þ ¼ ð0; 1Þ and does not induce a mass term for the

dual photon.

The monopole and antimonopole pairs such as BPS-BPS
are topologically null, but also magnetically neutral. Their
contribution to the effective potential can only be an unin-
teresting constant. There remains a single option: a bound
state of BPS monopole, and KK antimonopole, BPS-KK,
and its conjugate. Such an object has the correct quantum
numbers ð�1; 12Þ þ ð�1;� 1

2Þ ¼ ð�2; 0Þ. We referred to

this object as a magnetic bion (see Fig. 2). Consequently,
the bion is the prime candidate which may lead to confine-
ment in QCD(adj) in the L� � 1 regime.

However, there is an immediate puzzle with this
proposal. There is a long-range Coulomb repulsion be-
tween BPS-KK constituents of the bion. If we wish to
have a bound state, there must exist an attractive interac-
tion which overcomes the repulsive Coulomb force.
Happily, there is!

C. Pairings and attractive multifermion exchanges

The presence of fermion zero-modes changes things
drastically. We will demonstrate that for the pairs with
net topological charge zero, there exists an attractive
Veff � logr interaction between the constituents due to
fermion pair exchanges. For the pairs with a nonvanishing
topological charge, the constituents do not interact at all
due to chirality at leading order.
Let us first show the first assertion: Consider BPS and

KK monopoles located at x; y 2 R3, where jx� yj � 1.
(x, y are dimensionless coordinates in units of L.) We can
extract their interactions from the connected correlator of
the BPS vertex VBPSðxÞ, and KK vertex VKKðyÞ in the free

dual theory with action Sd;0ð�; c ; �c Þ
hVBPSðxÞVKKðyÞi0 ¼ hei�ðxÞdetIJc Ic JðxÞeþi�ðyÞ

� detI0J0 �c
I0 �c J0 ðyÞi0

¼ hei�ðxÞei�ðyÞi0hdetIJc Ic JðxÞ
� detI0J0 �c

I0 �c J0 ðyÞi0
� e�Gðx�yÞ½SFðx� yÞ�2nf (2.21)

where Gðx� yÞ ¼ 1
4�jx�yj is the Coulomb potential, which

is the position space propagator of the � field, GðxÞ ¼R d3p
ð2�Þ3 e

ipx 1
p2 and SðxÞ ¼ ��x�

4�jxj3 is the d ¼ 3 dimensional

free fermion propagator SðxÞ ¼ �� @
@x�

GðxÞ. The static

interaction potential between the BPS and KK pair is

Veffðx� yÞ ¼ � loghVBPSðxÞVKKðyÞi0
¼ 1

4�jx� yj þ 4nf logjx� yj: (2.22)

Asymptotically, 4nf logjx� yj is the dominant attractive
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interaction term, and it easily overcomes the Coulomb
repulsion. Therefore, there exists a stable bion bound state
with the total magnetic and topological charge ðþ2; 0Þ, and
antibion with charge ð�2; 0Þ. It should be noted that the
stability of the magnetic bion relies on the masslessness (or
lightness) of the adjoint fermions. In this case, the fermion
induced attraction overcomes the Coulomb repulsion for a
small range of (light) fermion mass. (See Fig. 2.) For more
details, see Sec. III B.

It should also be noted that similar fermion zero-mode
induced pairings of topological excitations were discussed
earlier in the literature by Callan, Dashen, and Gross and
others [27,38] in the context of instantons on R4. The
pairing mechanism is similar to what we have found above,
in that case instanton and anti-instanton form molecules
due to attraction induced by fermions. Interestingly, the
form of the attractive interaction is the same both in R4 and
R3 � S1, and is a logarithmically attractive interaction
proportional to the number of flavors, nf logr. As these

instanton–anti-instanton molecules are magnetically and
topologically neutral, they play no role in confinement
and chiral symmetry realization in the small S1 regime of
QCD(adj). In our topological semiclassical expansion, they
appear at order e�2NS0 and are a negligible effect.

Analogously, the net interaction between a BPS-BPS
pair is attractive in both interaction channels, either
Coulomb, or fermion exchange interactions. The long-
distance attraction has the form� loghVBPSðxÞVBPSðyÞi0 ¼
� 1

4�jx�yj þ 4nf logjx� yj.
Because of chirality of the underlying theory, the

interaction between pairs with the same topological
charge vanishes identically: hVBPSðxÞVBPSðyÞi0 ¼
hVBPSðxÞVKKðyÞi0 ¼ 0.

Since the topological charge of the magnetic bion is
zero, it does not have any fermion zero-mode attached to
it. Since magnetic bions and antibions have �2 magnetic
charges, they will lead to Debye phenomena. The appro-
priate effective potential induced by bions is indeed what
we wrote based on symmetry arguments:

Vð�Þ ¼ ½e�S0 cos��2 � e�2S0ð1þ 1þ e2i� þ e�2i�Þ:
(2.23)

The terms in the potential have an interpretation as the

contribution of respectively BPSBPSþ KKKKþ
BPSKKþ KKBPS.

More precisely, the interaction terms in the Lagrangian
are due to monopole and bion contributions. The monopole
contributions necessarily involve the fermion interactions.
Schematically, the nonperturbatively induced interaction
terms will always be

Lint ¼
X
bions

Vbion|fflfflfflffl{zfflfflfflffl}R
F ~F¼0

þ X
monopoles

Vmonopole

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}R
F ~F¼�ð1=2Þ

: (2.24)

Therefore, the dual QCD Lagrangian for SUð2Þ QCD(adj)
on small S1 � R3 is given by

LdQCD ¼ 1

2
ð@�Þ2 � be�2S0 cos2�þ i �c I��@�c I

þ ce�S0 cos�ðdetI;Jc Ic J þ c:c:Þ (2.25)

up to higher-order (insignificant) terms in e�S0 .
The potential term for the dual photon, when expanded

around one of its two minima (located at 0 and�), provides
a mass term for the dual photon. From the point of view of
Euclidean field theory, the photon mass is the inverse
Debye screening length in the plasma of magnetic bions.
On a fixed time slice of a timelike Wilson loop, the inverse
photon mass is the thickness of the chromoelectric flux
tube formed between two external electric test charges.
Just like the Polyakov model [6] on R3, the QCD(adj) on
small S1 � R3 exhibits linear confinement,

VlinearðRÞ � e�S0R; (2.26)

and the potential energy of a pair of the electric source
separated by a distance R grows linearly with separation.
Remark: The results and approach of this work should

not be confused with ’t Hooft’s Abelian projection scheme
[39], which only leaves an Uð1ÞN�1 gauge symmetry.
Hence, monopoles in that case are gauge artifacts, which
is fine in the prescribed gauge. In our case, the gauge
symmetry breaking SUðNÞ ! Uð1ÞN�1 is dynamical, and
is a well-controlled effect due to the radiatively induced
Coleman-Weinberg potential. The QCD(adj) in the L� �
1 regime tells us that, in the presence of fermions, the idea
of monopole condensation no longer holds due to fermion
zero-modes. Despite this fact, the qualitative and beautiful
idea of dual superconductivity of ’t Hooft and Mandelstam
[39,40] is still realized at a quantitative level, albeit via
condensation of the pairs with combined magnetic and
topological charges ð�2; 0Þ.
As emphasized, the presence of monopoles is not suffi-

cient to induce confinement, or monopole condensation.
Better appreciation of the above picture can come with the
study of a Yang-Mills Higgs system with adjoint fermions
on R3, a system with monopoles and yet no confinement.

D. Noncompact Higgs with adjoint fermions on R3, and
the lack of confinement

Affleck, Harvey, and Witten studied extensions of
Polyakov’s model in the presence of an adjoint Dirac
fermion on R3 [12]. The generalization of their argument
to multiple flavors is obvious. They analyzed (among other
things) a Yang-Mills Higgs system which possesses the
same action as Eq. (2.4), except the fact that the compact
adjoint Higgs field in Eq. (2.4) is substituted by a non-
compact one.

Vcompact
eff ðj�jÞ ! Vnoncompact

eff ðj�jÞ: (2.27)
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Since the chiral anomaly is absent in odd dimensions, the
noncompact model has a genuine UðnfÞ symmetry whose

Uð1Þ part is a fermion number. Reference [12] showed
quite explicitly that such a model does not confine.
Photons remain at infinite range nonperturbatively, and it
is indeed the Goldstone boson of the spontaneously broken
Uð1Þ fermion number symmetry. Their arguments are es-
sentially based on symmetries, and index theorems by
Callias [41], and explicit zero-mode construction by
Rebbi and Jackiw [42]. Here, we wish to provide a simple
dynamical explanation for this phenomena.

Since gauge symmetry breaking occurs via a noncom-
pact adjoint Higgs field, there is no longer a KKmonopole.
Thus, in order to obtain the long-distance effective action
from our discussion in previous section, we must delete all
KK monopole related terms from our effective action.
Hence, the interaction Lagrangian is Lint � VBPS þ
VBPS þ VBPSBPS. Consequently,

Lnoncompact
eff ¼ 1

2
ð@�Þ2 þ i �c I��@�c I

þ ae�S0ðei� detc Ic J þ c:c:Þ (2.28)

where we ignored a trivial cosmological constant which

may be induced by a BPS BPS pair. This is indeed the
generalization of Ref. [12] to multiflavor ðnf > 1Þ. The
effective action is respectful to all the symmetries of the
underlying theory, in particular SUðnfÞ �Uð1Þ symmetry,

where the former is manifest. The Uð1Þ fermion number
symmetry acts as

c I ! ei�c I; �c I ! e�i� �c I; � ! �� 2nf�

(2.29)

and prohibits any kind of mass term (or potential) for the
dual photon. This is the symmetry which breaks down
spontaneously, and the dual photon is the Goldstone boson.
Clearly, the only topologically neutral object (which

may contribute to the bosonic potential) is the BPSBPS
pair. But such an object has vanishing magnetic charge.
Since there are no topologically null but magnetically
charged carriers in the vacuum of the model studied in
[12], the Debye mechanism is not possible. Hence, the
photon remains at infinite range nonperturbatively. The
inability to formmagnetically charged bions is the dynami-
cal reason for the absence of confinement in the extension
of Polyakov’s model in the presence of adjoint fermions.
This discussion also shows that the presence of mono-

poles in the Yang-Mills Higgs systems with adjoint fermi-
ons is a necessary but insufficient condition to have
confinement. In particular, it also exhibits that, in such
systems, condensations of objects with nonvanishing topo-
logical charge (monopole condensation) do not occur.

E. Magnetic bions in N ¼ 1 SYM on small S1 � R3

The generalization of the discussion in Sec. II C to
SUð2Þ N ¼ 1 supersymmetric gauge theory is easy, yet
important. All one needs to take care of is an extra massless
scalar which remains massless in perturbation theory.
Hence it should be incorporated into long-distance physics.
With the inclusion of the 	-scalar, the monopoles may
interact via 	-exchange, �-exchange, and fermion pair
exchange channels:

Incorporating the scalar field 	 into monopole operators,
we find

BPS : e�	þi�c c ; KK: eþ	�i�c c ;

BPS: e�	�i� �c �c ; KK: eþ	þi� �c �c :
(2.31)

The bosonic potential is due to the sector of the theory with
net zero topological charge, so that there will not be any

fermion zero-mode insertion in it. Thus

BPSBPSþ KKKKþ BPSKKþ KKBPS

¼ e�2S0ðe�2	 þ eþ2	 � ei2� � e�2i�Þ
¼ e�2S0 jez � e�zj2 (2.32)

where we defined z ¼ �	þ i�. Remarkably, the mag-
netic bions already know that there is an underlying super-
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potential, given by8

W ðzÞ ¼ e�S0ðez þ e�zÞ: (2.33)

The long-distance effective action for SYM on small S1 �
R3 is

LSYM
eff ¼ 1

2
ð@�Þ2 þ 1

2
ð@	Þ2 � c2e�2S0ðcos2�� cosh2	Þ

þ i �c��@�c þ ce�S0½ðe�	þi� þ eþ	�i�Þc c

þ ðe�	�i� þ eþ	þi�Þ �c �c �: (2.34)

The Z2N ¼ Z4 discrete chiral symmetry of the original
theory is also manifest in the effective theory

c I ! ei2�=4c I; � ! �þ �: (2.35)

This symmetry breaks down spontaneously to Z2 ¼ ð�1ÞF
where F is the fermion number leading to the appearance
of two isolated vacua.

The dynamics of the N ¼ 1 SYM on R3 � S1 is pre-
viously analyzed by imbedding it into F theory in Ref. [13],
and by using the elliptic curves ofN ¼ 2 SYM combined
with the mass deformation in [14]. The works of Davies
et al. [15,16] provided a clear field theory exposition of the
nonperturbatively induced effects in such theories. The
general strategy of these papers was to calculate the mono-
pole operator first, then use supersymmetry as a comple-
tion device to find the superpotential, hence bosonic
potential. For fermionic terms, our strategy is the same as
in these earlier works. For the bosonic potential, our strat-
egy is different. Rather then using supersymmetry as a
completion tool to derive bosonic potential, we preferred
to delineate on its microscopic (physical) origin. In es-
sence, we identified topologically null configurations
which are topologically indistinguishable from the pertur-
bative vacuum, and hence can contribute to the potential.
Summing up their contributions gives us the bosonic po-
tential, which can also be derived from the superpotential.

These two approaches in the case of N ¼ 1 SYM are
identical. The latter approach has a higher value in our
opinion due to the fact that it does not make any reference
to supersymmetry, and works for nonsupersymmetric
QCD-like theories. Our analysis makes it manifest that
the mechanism of confinement in N ¼ 1 SYM is not
monopole condensation, i.e., condensation of excitations
with topological charge � 1

2 , rather of objects with topo-

logical charge 0. This physical fact was not understood in
earlier important works on the subject [13–16]. Up to our
knowledge, our work is the first analytic demonstration of
confinement induced by non-self-dual topological excita-
tions. Needless to say, even the issue of presence or ab-
sence of such topological excitations was not discussed.
We conclude this section by pointing out that the mecha-

nism of the confinement in supersymmetric N ¼ 1 SYM
is same as the one in nonsupersymmetric QCD(adj) theo-
ries in the L� � 1 regime, both of which are magnetic
bion condensation, a new class of (non-self-dual) topologi-
cal excitations.
In the dimensional reduction of N ¼ 1 SYM down to

R3, confinement does not occur as shown in [12]. The
distinctions are so important that it is worthwhile rederiv-
ing their results following the consideration of this paper,
and explaining the absence of confinement on dynamical
grounds.

F. The N ¼ 2 SYM on R3 and lack of confinement,
again

Delete all the terms in the effective action (2.34) which
are related to KK monopole. (This is the same statement as
the 	 field becomes noncompact on the R3 limit.) This

leaves us with BPS and BPS induced operators (involving

fermion bilinears) and a BPSBPS induced term in the
bosonic potential in the Lagrangian (2.34):

Ln:c:
eff ¼ 1

2
ð@�Þ2 þ 1

2
ð@	Þ2 � c2e�2S0e�2	 þ i �c��@�c

þ ce�S0½e�	þi�c c þ e�	�i� �c �c � (2.36)

which is the same as the Lagrangian in [12]. The Z2N

discrete chiral symmetry of SYM on locally four-
dimensional settings elevates to the full Uð1Þ fermion
number on R3 due to absence of chiral anomaly in odd
dimensions. The continuous Uð1Þ symmetry acts as

c I ! ei�c I; �c I ! e�i� �c I; � ! �� 2�

(2.37)

and prohibits any kind of explicit mass term (or potential)
for the dual photon. This is the symmetry which breaks
down spontaneously, and the dual photon is the Goldstone
boson. The runaway potential e�2	 does not have a vac-
uum at finite 	.
On dynamical grounds, the absence of confinement is

due to the inability to form long-range magnetic bions in

SYM vacuum on R3. The BPSBPS pairs are neutral, and
the photon remains at infinite range in a medium of neutral
molecules. In other words, it remains massless nonpertur-
batively as demanded from a Goldstone particle, and this
implies the absence of confinement.

III. SUðNÞ QCD(ADJ), BIONS, AND SECRET
INTEGRABILITY?

The SUðNÞ QCD(adj) theory undergoes gauge symme-
try breaking on sufficiently small spatial S1 due to a
perturbative Coleman-Weinberg potential. The gauge sym-
metry breaking is SUðNÞ ! Uð1ÞN�1. For simplicity, we
will add a decoupled ‘‘center of mass’’ degree of freedom
to the original theory and consider gauge symmetry break-
ing of the form UðNÞ ! Uð1ÞN . This is a technical trick,

8Strictly speaking, this superpotential is the form acquired
after the super-Higgs mechanism.
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and in the spontaneously broken gauge theory, the center of
mass mode decouples from the dynamics. Hence, our goal

is to determine the dynamics of the N � 1 modes Uð1ÞN
Uð1Þc:m:

.

The monopoles may be described by their magnetic
charges, topological charge, and their action. The magnetic
charges of the N types of (BPS and KK) monopoles under
unbroken gauge symmetry Uð1ÞN are proportional to the
simple roots and affine root of the Lie algebra, respectively.
The simple roots are given by

�1 ¼ ð1;�1; 0; . . . ; 0Þ ¼ e1 � e2

�2 ¼ ð0; 1;�1; ; . . . ; 0Þ ¼ e2 � e3

�i ¼ ð0; . . . ; 1;�1; . . . 0Þ ¼ ei � eiþ1

. . .

�N�1 ¼ ð0; . . . ; ; 0; 1;�1Þ ¼ eN�1 � eN

(3.1)

and the affine root is

�N 
 � XN�1

j¼1

�j ¼ ð�1; 0; 0; . . . ; 1Þ ¼ eN � e1: (3.2)

It is convenient to define the simple �0 and affine (ex-
tended) �0

aff root systems of the associated Lie algebra:

�0 
 f�1; �2; . . . ; �N�1g;
�0

aff 
 f�1; �2; . . . ; �N�1; �Ng:
(3.3)

The latter is the one relevant for QCD(adj) on R3 � S1.
More generally, in the Yang-Mills Higgs systems with
adjoint fermions, if the Higgs field is noncompact, the
monopole and antimonopole charges are valued in �0

and ��0, respectively. If the Higgs field is compact, then
there is an extra monopole, and the charges take values in
��0

aff .

The topological charges
R
F ~F are correlated with the

sign of the two sets ��0
aff . Thus, the quantized magnetic

and topological charges are

Z
S2
Fi ¼ � 2�

g
�i;

Z
F ~F 
 g2

32�2

Z
trFMN

~FMN ¼ � 1

N
:

(3.4)

The action of a monopole with charge �i and topological

charge
R
F ~F ¼ � 1

N is given by S0;i ¼ 8�2

g2

R
F ~F ¼ 8�2

g2N
.

Because of the presence of the effective potential for the
Wilson line, the monopoles of QCD(adj) theory (except for
nf ¼ 1 which is supersymmetric) do not saturate the BPS

bound. But the corrections are perturbative in g2 and we
will neglect them.

The long-range Coulomb interaction of monopoles (in
the absence of fermions) is given by9

Vð�i;��j; rÞ ¼
�i:ð��jÞ

4�r
¼ � 2�ij � �i;jþ1 � �i;j�1

4�r
;

i; j ¼ 1; . . .N (3.5)

which translates to self and nearest neighbor interaction
between monopoles in the Dynkin space. The inner prod-
uct of the roots of the associated Lie algebra is a basis
independent statement, though the above choice of the
basis (3.1) is due to its visual simplicity.
We are now ready to generalize the derivation of effec-

tive potential for SUð2ÞQCD(adj) to SUðNÞwith 1< nf �
4. Our discussion will be brief.
Were the adjoint fermions absent, a monopole with

charge �j would be associated with operator ei�j�.

Because of index theorem (2.11), any object with a non-
vanishing topological charge (1=N) must have�Q5 ¼ 2nf
fermions attached to it. As discussed in footnote 7, the
underlying QCD(adj) theory has ½SUðnfÞ � Z2Nnf �=Znf

continuous and discrete chiral symmetries. The manifestly
SUðnfÞ invariant fermion vertex with 2nf fermion inser-

tion is given by detIJ�ic
I�ic

J where the determinant is
over the flavor index. Here, we use a vector notation

� ¼ ð�1; . . . ; �NÞ; c I ¼ ðc I
1; . . . ; c

I
NÞ;

�i� ¼ �i � �iþ1:
(3.6)

As stated earlier, the center of mass mode is extraneous and
decouples from the dynamics completely. Hence, the ap-
propriate monopole and antimonopole operators are

V�i
¼ ei�i�detIJ�ic

I�ic
J;

V��i
¼ e�i�i�detIJ�i

�c I�i
�c J:

(3.7)

This means, the interaction Lagrangian at Oðe�S0Þ is given
by

e�S0
X

�i2�0
aff

ðei�i�detIJ�ic
I�ic

J

þ e�i�i�detIJ�i
�c I�i

�c JÞ: (3.8)

This vertex is invariant under ðSUðnfÞ � Z2Nnf Þ=Znf as

desired. The discrete chiral symmetry acts as

c I ! ei2�=ð2NnfÞc I; �c I ! e�i2�=ð2NnfÞ �c I;

� ! �� 2�

N

XN�1

j¼1

�k

(3.9)

where �k are the N � 1 fundamental weights (not the

9We set 2�g to unity as in our discussion of SUð2Þ to lessen the
clutter in expressions. All physical quantities are measured in
units of L, which is also set to unity. We will restore both
quantities if necessary.
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weight of fundamental representation) of the associated
Lie algebra. They are defined by the reciprocity relation,

2�i�j

�2
i

¼ �i�j ¼ �ij: (3.10)

The shift in the photon field is called the Weyl vector, and
we will often abbreviate it as


 
 XN�1

j¼1

�j; such that eiðð2�Þ=NÞ
�j ¼ eiðð2�Þ=NÞ;

j ¼ 1; . . . ; N: (3.11)

The action of the discrete chiral symmetry on SUðnfÞ
singlets is a ZN symmetry transformation,

detI;J�ic
I�ic

J ! ei2�=NdetI;J�ic
I�ic

J;

ei�i� ! e�i2�=Nei�i�: (3.12)

Consequently, the monopole induced interaction terms
(which are of order e�S0) are respectful the discrete (and
continuous) symmetries of the underlying theory.

Exactly as in the SUð2Þ discussion, this is the net effect
of the topologically nontrivial sector of the theory which
saturates the Lagrangian at order e�S0 . In particular, a
would-be (confining) potential term for the � field

e�S0
X

�i2�0
aff

ðei�i� þ e�i�i�Þ (3.13)

is forbidden by the ZN shift symmetry �� 2�
N

P
N�1
j¼1 �k of

the dual photon. This is a consequence of having adjoint

fermions in the system. In the absence of fermions, such as
a pure Yang-Mills compact Higgs system, this is the lead-
ing term which renders all the photons massive, with

masses of order e�S0=2. We will see that in QCD(adj), the
masses of photons are of order e�S0 , and there is a ZN shift
symmetry respecting potential at order e�2S0 .

A. Attractive channels, bions, and a prepotential

We must examine the combinations of the monople-
antimonopole pairs with magnetic charges from the two
sets �0

aff and ��0
aff with respective topological charges 1

N

and � 1
N . Because of the presence of many possible pairs

that one can construct, this may a priori seem arbitrary.
However, the theory does something remarkable. At order
e�2S0 , the fermion zero-mode exchanges only pair the
monopoles with charge �j with their nearest neighbor

antimonopoles, with charges ��j�1 in the Dynkin space.

These combinations are the magnetic bion states. (There
are also neutral monopoles and antimonopole pairing of
the same kind, but the magnetic charge of such an object
is zero and not so interesting in nonsupersymmetric
QCD(adj). It has an effect in SYM as discussed in
Sec. II E.)
Let us first find the attractive channels. We can extract

the interaction of a monopole with charge �i and antimo-
nopole with charge ��j by inspecting its connected cor-

relator in the functional integral of the free theory with the
action Sd;0ð�; c ; �c Þ.

hV�i
ðxÞV��j

ðyÞi0 ¼ hei�i�ðxÞdetIJ�ic
I�ic

JðxÞe�i�j�ðyÞdetI0J0�j
�c I0�j

�c J0 ðyÞi0
¼ hei�i�ðxÞe�i�j�ðyÞi0hdetIJ�ic

I�ic
JðxÞdetI0J0�j

�c I0�j
�c J0 ðyÞi0 � eþ�i:�jGðx�yÞð�i�jÞ2nf ½SFðx� yÞ�2nf :

(3.14)

The connected correlator is only nonzero if �i�j is nonzero, and induces a logarithmic binding potential of the form

Veffðx� yÞ ¼
8><
>:
þ 1

4�jx�yj þ 4nf logjx� yj for i ¼ j� 1

� 2
4�jx�yj þ 4nf logjx� yj for i ¼ j

0 otherwise:

(3.15)

If i ¼ j, then both Coulomb and fermion zero-mode ex-
change induced forces are attractive. If i ¼ j� 1, then the
Coulomb interaction is repulsive, but the attractive fermion
exchange term easily dominates.

Now, we are ready to define the magnetic bions in the
spontaneously broken SUðNÞ gauge theory. A bion is a
bound state of the monopole associated with magnetic
charge �i and antimonopole associated with charge
��iþ1 with null topological charge:

Qi ¼ �i � �i�1 ¼ 2ei � eiþ1 � ei�1;Z
F ~F ¼ 0 i ¼ 1; . . .N: (3.16)

Restoring the prefactors and writing more explicitly, the
magnetic bion (antibion) charges are given under the
Uð1ÞN gauge group as

Qi ¼ � 2�

g
ð0; . . . ; �1|{z}

i�1

; 2|{z}
i

; �1|{z}
iþ1

; . . . ; 0Þ: (3.17)

This means, bions interact via a next-to-nearest neighbor
interaction in the Dynkin space: For high-rank gauge
groups (N 	 5),

QiQj ¼ 6�ij � 4�i;jþ1 � 4�i;j�1 þ �i;jþ2 þ �i;j�2;

N 	 5: (3.18)
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In order to find the bion-bion interactions in low-rank
gauge groups N � 4, we need to identify nodes j 
 jþ
N in the (affine) Dynkin diagram as there are less than five
nodes. Consequently,

QiQj ¼ 6�ij � 4�i;jþ1 � 4�i;j�1 þ 2�i;jþ2; N ¼ 4

QiQj ¼ 6�ij � 3�i;jþ1 � 3�i;j�1; N ¼ 3

QiQj ¼ 8�ij � 8�i;jþ1; N ¼ 2: (3.19)

The long-range interactions of magnetic bions are given by
Coulomb’s potential and are equal to

VðQi;�Qj; rÞ ¼
Qi:ð�QjÞ

4�r
¼ � 6�ij � 4�i;jþ1 � 4�i;j�1 þ �i;jþ2 þ �i;j�2

4�r
: (3.20)

The meaning of this formula is clear. Two magnetic bions
with charges ðQi;QiÞ repel, ðQi;Qi�1Þ attract, ðQi;Qi�2Þ
repel, and no interactions for pairs ðQi;QiþkÞ with k > 2.
The overall sign of the interactions is reversed for the bion-
antibion pairs.

Now, we can convert the Coulomb gas of magnetic bions
into a field theory following Polyakov’s treatment [6]. We
only quote the result, since the manipulations are standard.
The operator appropriate for a bion molecule located at
x 2 R3 is

eiQi�ðxÞ ¼ ei�i�ðxÞe�i�i�1�ðxÞ: (3.21)

Clearly, this is manifestly invariant under the ZN shift

symmetry of the photon which acts as ei�i�ðxÞ !
e�i2�=Nei�i�ðxÞ. The bosonic effective potential is a sum
over all bion and antibion contributions given by

Vð�Þ ¼ �e�2S0
XN
i¼1

ðeiQi� þ e�iQi�Þ

¼ �2e�2S0
XN
i¼1

cosQi�: (3.22)

There is something remarkable about this potential, in fact
surprising. It can be derived from a prepotential, just like a
bosonic potential in the supersymmetric system may be
derived from a superpotential. In order to see this, rewrite
the potential Vð�Þ as

Vð�Þ ¼ �e�2S0
XN
i¼1

ðei�i�e�i�i�1� þ e�i�i�ei�i�1�Þ

¼ e�2S0
XN
i¼1

jei�i� � ei�i�1�j2 þ constant (3.23)

where constant is unimportant. Define the prepotential as

W ð�Þ ¼ e�S0
X

�i2�0
aff

ei�i�: (3.24)

Hence, the potential may be written as

Vð�Þ ¼ XN
i¼1

��������@W@�i

��������2 ¼ e�2S0
XN
i¼1

jei�i� � ei�i�1�j2;

QCDðadjÞ nf > 1: (3.25)

The reader familiar with the supersymmetric affine Toda
theories will recognize the form of our (nonsupersymmet-
ric) prepotential as the superpotential. In order to describe
the infrared of N ¼ 1 SYM on small S1, one must incor-
porate the extra massless scalars into the potential: All one
needs to do is a holomorphic completion of our formula.
Not surprisingly,

Vðz; �zÞ ¼ XN
i¼1

��������@W@zi
��������2¼ XN

i¼1

jei�iz � ei�i�1zj2; SYM:

(3.26)

The fact that the potential can be derived from a prepoten-
tial as above implies that the classical equations of motions
for the � field can be reduced to afirst-order one.
Let us finalize this section by writing the final form of

the dual of the QCD(adj) Lagrangian on small S1 � R3

with 1< nf � 4 flavors:

LdQCD ¼ 1

2
ð@�Þ2 � be�2S0

X
�i2�0

aff

jei�i� � eþi�i�1�j2

þ i �c I��@�c I

þ ce�S0
X

�i2�0
aff

ðei�i�detIJ�ic
I�ic

J

þ e�i�i�detIJ�i
�c I�i

�c JÞ: (3.27)

The dual QCD Lagrangian and the physics it encapsulates,
which will be discussed next, are the essential result of this
paper.

B. Brief comparison to deformed YM theory

In this section, we will briefly outline the main differ-
ence between the deformed YM theory (to be abbreviated
as YM*) studied in [30] and QCD(adj). In YM*, due to the
absence of fermionic matter, the monopole operators do
not carry any fermionic zero-modes. Thus, the dual theory
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can be obtained by summing over all monopole operators.
The dual description of YM* theory is

LdYM� ¼ 1

2
ð@�Þ2 � e�S0

X
�i2�0

aff

ðei�i� þ e�i�i�Þ: (3.28)

On the other hand, for QCD(adj) with massless fermions,
the dual description is given in (3.27). In particular, in
QCD(adj), monopole operators do not contribute a mass
gap for the dual photons. The bosonic potential which
renders the dual photon massive is effectively the square
of the potential given for YM*. If we just write the dual of
the gauge sector for QCD(adj), the difference is more
transparent.

LdQCD ¼ 1

2
ð@�Þ2 � e�2S0

X
�i2�0

aff

ðeið�i��i�1Þ�

þ e�ið�i��i�1Þ�Þ: (3.29)

Consequently, the functional form of the mass gap for
gauge fluctuations is different in these two classes of
theories as it will be compared in Sec. III C 1.

If one keeps center symmetry stable and turns on a mass
term for the adjoint fermion, the magnetic bion induced
confinement mechanism should be replaced by magnetic
monopole induced confinement. In particular, for heavy
adjoint fermions, the index theorem on S1 � R3 does not
apply. Thus, the theory must reduce to YM*.

The more interesting case is the light adjoint fermions.
In principle, the fermion zero-modes may be (softly) lifted
by the mass term. As a result, the modified monopoles
operators will also contribute to mass gap and confinement.
For sufficiently light fermions, the bion mechanism domi-
nates. It would be interesting to examine the transition
from magnetic bion induced confinement to magnetic
monopole induced confinement in more detail in future
work.

C. The vacuum structure of QCD(adj)

The bosonic potential of nonsupersymmetric QCD(adj)
has N gauge inequivalent isolated vacua, aligned along the
Weyl vector 


� ¼
�
0;
2�

N
;
4�

N
; . . . ;

ðN � 1Þ2�
N

�

 (3.30)

in the field space. This is the same asN ¼ 1 SYM studied
in [16]. Since each component of � is a periodic variable
with periodicity 2�, there exists a physical congruence
between � and �0 which is separated by an element of
the root lattice �r.

� 
 �þ 2�� for some � 2 �r: (3.31)

Since the sum of all fundamental weights is a root, 
 ¼PN�1
j¼1 �j 2 �r, this implies there only exist N gauge

inequivalent vacua when the (global) gauge symmetry
redundancies are removed. Let us the abbreviate and label

the vacuum states in Hilbert space as

j�ðð2�kÞ=NÞ
þ�r
i 
 j�ki 
 j�kþNi; k ¼ 0; . . .N � 1

Ground states ¼ fj�0i; j�1i; . . . ; j�N�1ig (3.32)

which form a one-dimensional representation of ZN shift
symmetry, (which is intertwined with ZN discrete chiral
symmetry, see footnote 7.) This means, the (large) physical
Hilbert space spits into N superselection sectors, each of
which may be built upon the associated vacuum. The
choice of the vacuum breaks the ZN discrete chiral sym-
metry (which is same as ZN shift symmetry of the dual
photon) spontaneously. Note that QCD(adj) also possess a
Gs ¼ ZN spatial center symmetry which remains unbroken
regardless of the size of the S1, and which should not be
confused with the ZN axial or equivalently, ZN shift sym-
metry of dual photons.

1. Mass gap in the gauge sector

The small fluctuations around one of the N minima of
the � cosQi� potential shows that the N � 1 dual photon
acquires masses proportional to e�S0 . In order to see this,
let us expand the nonperturbative bion induced potential to
quadratic order in dual photon �

Vð�iÞ ¼ �e�2S0
XN
i¼1

cosQi�

¼ �e�2S0
XN
i¼1

cosð2�i � �iþ1 � �i�1Þ

¼ 1

2
e�2S0

X
i

ð6�2
i � 4�i�iþ1 � 4�i�i�1 þ �i�iþ2

þ �i�i�2Þ bion induced: (3.33)

If the fermions were absent, and the gauge symmetry was
still broken by a compact adjoint Higgs field as in YM*
[30], the quadratic fluctuations would be described by the
nearest neighbor coupled harmonic oscillator

Vð�iÞ ¼ 1

2
e�S0

X
i

ð2�2
i � �i�iþ1 � �i�i�1Þ

monopole induced; YM� (3.34)

which is not the case in QCD(adj). The bion induced
‘‘hopping’’ terms are next-to-nearest neighbor and of order
e�2S0 as opposed to the monopole induced hopping terms
which are just nearest neighbor, and of order e�S0 .
The quadratic fluctuations can be diagonalized by using

the discrete Fourier transform �p ¼ 1ffiffiffi
N

p P
N�1
j¼0 !jp�j in

Dynkin space:
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Vð�pÞ ¼ 1

2
e�2S0

X
p

ð6� 4!�p � 4!p þ!�2p þ!2pÞ

� �p��p

¼ 1

2
e�2S0

X
p

ð!p=2 �!�p=2Þ4�p��p

¼ 1

2
e�2S0

X
p

�
2 sin

p�

N

�
4
�p��p: (3.35)

Restoring the dimensions, we obtain the mass spectrum of
the N � 1 dual photons as

mQDCðadjÞ
p � ð�ð�LÞb0�1 ¼ �ð�LÞð8�2nfÞ=3Þ �

�
2 sin

p�

N

�
2
;

p ¼ 1; . . . ; N � 1: (3.36)

This result implies that the gauge sector of the QCD(adj)
theory is quantum mechanically gapped due to nonpertur-
bative effects, and permanently confines external electric
charges at small S1 � R3 limit. Note that the analogous
formula for the mass gap in the gauge sector of YM* is
given by

mYM�
p ��ð�LÞ5=6 sinp�

N
; p ¼ 1; . . . ; N � 1 (3.37)

in the �L � 1 regime.
The masses are graded according to the ZN center group

of SUðNÞ in one to one correspondence with the represen-
tationsRp of SUðNÞ under the center group. There are two
equivalent physical interpretations for the mass gap: one as
the inverse Debye screening length in a magnetic conduc-
tor (in a Euclidean setting), and the other is the inverse
thickness of the chromoelectric flux tubes in a magnetic
superconductor (at a fixed time in a Minkowski setting).
(See [38] for a parallel discussion in the context of the
Polyakov model.)

Imagine a large, planar Wilson loop in a representation
with charge p under the center ZN, In the small S1 regime
(where gauge symmetry is broken to the Abelian sub-
group), we may regard the Wilson loop as carrying an
electric current along the contour of the loop. Hence, by
Maxwell’s equation, the current generates a magnetic field
along the axis perpendicular to the plane of the loop, within
the boundary C of the loop surface �. The external mag-
netic field cannot penetrate into the magnetic conductor
above a penetration depth, due to Debye screening. The
mobile magnetic charge carriers (bions) form a dipole
layer in the vicinity of the surface � to prevent the pene-
tration of the external magnetic field into the magnetic
conductor, which is the vacuum of QCD(adj) from
Euclidean viewpoint. The thickness of the dipole layer
for the Wilson loop with ZN charge p is the inverse of
the photon mass m�1

p .

We may visualize a Wilson loop at a fixed time slice.
This is a system with �p ZN chromoelectric sources

located at two boundaries of the fixed time slice of the
Wilson loop. There exists a stable chromoelectric flux tube
in between the two. Since the dual superconductor expels
the electric field, the flux lines are trapped within tubes
with quantized flux. The N � 1 classes of the photon
masses are indeed the inverse characteristic sizes of the
N � 1 types of the chromoelectric flux tubes, both of
which are a class function of the ZN center group. In a
weakly coupled regime, making L larger reduces the thick-
nesses of the stable flux tubes

lp ���1ð�LÞ�ð8�2nfÞ=3 �
�
2 sin

p�

N

��2
;

p ¼ 1; . . . ; N � 1:
(3.38)

We expect it to saturate to an L independent value above
the scale of gauge symmetry restoration. Also, intermedi-
ate N-ality tubes seem to be much more slimmer than the
small and large N-ality ones.
Because of compactification, in the weakly coupled

regime, the characteristic size of the flux tubes and their
tensions are no longer parametrically related. In the next
section, we explicitly calculate the string tensions.

2. Domain wall tensions and area law of confinement

Domain walls: Any theory which exhibits spontaneous
breaking of a discrete symmetry will have discrete isolated
vacua and stable domain walls which interpolate in be-
tween. QCD(adj) possesses both continuous and discrete
axial chiral symmetry. As discussed in Sec. III C, the
discrete chiral symmetry is broken at any radius, thus the
theory possesses stable domain walls. Note that in the
small S1 regime, the discrete chiral symmetry ZN 2
Z2Nnf is intertwined with the ZN shift symmetry of the

dual photon (3.9).
The domain wall on R4 is a tthree-dimensional infinite

hypersurface R3. If R4 is compactified down to R3 � S1

and the pattern of the discrete chiral symmetry breaking
remains invariant as a function of radius, which is the case
in QCD(adj), the domain wall curls over itself with an
R2 � S1 geometry. Therefore, in the long-distance descrip-
tion, the domain wall is anR2 filling surface embedded into
R3. Let us assume that the wall lies on x, y 2 R2 plane and
is centered at z ¼ 0 with a profile which extrapolates from
z ¼ �1 to z ¼ þ1. The topological charge of such a
k-wall (kink) is

t ¼
Z 1

�1
dz

d�

dz
¼ �ð1Þ � �ð�1Þ ¼ 2�k

N

: (3.39)

As stated earlier, the fact that the potential may be derived
from a prepotential leads to the reduction of the equations
of motions of the solitons to the first order (Prasad-
Sommerfield type). This, combined with Bogomolny’s
trick, allows us to find the global minimum of the action
in each topologically distinct sector of the effective theory.
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We have

h�kje�zHj�0i 

Z �ðz¼þ1Þ¼ðð2�kÞ=NÞ


�ðz¼�1Þ¼0
D�e�Sð�Þ

¼ e�AreaðR2ÞS�
k ; �� R2: (3.40)

Thus, the k-wall tension is proportional to the global
minimum of the action (divided by the area of the
AreaðR2Þ), i.e., TDW

k 
 S�k, given by

TDW
k ¼ jW ð�ð1ÞÞ �W ð�ð�1ÞÞj

¼
��������W

�
2�k

N



�
�W ð0Þ

�������� (3.41)

in terms of prepotential. Hence,

TDW
k L ¼ 1

L2
e�S0Njeiðð2�kÞ=NÞ � 1j ¼ 1

L2
e�S02N sin

�k

N

k ¼ 1; . . .N � 1: (3.42)

Restoring the dimensions and using the one-loop renor-
malization group result for the strong scale, we obtain

TDW
k � ð�3ð�LÞb0�3 ¼ �2ð�LÞ2ð1�nfÞ=3Þ � 2N sin

�k

N
:

(3.43)

Note that, for nf ¼ 1, this gives a new derivation of the

domain wall tension in N ¼ 1 SYM, a result obtained
earlier by Dvali and Shifman [43]. This tension is inde-
pendent of the radius. For nf > 1 confining gauge theories,

we expect the L dependence to disappear around the strong
scale, L�� 1, and expect the domain wall tension to
saturate to TDW

k � 2N�3 sin�kN in the decompactification

limit.
Area law of confinement:Wewish to exhibit the area law

of confinement for all but adjoint representationsRp of the

SUðNÞ gauge group. The representations of the Wilson
loops C under the center group ZN are in one to one
correspondence with the monodromies,

R
C0 d� in the

dual theory [36], where C0 is any closed curve whose
linking number with C is one. In QCD(adj), both form a
representation of ZN .

The evaluation of a Wilson loop in a representation with
charge k under the ZN center group in the original theory
translates into finding the field configurations for the dual
scalar theory with monodromies equal to 2��k in the dual
theory where �k is the fundamental weight corresponding
to external charge. Note that �k ¼ k�1 þ �, for some �
valued in root lattice�r, and weights differing by elements
of �r are identified. Thus, we need to find the action of the
soliton configurations for which �� ¼ 2��k across the
Wilson loop interface, or equivalently,Z
C0
d� ¼

Z z¼0þ

z¼0�
dz

d�

dz
¼ �ð0þÞ � �ð0�Þ ¼ 2��k;

linkingðC;C0Þ ¼ 1: (3.44)

The reader should note that the monodromy given in (3.44)
is not related to the topological charge of the domain wall
kink given in (3.39). In particular,Z

C0
d� �

Z 1

�1
dz

d�

dz
(3.45)

although both objects, in the case of QCD(adj), are ZN

valued due to the fact that both the center group and
discrete axial symmetry group are ZN . These two ZN are
unrelated to each other. For generic representations, this
coincidence disappears. Even in the case of QCD(adj),R
C0 d� is not parallel to

R1
�1 dz d�

dz in the root space. The

former corresponds to interpolations between fundamental
weights on one and the same vacuum and the latter integral
is tied with interpolations between discrete isolated vacua.
The expectation values of the Wilson loop fall into N

categories, and translate, in the path integral formulation
into

lim
Að�Þ!1

hWRk
ðCÞijC¼@�

¼
Z
�ðz¼�1Þ¼�ðz¼þ1Þ

D�e�Sð�Þj��ð0Þ¼2��k
: (3.46)

Thus, the string tension is

Tk ¼ lim
Að�Þ!1

loghWRk
ðCÞi

Areað�Þ ¼ min
�ðzÞ

Sð�Þ
AreaðR2Þ

����������ð0Þ¼2��k

:

(3.47)

For general SUðNÞ, we believe that the string tension in
QCD(adj) should be calculable by using the techniques
similar to [18]. Because of its technical nature, we will
perform this calculation in a separate publication. The
expected result is

Tk � ð�2ð�LÞb0�2 ¼ �2ð�LÞð5�2nfÞ=3Þ � 2N sin
�k

N
:

(3.48)

On the other hand, it is evident that Tk is nonzero. This is
sufficient to exhibit the area law of permanent confinement
in QCD(adj) in the L� � 1 regime, and the existence of
the linearly confining potential between two external elec-
tric sources with charges �k 2 ZN

VkðRÞ ¼ TkR; linear confinement: (3.49)

We expect the tension to saturate to a size independent
value, a c-number times �2 for L�> 1.
To summarize, in QCD(adj), the domain wall tensions,

the string tensions, and thicknesses of flux tubes (which are
the inverse masses of the dual photons) are class functions
of the center group ZN . The class functions depend on the
N-ality of the source, but are blind to the particular repre-
sentative of a class. Also, exchanging (color) source and
sink is just the mirror image, and tells us that class func-
tions must obey Xk ¼ XN�k, where X is any class function.
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Interesting physical quantities (which are all measurable in
lattice) are the ratios of the string tensions, (inverse) string
thicknesses, and their energy densities given by

Tp

T1

¼ sinp�N
sin�N

;
mp

m1

¼
�
sinp�N
sin�N

�
2
;

Ep

E1

¼
�
sinp�N
sin�N

�
5
:

(3.50)

These observables obey

Xp 
 XNþp; Xp ¼ XN�p; p ¼ 1; . . .N � 1:

(3.51)

Therefore, there are ½N2� types of flux tubes, where a bracket
labels the integer part of the N=2. The ratio of the string
tensions yields the ‘‘sine-law’’ for the tensions.

In the nf ¼ 1 case, the sine law for tension has previ-

ously been derived by Douglas and Shenker [5] on R4 by
deforming the N ¼ 2 theory by a perturbative mass term
for the chiral multiplet, and by Hanany et al. [44] by
realizing the same deformation in the M-theory five-brane
version, referred as mQCD.10 Both [5,44] achieve a weakly
coupledN ¼ 1 SYM theory onR4 by adding extra matter
into the theory.11 In our derivation, no extra matter is
needed. But in order to achieve a weakly coupled formu-
lation, we compactify the theory on R3 � S1 and benefit
from asymptotic freedom. In both cases, the physics is
rather similar, it is spontaneously broken Uð1ÞN�1 gauge
theory, and Abelian duality in d ¼ 3 and d ¼ 4 plays a
fundamental role. The formula receives Oðe�S0Þ correc-
tions, which is insignificant in the L� � 1 regime, but will
be essential at large radius. Consequently, our result does
not imply that the tension will obey a sine law in large S1 or
in R4, even in the nf ¼ 1 case which isN ¼ 1 pure SYM.

Remark on other QCD-like theories: Either the mass gap
in the gauge sector or the area law for large Wilson loops
are equally valid indicators of confinement for theories in
which the only dynamical degrees of freedom are adjoint
fermions. For theories such as QCD with two adjoint and
one fundamental fermions (which also breaks its gauge
symmetry at small S1), the mass gap should still emerge,
but area law must become a perimeter law. The theory

should still be confining, but the ability to form stable flux
tubes must be lost due to the fact that charged fermions can
be pair created out of the vacuum, and break the flux tube
to reduce its energy. It would be interesting to examine this
class of theories in the future.

3. Chiral symmetry realizations

The choice of the vacuum state j�ki spontaneously
breaks the ZN shift symmetry, which is intertwined with
the ZN discrete chiral symmetry. The chiral order parame-
ter which is a singlet under continuous flavor symmetry,
and which only probes the discrete chiral symmetry, is the
determinantal condensate dettr�I�J in the original theory.
In the infrared of the theory on small S1, the off-diagonal
modes of the �I are heavy due to gauge symmetry breaking
and cannot contribute to the determinantal chiral conden-
sate. We may decompose �I ¼ �I;ata into massless com-
ponents along the Cartan subalgebra and heavy off-
diagonal modes, tr�I�J � L�3

P
jð�jc

JÞð�jc
JÞ þ heavy,

where L�3 is due to dimensional reasons. The vacuum
expectation value of the flavor singlet chiral condensate
in SUðNÞ QCD(adj) with 1 � nf � 4 flavor can be found

by integrating over the zero-mode wave functions (which
are essentially proportional to monopole profiles) in the
background of a monopole in the small S1 regime, where
the gauge symmetry is broken. On large S1, we do not
know a reliable analytical technique in the 1< nf � 4 case

to evaluate the condensate. However, we expect the modu-
lus of the chiral condensate to saturate to a c-number times
�3nf . Consequently,

h�kj dettr�I�Jj�ki

�
�
�3nf ð�LÞð11=3Þð1�nfÞeðði2�kÞ=NÞ L � Lc

�3nfeðði2�kÞ=NÞ; L > Lc

(3.52)

where the phase is ZN valued. In the nf ¼ 1 case, this

produces the correct L independence of chiral condensate
(which is due to supersymmetry) [16], and N isolated
vacua. We believe that the scale at which the determinantal
condensate becomes L independent is the scale of the
gauge symmetry restoration.
In the far infrared of the QCD(adj), since � is massive,

the long-distance theory further reduces to a purely fermi-
onic theory, which schematically looks like an NJL-type
Lagrangian:

LNJL ¼
XN
j¼1

½i �c I
j��@�c

I
j þ ce�S0ðdetI;J�jc

I�jc
J þ c:c:Þ�:

(3.53)

The Lagrangian is invariant under SUðnfÞ � Z2nf chiral

symmetry. The Z2nf is the unbroken subgroup of the Z2Nnf

discrete symmetry. We wish to know whether the continu-
ous chiral symmetry is broken spontaneously.

10Our result for nonsupersymmetric theories is new, and di-
rectly testable on the lattice in the appropriate regime. Our
derivation for the SYM is also different from earlier work
[5,44] and does not make any reference to supersymmetry, or
the underlying theory being realizable in string theory. Because
of the generality of our approach, it is applicable to nonsuper-
symmetric QCD-like theories which are more interesting.
11An important issue here is to realize that this theory is not
pure N ¼ 1 SYM in R4. As the authors of [5] discuss, this
mechanism holds so long as m=� � 1, a perturbation. In order
to obtain pure N ¼ 1 SYM in the IR, we must take m � �,
which is not a perturbation, and calculational control of the
softly broken N ¼ 2 does get lost. Currently, there is no
analytical derivation of mass gap or confinement in pure N ¼
1 SYM on R4.
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At small S1, we believe the continuous chiral symmetry
is unbroken, based on studies on related d ¼ 3 dimensional
NJL-type models. Such models have generically a weakly
coupled chirally symmetric phase and a chirally asymmet-
ric strong coupling phase. (See the review in Ref. [45]).
Our dimensionless coupling constant is g� e�S0 , far too
small to induce a chiral transition. Hence, the chiral sym-
metry must be unbroken, and there must be massless
fermions (protected by chiral symmetry) in the spectrum
within the region of validity of our long-distance effective
theory, (L� � 1). We believe the naive extrapolation of
the NJL Lagrangian Eq. (3.53) will exhibit the continuous
chiral transition in an expected regime of the underlying
QCD theory. (See Fig. 3.) However, this will happen out-
side the region of validity of our effective theory.
Consequently, this does not tell us that the monopole
operator is the sole origin of the continuous chiral symme-
try breaking, even though it is the origin of the discrete
chiral symmetry breaking in the small S1 regime. In the
large S1 regime, nondilute monopoles with fermionic zero-
modes play the major role in continuous chiral symmetry
breaking.

The absence of the continuous chiral symmetry breaking
in a weak coupling regime can also be seen by an inde-
pendent argument. In the small S1 regime where theory is
weakly coupled, we have control over all nonperturbative
objects. A BPS or KK monopole, which may in principle
contribute to the condensate, has a minimum of 2nf fer-

mionic zero-modes. However, our order parameter tr�I�J

can only soak up two zero-modes. This implies it cannot
acquire a nontrivial vacuum expectation value. The mini-
mal operator which may acquire a condensate must have
2nf fermion insertion, and this is indeed the determinantal

condensate hdettr�I�Ji. The reliability of this argument is
tied with weak coupling, and in fact, it does not hold at
strong coupling.
At large S1 (and R4), the common lore is that the chiral

symmetry is spontaneously broken down to SOðnfÞ � Z2

by the formation of the chiral condensate

h�kjtr�I�Jj�ki �
�
0 L < Lc

�3eðði2��Þ=NnfÞ; L > Lc
: (3.54)

Consequently, there must exist N isolated coset spaces
each of which is SUðnfÞ=SOðnfÞ. In this expression, �

ranges in ½0; NnfÞ. Denote � ¼ �N þ k where k ¼
0; . . .N � 1 and � ¼ 0; . . .nf � 1. For a given k, there

are nf many � for which the determinant of the condensate

is invariant. Thus, they reside in the same coset space, and
there are consequently N isolated coset spaces.
The continuous chiral transition in QCD(adj) is very

different from its thermal counterparts. In particular, it
occurs in the absence of any change in its spatial center
symmetry realization. This is a quantum phase transition at
absolute zero temperature, induced solely due to quantum
fluctuations. We do not know the order of the phase
transition.
Finally, we wish to conjecture that the scale of the chiral

phase transition Lc in QCD(adj) is associated with the
restoration of the spontaneously broken gauge symmetry.
Consequently, we believe that the chiral symmetry break-
ing is a strong coupling phenomena. Confinement is not
necessarily so.12

D. Noncompact versus compact adjoint Higgs,
final pass

Let us reconsider the SUðNÞ gauge theory with a non-
compact adjoint Higgs field and with one Dirac fermion in
adjoint representation on R3. (Multiflavor generalization is
obvious.) The theory possess a Uð1Þ fermion number sym-
metry. The generalization of the argument of Ref. [12]
shows that the Uð1Þ symmetry is spontaneously broken,
and consequently, there only exists one gapless excitation

LΛ−1

calculable

QCD(adj)

0

<trU>

<tr

<det tr 

λλ>

λλ >

FIG. 3 (color online). The cartoon of the behavior of the
center, discrete, and continuous chiral symmetry realization in
QCD(adj), for SUðNÞ where N ¼ few, nf ¼ 2, and nf ¼ 1

(N ¼ 1 SYM). The spatial center symmetry is unbroken at
any L in both cases htrUi ¼ 0. In nf ¼ 2, the continuous chiral

symmetry is unbroken at small S1 and broken at large S1, and
discrete chiral symmetry is always broken. The red (dotted) line
is the chiral condensate in N ¼ 1 SYM, and the discrete chiral
symmetry is always broken. In the small S1 regime, the string
tensions and thicknesses (the inverse mass gap in gauge sector)
are calculable, and nf ¼ 2 theory exhibits confinement without

continuous chiral symmetry breaking. The lines slightly on top
of the horizontal axis are all zero and are split to guide the eye.

12In subsequent work, I showed the natural scale of chiral
symmetry breaking at arbitrary N is ��1=N. Figure 3 is for N ¼
few for which there is no parametric separation between ��1

and ��1=N.
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by Goldstone’s theorem. The other N � 2 photons of the
spontaneously broken gauge symmetry must acquire
masses. We wish to know how this is realized in the micro-
scopic description.

When the SUðNÞ gauge symmetry breaks down to
Uð1ÞN�1 via an noncompact adjoint Higgs field rather
than a compact one (which was the case in QCD(adj)),
monopoles only come in N � 1 varieties. The KK mono-
pole is now absent. We may still define the magnetic bions
in the spontaneously broken SUðNÞ gauge theory for N 	
3, but there are only N � 2 of them. As before, a bion is a
bound state of the monopole associated with magnetic
charge �i and antimonopole associated with charge
��iþ1 with null topological charge. The magnetic charge
of a bion is

Qi ¼ �i � �i�1; i ¼ 2; . . .N � 1: (3.55)

Hence, there are only N � 2 types of magnetic bions. In
other words, the absence of the �N 
 �0 KK monopole
removes two would-be bions of the compact theory. Thus,
the potential for the � field is a sum over N � 2 bions and
their conjugates given by

Vð�Þ ¼ �e�2S0
XN�1

i¼2

ðeiQi� þ c:cÞ: (3.56)

The potential generates mass terms only for N � 2 dual
photons. The massless photon is the Goldstone boson.
Equivalently, we may say the sum in the prepotential is
restricted to the root system �0, W ð�Þ ¼
e�S0

P
�i2�0ei�i�, and from the study of the analogous

supersymmetric theory, we know that the reduction from
affine Toda to nonaffine Toda renders the gapped theory
gapless [13,16].

IV. OUTLOOK: CONFINEMENTAND NON-SELF-
DUAL TOPOLOGICAL EXCITATIONS

A microscopic derivation of the mechanism which pro-
vides confinement in QCD(adj) quantized on small S1 �
R3 is given. This is a QCD-like theory with no elementary
scalars in its Lagrangian, and no special properties such as
supersymmetry (except the nf ¼ 1 case). We believe the

solution provides a significant contribution to our current
understanding of QCD-like gauge theories, and teaches us
many valuable lessons. We also found the underlying
dynamical reasons behind the lack of confinement in
Yang-Mills noncompact Higgs systems with adjoint fermi-
ons formulated on R3. Let us quote our main result for the
SUð2Þ gauge group:

(i) New non-self-dual topological excitations that we
referred to as magnetic bions exist in the QCD(adj)
vacuum and are the source of confinement. A mecha-
nism by non-self-dual excitations was not suspected

in QCD-like theories by the wisdom gained from
other analytically solvable theories, such as
Polyakov model or Seiberg-Witten theory. Even the
existence of such stable topological excitations is
surprising as they are topologically neutral, just
like perturbative vacuum! But they carry a magnetic
charge.

(ii) QCD(adj) exhibits permanent confinement even at
arbitrarily weak coupling (small S1). In other words,
in asymptotically free confining gauge theories,
confinement is not necessarily a strong coupling
phenomena.

(iii) In the presence of massless adjoint dynamical fer-
mions, the monopole operators must have a com-
pulsory fermion zero-mode attached to them.
Hence, they induce fermion-fermion and fermion-
dual photon interactions, neither of which can ap-
pear in the bosonic potential of the dual photon.
Our arguments rule out monopoles and monopole
condensation as the microscopic mechanism of the
confinement in QCD-like theories with dynamical
fermions in general.

(iv) The beautiful and qualitative idea of dual super-
conductivity is quantitatively realized in the vac-
uum of QCD(adj), but not in terms of self-dual
monopoles, or instantons. Non-self-dual magnetic
bions with magnetic and topological charge ð�2; 0Þ
generate a mass gap in the gauge sector and
confinement.

(v) Magnetic bions are composites of BPS and KK
monopoles, and their stability is due to a dynamical
fermionic pairing mechanism. The repulsive
Coulomb repulsion between the bion constituents
(with charges ð1;þ 1

2Þ and ð1;� 1
2Þ) is overwhelmed

by a attractive logarithmic force. The pairing
mechanism responsible for the bound state is in-
duced by 2nf-fermion exchange in nf flavor theory.

(vi) This rationale also explains why the Yang-Mills
with noncompact adjoint Higgs field and adjoint
fermions does not confine on R3 despite the pres-
ence of monopoles. The same rationale is also true
for N ¼ 2 SYM on R3. These are examples as
important as QCD(adj) itself, because we believe it
is equally important to understand the lack of con-
finement in order to understand confinement.

(vii) In the general SUðNÞ case, we demonstrated the
area law of confinement for Wilson loops in arbi-
trary representations. The dual theory hints at an
integrable (generalized Toda) system behind
QCD(adj), in the e�S0 expansion of the action at
order e�2S0 . We do not know whether this extends
to higher order if we were to find higher-order
terms in e�S0 expansion. We also do not know
whether there may be integrability behind
QCD(adj) on R4.
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We wish to express that we are optimistic of future
progress which will reveal more on the inner goings-on
of general QCD-like theories:

Incorporating fundamental representation fermions: For
example, in a theory with two adjoint and one fundamental
fermions (mixed action), the backreaction of the fermion is
insufficient to induce center symmetry breaking in the
small S1 regime. This theory has both magnetic monopoles
and massless electric charges within the weak coupling
regime examined in this paper. This system should teach us
something which may be relevant to the real QCD.
Unfortunately, our techniques are not directly applicable
to pure Yang-Mills or QCDwith fundamental fermions due
to breaking of (temporal or spatial) center symmetry at
small S1.

Confinement on QCD-like theories on R4: The tech-
niques of this paper are strictly valid in the gauge symme-
try broken phase of the QCD(adj). However, we believe
that certain assertions are generalizable to R4, and direct
progress will occur in QCD(adj) on R4, where strong
coupling necessarily occurs.

Lattice gauge theory: Many assertions made in this
paper are directly testable in lattice simulations with avail-
able technologies. In particular, the string tensions and
characteristic sizes of flux tubes (3.36) and (3.50) can be
extracted from the lattice simulations of QCD(adj) as in
[46]. QCD(adj) also undergoes a zero temperature quan-
tum chiral transition in the absence of any change in center
symmetry realization. This should be directly testable on
the lattice by modifying the existing simulations (such as
[47]) appropriately. It would also be useful to construct the

duality between QCD(adj) on R3 � S1 with Lagrangian
(2.1) and dual QCD defined in (3.27) directly in lattice
formulations.
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Note added.—There was a large time delay between the

arXiv version of this paper and its submission to a journal.
In the meantime, new useful techniques, such as center
stabilizing double-trace deformations, which allows a
smooth connection of small and large S1 physics, and the
relevant index theorem for generic topological excitations
on S1 � R3 have been found. These techniques enabled us
to study nonperturbative dynamics of all vectorlike and
even chiral theories on S1 � R3. In all chiral theories and
QCD-like theories with two index matter representations,
we now understand that magnetic bions or similar com-
posite non-self-dual excitations are the root cause of con-
finement. For a review of these developments and related
works, see the recent preprint [48].
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