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We discuss the quantum and classical dynamics of a particle with spin in the gravitational field of a

rotating source. A relativistic equation describing the motion of classical spin in curved spacetimes is

obtained. We demonstrate that the precession of the classical spin is in a perfect agreement with the

motion of the quantum spin derived from the Foldy-Wouthuysen approach for the Dirac particle in a

curved spacetime. We show that the precession effect depends crucially on the choice of a tetrad. The

results obtained are compared to the earlier computations for different tetrad gauges.
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I. INTRODUCTION

The rotation of a central body, defining the difference
between stationary and static spacetimes, leads to an ap-
pearance of specific gravitational effects. The most impor-
tant effect has been predicted by Lense and Thirring (LT)
[1]. It consists of frame dragging around rotating bodies
and is manifested in a precession of satellite orbits and
gyroscopes (i.e., classical spins). The nonrelativistic for-
mula for the latter effect has been derived by Schiff [2]
(and further refined and generalized in [3]).

In the present work, we analyze quantum and classical
spins in stationary spacetimes. We use the weak-field
approximation when all components of the metric tensor
gij are close to the corresponding components of the

Minkowski tensor �ij (jhijj � jgij � �ijj � 1). The for-

mulas calculated for classical spins extend the previously
obtained results to the relativistic case. The investigation of
the quantum dynamics of spins is carried out for the first
time.

The theory of classical spin in the first-order (linear)
approximation can be formulated as follows. A particle is
characterized by its position in spacetime xið�Þ, which is a
function of the proper time �, and by the 4-vector of spin
S�. The 4-velocity of a particle U� ¼ e�i dx

i=d� is nor-
malized by the condition g��U

�U� ¼ c2, where g�� ¼
diagðc2;�1;�1;�1Þ is the flat Minkowski metric. In order
to be able to describe spinning particles both in flat and
curved spacetime (as well as in arbitrary curvilinear coor-
dinates), we use the tetrad e�i to transform the components

of different objects from the coordinate basis (associated

with the local coordinates xi) to a local orthonormal frame.
When the gravitational field is absent, it is possible to
choose the Cartesian coordinates everywhere and use the
holonomic orthonormal frame which coincides with the
natural frame, so that e�i ¼ ��

i then. In general, the tetrad

coefficients satisfy g��e
�
i e

�
j ¼ gij for an arbitrary space-

time metric gij.

The foundations of the classical theory of particles with
spin were laid down by Mathisson and Papapetrou [4,5]
(for a review see, e.g., [6]). Pomeransky, Khriplovich [7],
and Dvornikov [8] developed the relativistic approach for
the equation of motion defining the dynamics of three-
component physical spin in curved spacetimes. This equa-
tion perfectly describes the dynamics of the spin in static
spacetimes. Here we present a rigorous deduction of the
equation of motion of the three-component spin, confirm-
ing the heuristic arguments of [7]. At the same time, we
show here that this equation can be used for nonstatic
spacetimes only with the special choice of tetrads satisfy-
ing the condition e0â ¼ 0.
In this paper, we consider two important problems. One

aim is to generalize the methods of the Foldy-Wouthuysen
(FW) transformations, that we previously used for the
analysis of the spin in static gravitational fields, to the
case of the stationary gravitational configurations.
Another aim is to systematically investigate the depen-
dence of the spin dynamics on the choice of a tetrad. In
particular, we derive the general result for the angular
velocity of spin precession that is valid for an arbitrary
tetrad gauge.
The paper is organized as follows. In Sec. II we consider

the Dirac equation in a weak gravitational field of a rotat-
ing source. The Hermitian Hamiltonian is derived.
Section III presents the derivation of the precession angular
velocity of spin in a stationary gravitational field. The
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dynamics of a classical spin is analyzed in Sec. IV, where
we find a general expression for the precession velocity of
the physical spin in arbitrary external classical fields.
These results are then applied in Sec. V to the derivation
of the classical spin dynamics in arbitrary gravitational
field configurations. Section VI is devoted to the analysis
of the dependence of the spin precession effect on the
choice of a tetrad. We find a general equation that makes
it possible to directly compare results obtained in the
literature in different tetrad gauges. Specifically, we dem-
onstrate the complete agreement of the classical and quan-
tum spin dynamics in the Schwinger gauge. In Sec. VII we
show that our general results can be also used for the study
of the motion of spin in the flat spacetime for the rotating
reference frame. Our derivations confirm the earlier obser-
vations obtained on the basis of the Thomas precession
arguments. Finally, in Sec. VIII we draw the conclusions.

We denote world indices by Latin letters i; j; k; . . . ¼
0; 1; 2; 3 and reserve first Greek letters for tetrad indices,
�;�; . . . ¼ 0; 1; 2; 3. Spatial indices are denoted by Latin
letters from the beginning of the alphabet, a; b; c;
. . . ¼ 1; 2; 3. The separate tetrad indices are distinguished
by hats.

II. DIRAC HAMILTONIAN FOR A STATIONARY
METRIC

The approximate gravitational field of a rotating body at
a large distance is described by the LT metric [1]:

ds2 ¼
�
1� 2GM

c2�

�
c2dt2 � asin2�

4GM

c2�
cdtd�

�
�
1þ 2GM

c2�

�
d�2 � �2½d�2 þ sin2�d�2�: (1)

With the help of the coordinate transformation

� ¼ r

�
1þ GM

2c2r

�
2
; (2)

one can bring the line element to the isotropic form and
subsequently use the Cartesian coordinate system. The
final form of the line element is given by

ds2 ¼ V2c2dt2 �W2�abðdxa � KacdtÞðdxb � KbcdtÞ;
(3)

with

V ¼
�
1� GM

2c2r

��
1þ GM

2c2r

��1
; (4)

W ¼
�
1þ GM

2c2r

�
2
; (5)

Ka ¼ 1

c
	abc!bxc: (6)

The nondiagonal components of the metric (that reflect the
rotation of the source) are described by the so-called Kerr
field K that is given by Eq. (6) with

! ¼ 2G

c2r3
J ¼

�
0; 0;

2GMa

cr3

�
; (7)

where J ¼ Mcaez is the total angular momentum of the
source.
The exact metric of the flat spacetime seen by an accel-

erating and rotating observer also has form (3). In the latter
case [9], however,

V ¼ 1þ a � r
c2

; W ¼ 1; Ka ¼ � 1

c
ð!� rÞa;

(8)

where a describes acceleration of the observer and! is an
angular velocity of a noninertial reference system. Both are
independent of the spatial coordinates, but may depend
arbitrarily on time t.
The similarity between the two cases is not occasional.

Lense and Thirring discovered in 1918 that rotating bodies
‘‘drag’’ the spacetime around themselves (frame dragging
[1]). In other words, they have demonstrated the equiva-
lence between rotating frames and spacetimes created by
rotating bodies. In the weak-field approximation, the mo-
tion of particles in a gravitational field of a rotating source
is identical to their motion in a noninertial frame rotating
with the angular velocity (see, e.g., Ref. [10])

! ¼ c

2
curlg; ga ¼ �g0a: (9)

Let us choose the orthonormal tetrad

e0̂i ¼ V�0
i ; eâi ¼ Wð�a

i � Ka�0
i Þ; a; b ¼ 1; 2; 3:

(10)

The covariant Dirac equation for spin-1=2 particles in
curved spacetimes has the form

ði@
�D� �mcÞc ¼ 0; � ¼ 0; 1; 2; 3: (11)

The Dirac matrices 
� are defined in local Lorentz (tetrad)
frames. The spinor covariant derivatives are given by

D� ¼ ei�Di; Di ¼ @i þ i

4
����i

��; (12)

where �i
�� ¼ ��i

�� are the Lorentz connection coeffi-
cients, ��� ¼ ið
�
� � 
�
�Þ=2. Equations (11) and
(12) show that the gravitational and inertial effects are
encoded in coframes (see Refs. [11,12] and references
therein).
Equation (11) is recast into the familiar Schrödinger

form
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i@
@c

@t
¼ H c (13)

with the Hamilton operator

H ¼ �mc2V þ V

W
cð� � pÞ � i@c

2W
ð� � rVÞ

� i@cV

W2
ð� � rWÞ � i@cK � r� i@c

2
ðr � KÞ

� 3i@c

2W
ðK � rWÞ þ @c

4
ðr�KÞ ��: (14)

Here p ¼ �i@r, and we remind one that � ¼ 
0̂, � ¼
f�ag, � ¼ f�ag, where the 3-vector-valued Dirac matrices

have their usual form: �a ¼ 
0̂
a and �a ¼ i	abc

b
c=2

(a; b; c; . . . ¼ 1; 2; 3). Redefining the spinor field and the
Hamiltonian,

c 0 ¼ W3=2c ; (15)

we obtain the new Hamiltonian (which is explicitly
Hermitian with respect to the usual flat space scalar prod-
uct):

H 0 ¼ �mc2V þ c

2
½ð� � pÞF þF ð� � pÞ�

þ c

2
ðK � pþ p �KÞ þ @c

4
ðr� KÞ ��: (16)

Here F ¼ V=W.

Substituting (4)–(7) into (16), we find

H 0 ¼ �mc2V þ c

2
½ð� � pÞF þF ð� � pÞ�

þ 2G

c2r3
J � ðr� pÞ

þ @G

2c2r3

�
3ðr � JÞðr ��Þ

r2
� J ��

�
: (17)

Note that the angular momentum operator l ¼ r� p com-
mutes with ! which depends on the radius. Dirac
Hamiltonian (17) contains the first part describing the
static gravitational field and the second one characterizing
the contribution of rotation of the central body.

III. FOLDY-WOUTHUYSEN HAMILTONIAN AND
OPERATOR EQUATIONS OF MOTION

To obtain the FW Hamiltonian, we perform the FW
transformation by the method developed in Refs. [13,14].
In the weak-field approximation, there are three small
parameters:

jV � 1j � 1; jF � 1j � 1; jKj � 1: (18)

Evidently, any bilinear combinations of these parameters
can be neglected. The FWHamiltonian can be presented as
a sum of a free particle Hamiltonian and terms proportional

to jV � 1j, jF � 1j, and K. Only the last term, H ð2Þ
FW,

defines the contribution of rotation of the central body,
while the other terms characterize the FW Hamiltonian
of the particle in a static gravitational field. The rotation-

independent contribution H ð1Þ
FW was calculated earlier

[15]:

H ð1Þ
FW ¼ �	þ �

2

�
m2c4

	
; V � 1

�
þ �

2

�
c2p2

	
;F � 1

�
� �@mc4

4	ð	þmc2Þ ½� � ð�� pÞ �� � ðp��Þ þ @r ���

þ �@2mc6ð2	3 þ 2	2mc2 þ 2	m2c4 þm3c6Þ
8	5ð	þmc2Þ2 ðp � rÞðp ��Þ þ �@c2

4	
½� � ðf � pÞ �� � ðp� fÞ þ @r � f�

� �@2c4ð	2 þm2c4Þ
4	5

ðp � rÞðp � fÞ: (19)

Here 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ c2p2

p
and the curly bracket f� � � ; � � �g denotes the anticommutator. We also use the notation of [11,15]

for the gradients: � ¼ f@aVg, f ¼ f@aF g, a ¼ 1, 2, 3.

To find the rotation-dependent term H ð2Þ
FW, it is sufficient to keep the leading term in the FW transformation operator

[15] corresponding to the free particle transformation:

U ¼ 	þmc2 þ �c� � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð	þmc2Þp : (20)

Corrections to this approximation can be neglected because they only affect terms in the FW Hamiltonian which are
bilinear in small parameters jV � 1j, jF � 1j, and K.

This FW transformation leads after straightforward but tedious calculations to the final FW Hamiltonian which is given
by
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H FW ¼ H ð1Þ
FW þH ð2Þ

FW;

H ð2Þ
FW ¼ 2G

c2r3
J � lþ @G

2c2r3

�
3ðr � JÞðr � �Þ

r2
� J ��

�

� 3@G

8

�
1

	ð	þmc2Þ ;
�
2fðJ � lÞ; ð� � lÞg

r5
þ 1

2

�
ð� � ðp� lÞ �� � ðl� pÞÞ; ðr � JÞ

r5

�
þ
�
� � ðp� ðp� JÞÞ; 1

r3

���

� 3@2c2G

8

�
ð5p2

r � p2Þ 2	
2 þ 	mc2 þm2c4

	4ð	þmc2Þ2 ;
ðJ � lÞ
r5

�
; (21)

where l ¼ r� p is an angular momentum operator, and
the operator p2

r ¼ � @
2

r2
@
@r ðr2 @

@rÞ is proportional to the ra-
dial part of the Laplace operator. The equation of rotation
of the spin is obtained via commuting the FW Hamiltonian
with the polarization operator � ¼ �� and is given by

d�

dt
¼ i

@
½H FW;�� ¼ �ð1Þ ��þ�ð2Þ ��; (22)

where�ð1Þ is the operator of angular velocity of rotation of
the spin in the static gravitational field derived in Ref. [15],

� ð1Þ ¼ � mc4

	ð	þmc2Þ ð�� pÞ þ c2

	
ðf � pÞ; (23)

and the newly obtained contribution from the LT effect is
equal to

�ð2Þ ¼ G

c2r3

�
3ðr � JÞr

r2
� J

�

� 3G

4

�
1

	ð	þmc2Þ ;
�
2fl; ðJ � lÞg

r5

þ 1

2

�
ðp� l� l� pÞ; ðr � JÞ

r5

�

þ
�
ðp� ðp� JÞÞ; 1

r3

���
: (24)

The second term on the right-hand side of Eq. (22)
contains an additional � factor as compared to the first
term. This is a manifestation of the gravitoelectric and the
gravitomagnetic origin of the static gravitational field and
of the Kerr (Lense-Thirring) field, respectively. The equa-
tion of spin motion in the electromagnetic field has a
similar form [see Eq. (36) in Ref. [15]]. The difference
between the two terms on the right-hand side of Eq. (22) is

caused by the fact that �ð1Þ should contain the velocity
operator rather than the momentum one. Since the velocity
operator is proportional to an additional � factor and is

equal to v ¼ �cp=	 for free particles, the operator �ð1Þ,
expressed in terms of v, also acquires an additional �
factor.

In Eq. (21), the Hamiltonian H FW defines the zero
component of the covariant four-momentum operator,
while its spatial components are expressed by the operator
p taken with the opposite sign:

pi ¼ i@
@

@xi
¼
�
H FW

c
;�p

�
:

The equation of motion of the particle defines the evo-
lution of the contravariant four-momentum operator in
which spatial components (a, b ¼ 1, 2, 3) are given by

pa ¼ gabpb þ g0ap0:

In a stationary metric, the evolution of the contravariant
momentum operator in the weak-field approximation is
defined by

Fa ¼ dpa

dt
¼ � dpa

dt
þ 1

4

��
vb;

@gai

@xb

�
; pi

�
;

dp

dt
¼ i

@
½H FW;p�;

(25)

where Fa is the force operator and va � �c2pa=	 �
c2pa=H FW is the velocity operator.
One can calculate the force operator caused by the LT

effect without allowance for contributions from V,W. This
operator is equal to

F ¼ c

2
ðcurlK� p� p� curlKÞ þ Fs; (26)

where

curlK ¼ 2G

c3r3

�
3ðr � JÞr

r2
� J

�
;

Fs ¼ �r
�
@G

2c2r3

�
3ðr � JÞðr�Þ

r2
� J � �

�

� 3@G

8

�
1

	ð	þmc2Þ ;
�
2fðJ � lÞ; ð�lÞg

r5

þ 1

2

�
ð� � ðp� lÞ �� � ðl� pÞÞ; ðr � JÞ

r5

�

þ
�
� � ðp� ðp� JÞÞ; 1

r3

����
: (27)

The operator equation (26) for the small spin-dependent
force Fs is in the best compliance with the corresponding
classical equation [10]. Since the Dirac spin operator is s ¼
@�=2, the Eqs. (26) and (27) yield the corresponding
semiclassical equation:

F ¼ c curlK� pþF s; (28)

OBUKHOV, SILENKO, AND TERYAEV PHYSICAL REVIEW D 80, 064044 (2009)

064044-4



F s ¼ �r
�
G

c2r3

�
3ðr � JÞðr � sÞ

r2
� J � s

�

� 3G

	ð	þmc2Þ
�
2ðJ � lÞðs � lÞ

r5
þ ðs � ½p� l�Þðr � JÞ

r5

þ ðs � ½p� ½p� J��Þ
r3

��
: (29)

Our relativistic result (27) and (29) for the spin-dependent
force perfectly agrees with the corresponding nonrelativ-
istic classical formulas previously obtained in Ref. [16] on
the basis of the Mathisson-Papapetrou equations [4,5].

Our quantum Eqs. (26) and (29) actually agree with the
classical results of both the Mathisson-Papapetrou and the
Pomeransky-Khriplovich approaches. This follows from
the fact that the spin-dependent part of the Hamiltonian

has the form H s ¼ @ð�ð1Þ ��þ�ð2Þ ��Þ=2 that per-
fectly agrees with the general classical Eq. (47) of
Ref. [7]. This is also in accordance with the earlier attempts
(see Ref. [17], for example) to establish a direct general
correspondence between the quantum dynamics and the
classical equations of motion of the Mathisson-Papapetrou
type.

The semiclassical formula corresponding to Eq. (24) and
describing the motion of average spin has the form

� ð2Þ ¼ G

c2r3

�
3ðr � JÞr

r2
� J

�
� 3G

r3	ð	þmc2Þ
�
�
2lðJ � lÞ þ ðp� lÞðr � JÞ

r2
þ p� ðp� JÞ

�
:

(30)

In a nonrelativistic approximation, Eq. (30) coincides with
the equation obtained by Schiff [2]. The second term in
Eq. (30) describes relativistic corrections. Equation (30)
can also be expressed in the equivalent form:

�ð2Þ ¼ G

c2r3

�
3ðr � JÞr

r2
� J

�

� 3G

r5	ð	þmc2Þ ½lðl � JÞ þ ðr � pÞðp� ðr� JÞÞ�:
(31)

The quantum-mechanical and semiclassical equa-
tions (21), (24), and (26)–(31) are principal new results.

IV. CLASSICAL SPIN IN EXTERNAL FIELDS

The dynamical equations that determine the motion of a
spinning particle in external classical fields can be written,
quite generally, in the form

dU�

d�
¼ F �; (32)

dS�

d�
¼ ��

�S
�: (33)

The forces F � are determined by the external fields (elec-
tromagnetic, gravitational, etc.) acting on a particle.
Similarly, the spin is affected by the external fields through
a spin transport matrix��

�. Normalization of the velocity,

U�U
� ¼ c2, and its orthogonality to the spin, S�U

� ¼ 0,
impose on the right-hand sides of (32) and (33) the con-
ditions

U�F � ¼ 0; U��
�
�S

� ¼ S�F �: (34)

Since

S��
�
�S

� ¼ 1

2

dðS�S�Þ
d�

¼ 0; (35)

the spin transport matrix is skew symmetric: ��� ¼
����.

The components of the 4-velocity are conveniently pa-
rametrized by the spatial 3-velocity va (a ¼ 1, 2, 3) as

U� ¼ 


va

� �
; (36)

where 
 ¼ ð1� v2=c2Þ�1=2 is the Lorentz factor (v2 ¼
�abv

avb). When the particle is at rest, va ¼ 0, its 4-
velocity reduces to

u� ¼ ��
0 ¼ 1

0

� �
: (37)

The actual 4-velocity U� is obtained from the rest-frame
components with the help of the Lorentz transformation
U� ¼ ��

�u
� where

��
� ¼ 
 
vb=c

2


va �a
b þ ð
� 1Þvavb=v

2

� �
: (38)

Hereafter the Latin indices from the beginning of the
alphabet (a; b; . . . ¼ 1; 2; 3 which label the spatial compo-
nents of the objects) are raised and lowered with the help of
the Euclidean 3-dimensional metric �ab.
The physical components of spin s� are defined in the

rest frame of a particle. Accordingly, we have S� ¼
��

�s
�. The dynamical equation for the physical spin is

derived by substituting this relation into (33) which yields

ds�

d�
¼ ��

�s
�: (39)

Here we introduced ��
� ¼ ��

� þ ��
� where

��
� ¼ ð��1Þ�
�



��

�
�;

��
� ¼ �ð��1Þ�


d

d�
�


�:
(40)

The physical spin has only three spatial components. One
can verify that the 0th component of (39) is identically
satisfied [in fact, it is identical to the second compatibility
condition (34)]. As a result, the dynamical equation (39)
reduces to the 3-vector form
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dsa

d�
¼ �a

bs
b; or

ds

d�
¼ �� s: (41)

Here� ¼ �þ � and the components of the 3-vectors are
introduced by s ¼ ðs1; s2; s3Þ and � ¼ ð�32;�13;�21Þ.

The new general equations (40) and (41) are valid for a
spinning particle interacting with any external fields. In the
next section, we specify these equations to the case of the
gravitational field.

V. EQUIVALENCE PRINCIPLE AND DYNAMICS
OF CLASSICAL AND QUANTUM SPINS IN

CURVED SPACETIMES

The equivalence principle (EP) is known to be the
cornerstone of general relativity. The EP results in the
general equation of motion of classical test particles in
curved spacetimes:

DU�

d�
¼ 0; (42)

where D=ðd�Þ denotes the covariant derivative along the
curve. The corresponding equation of motion of the four-
component spin used in Refs. [7,8] and many other works
is very similar:

DS�

d�
¼ 0: (43)

In the present work, we do not consider a relatively weak
influence of the spin on the particle’s trajectory produced
by the Mathisson-Papapetrou force [4,5,7] which results in
a weak violation of the equivalence principle by the
curvature-dependent terms [18]. For the Kerr spacetime,
the deviation from the geodetic motion under the influence
of spin was recently comprehensively studied in the frame-
work of the analytic perturbation approach in [19]; see also
the relevant references there.

In the context of our present investigation of the dynam-
ics of spin, it is worthwhile to stress that the account of the
Mathisson-Papapetrou terms does not change the spin
dynamics in the current approximation. There is thus no
any difference between the Mathisson-Papapetrou and
Pomeransky-Khriplovich approaches within our frame-
work. Nevertheless we find it more convenient to refer
specifically to [7] where the exact equation of motion for
the three-component spin was obtained in explicit form.

Equation (42) states identical motion of all classical
particles in curved spacetimes. Similarly, Eq. (43) states
identical motion of all classical spins (gyroscopes). This
important conclusion leads to a great difference between
dynamics of the spin in electrodynamics and gravity.
Angular velocities of precession of all classical and quan-
tum spins moving with the same velocity in the curved
spacetime are equal. Thus, spinning particles cannot have
any anomalous gravitomagnetic moments [20]. It has been
proved that both the anomalous gravitomagnetic moment

and the gravitoelectric dipole moment being gravitational
analogs of the anomalous magnetic moment and the elec-
tric dipole moment, respectively, are identically zero [20].
Relations obtained by Kobzarev and Okun predict equal
frequencies of the precession of classical and quantum
spins in any curved spacetimes [21,22]. Nevertheless, this
conclusion was discussed for a long time (see
Refs. [15,22–24] and references therein).
On the contrary, angular velocities of spin precession of

different particles which are determined by the Thomas-
Bargmann-Michel-Telegdi equation [25,26] do not coin-
cide and, generally speaking, differ from an angular veloc-
ity of precession of a classical rotator.
Comparing (42) and (43) with (32) and (33), we find the

explicit expressions for the force and the spin transport
matrix

F � ¼ ��
�U

�; ��
� ¼ �Ui�i�

�; (44)

in terms of the gravitational field �i�
�. Using this in (40),

we find explicitly

�ab ¼ �Ui

�
�i

ba þ 
2


þ 1

vc

c2
ð�ic

avb � �ic
bvaÞ

þ 


c2
ð�

i0̂
avb � �

i0̂
bvaÞ

�
; (45)

�ab ¼ Ui 
2


þ 1

�
vc

c2
ð�ic

avb � �ic
bvaÞ

þ 1

c2
ð�

i0̂
avb � �

i0̂
bvaÞ

�
: (46)

Hence the precession of the physical spin in the gravita-
tional field is described by

�a ¼ 	abcU
i

�
1

2
�i

cb þ 



þ 1
�
i0̂
bvc=c2

�
: (47)

This exact formula can be used also in the flat spacetime
for noninertial reference frames, since the connection �i�

�

contains information about both gravitational and inertial
effects.
Equation (47) was first obtained by Pomeransky and

Khriplovich [7] as a result of a comparison of the equations
of motion of spin in electrodynamics and gravity, and more
recently has been consistently derived by Dvornikov [8].
Note that unlike Ref. [8], our results can be easily extended
to any external fields (electromagnetic, gravitational, sca-
lar, and other).

VI. CLASSICAL SPIN IN NONSTATIC
SPACETIMES

Description of a spin requires the introduction of a tetrad
(the frame e� ¼ ei�@i and the dual coframe #� ¼ e�i dx

i).
In physical terms a choice of a tetrad means a selection of a
local reference system of an observer.
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Mathematically, there are infinitely many tetrads since a
reference frame of an observer can obviously be con-
structed in infinitely many ways. In particular, from a given
tetrad field e�i we can obtain a continuous family of tetrads

by performing the Lorentz transformation e0�i ¼ ��
�e

�
i ,

where the elements of the Lorentz matrix ��
�ðxÞ are

arbitrary functions of the spacetime coordinates. In prac-
tice, there are three most widely used gauges.

Schwinger gauge.—Probably for the first time intro-
duced independently by Schwinger [27] and Dirac [28]
(and widely used in many works, including [9] and our
current study), this choice demands that the tetrad matrix
e�i and its inverse ei� both have the trivial elements in the
upper-right blocks:

e�i ¼ e0̂0 0
eâ0 eâb

 !
; ei� ¼ e0

0̂
0

ea
0̂

ea
b̂

 !
: (48)

Landau-Lifshitz gauge.—fixes the tetrad matrices so that
they both have the trivial elements in the lower-left blocks
(see, e.g., Ref. [29]):

e�i ¼ e0̂0 e0̂b
0 eâb

 !
; ei� ¼ e0

0̂
e0
b̂

0 ea
b̂

 !
: (49)

Symmetric gauge.—Using the Minkowski flat metric
g�� ¼ diagðc2;�1;�1;�1Þ, we can move the anholo-

nomic index down and construct the matrix e�i :¼
g��e

�
i . The tetrad is called symmetric (hence the name,

symmetric gauge) when the resulting matrix is invariant
under the transposition operation which we symbolically
can write as

e�i ¼ ei�: (50)

Such a tetrad was used by Pomeransky and Khriplovich [7]
and Dvornikov [8].

In the framework of our current study, we choose the
Schwinger gauge by specifying the coframe as (10).

The other tetrads are obtained from our e�i with the help

of the Lorentz transformation e0�i ¼ ��
�e

�
i , where

��
� ¼  qb=c

cqa �a
b þ ð� 1Þqaqb=q2

� �
: (51)

Here we denote

qa ¼ �
WKa

V
;  ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p : (52)

(As usual, q2 ¼ �abq
aqb). The constant � conveniently

parametrizes different choices of tetrads. Namely, for � ¼
1=2 the Lorentz matrix (51) transforms our tetrad to that of
Pomeransky and Khriplovich, and for � ¼ 1 we obtain the
tetrad of Landau and Lifshitz.

Under the Lorentz transformation e0�i ¼ ��
�e

�
i , the

connection changes from �i�
� to the new one: �0

i�
� ¼

��

�i�


ð��1Þ�� þ��

@ið��1Þ
�. Specifically, for the

weak gravitational field of a slowly rotating source (3)
we find

�0
iâ

0̂ ¼ GMxa
c2r3

e00̂i � 3xðaKbÞ
cr2

e0b̂i

þ �
	abc!

b

c2

�
��c

d þ
3xcxd
r2

�
e0d̂i ; (53)

�0
ib̂

â ¼ 1

2
	abc!

d

�
��c

d þ
3xcxd
r2

�
e00̂i þ GM

c2r3
ðxae0b̂i � xbe0âi Þ:

(54)

Recall that �0
i0̂
â ¼ c2�ab�0

ib̂
0̂. We can drop the primes now,

since the value of the � parameter identifies the reference
frame anyway.
Substituting (53) and (54) into (47), we obtain the

precession of the physical spin in the gravitational field
of rotating object:

� ¼ 


�
G

c2r3

�
3rðr � JÞ

r2
� J

�
þ �� v

c2

�
; (55)

where we denote

� ¼ 2
þ 1


þ 1

GM

r3
rþ 



þ 1

3G

c2r3

�
r

r2
ðr � ðJ� vÞÞ

� 2�

3
J� vþ ð2�� 1Þ ðr � vÞ

r2
J� r

�
: (56)

Putting � ¼ 0, thus specifying to the Schwinger tetrad, we
find that the classical formula (55) perfectly reproduces the
quantum result (31). The extra Lorentz factor is due to the
fact that the classical evolution of spin was measured by
using the proper time �, whereas the quantum evolution
was analyzed by using the coordinate time t. If we choose
another tetrad by putting � ¼ 1=2 in (56), Eq. (55) yields
the result by Pomeransky and Khriplovich [7] and
Dvornikov [8]:

� ðPKÞ ¼ G

c2r3

�
3ðr � JÞr

r2
� J

�
� 



þ 1

G

c2r3

�
�
3½r� v�ðJ � ½r� v�Þ

r2
þ v� ðv� JÞ

�
:

(57)

This result evidently differs from Eq. (31).
It is worthwhile to mention that our result (55) and (56)

[together with its quantum (31) counterpart] presented in
Ref. [30] was confirmed in the recent paper [31] [specifi-
cally, cf. Eq. (6.19) therein]. This is very satisfactory, since
the authors of [31] worked in a different framework devel-
oping the Hamiltonian theory of a spinning particle in a
curved spacetime. In Ref. [31], the first relativistic correc-
tions were calculated, while our Eqs. (55) and (56) and the
corresponding quantum equations are the exact formulas
suitable also for the discussion of an ultrarelativistic
spin-1=2 particle. It is also stressed in [31] that the results
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obtained are consistent, in the test-particle limit, with the
earlier analysis [32] of the dynamics of two gravitationally
interacting rotating extended bodies.

VII. PARTICLE WITH SPIN IN A ROTATING
FRAME

One can straightforwardly show that Eq. (47) yields the
correct angular velocity of spin precession in a rotating
frame. The spacetime is flat in this case with the line
element [9] given by

ds2 ¼ ½c2 � ð!� rÞ2�dt2 � 2ð!� rÞadxadt� ðdxaÞ2:
(58)

We choose the Schwinger gauge for the tetrad, which is
then described by (10) with (8), where we have to put a ¼
0 for the pure rotation. Other tetrads are easily obtained
with the help of the Lorentz transformation (51) which is
much simpler now because V ¼ W ¼ 1. One can verify
that by choosing � ¼ 1=2 we indeed obtain a symmetric
tetrad (which corresponds to the gauge of Pomeransky and
Khriplovich), whereas � ¼ 1 yields the Landau-Lifshitz
tetrad.

The corresponding family of the (transformed) connec-
tion reads

�0
iâ

0̂ ¼ � �

c2
	abc!

ce0b̂i ; �0
ib̂

â ¼ �	bac!
ce00̂i : (59)

Substituting this into Eq. (47), we find the precession
angular velocity

� ¼ 


�
�!þ �



þ 1

v� ðv�!Þ
c2

�
: (60)

The overall Lorentz factor is again due to the use of the
proper time in the evolution equations.

The correct result for the Schwinger gauge (that is
recovered for � ¼ 0) was first obtained in [33,34]. A
transparent and simple explanation of the dependence of
the angular velocity of the spin precession on the gauge of
a tetrad, and thus of the additional terms which are present
in (60) in the symmetric gauge (for � ¼ 1=2) and in the
Landau-Lifshitz gauge (for � ¼ 1), was presented recently
[23] on the basis of the Thomas precession.

The study of a rotating frame helps to clarify the differ-
ence between the tetrad gauges. The line element (58)
describes the flat spacetime. Indeed, we can bring the
metric to the explicitly flat form by a coordinate trans-
formation that replaces ðt; xaÞ with the new coordinates
ðT; XaÞ using the formulas

t ¼ T; xa ¼ La
bX

b: (61)

Here the 3� 3 matrix

La
b ¼ nanb þ ð�a

b � nanbÞ cos’þ 	acbn
c sin’ (62)

defines a rotation around the unit vector na on an angle

’ðTÞ ¼ !T with the constant angular velocity _’ ¼ !,
where !a ¼ !na. Differentiating (61), we easily verify

dxa � Kacdt ¼ La
bdX

a: (63)

Accordingly, the transformation (61) brings the line ele-
ment (58) to ds2 ¼ c2dT2 � �abdX

adXb which is the flat
Minkowski world described in the Cartesian coordinates
ðT; XaÞ.
In order to compare different tetrad gauges, let us con-

sider the continuous family that arises from the Lorentz
transformation (51). Explicitly, the tetrad components read

e�i ¼ e0̂0 ¼ ð1��K2Þ e0̂b ¼ �Kb=c
eâ0 ¼ ð�� 1ÞcKa eâb ¼ �a

bþð� 1ÞKaKb=K
2

 !
:

(64)

Here, as before,  ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2K2

p
. As we can easily

verify, this family indeed contains all three main options:
(i) for � ¼ 0, the Schwinger gauge is obtained; (ii) the
Landau-Lifshitz gauge arises for � ¼ 1; and (iii) the sym-
metric gauge is recovered for � ¼ 1=2.
Let us now analyze a particle that is at rest with respect

to a reference system described by the tetrad (64). The
tetrad components of the 4-velocity of such a particle read
U� ¼ ��

0̂
¼ ð1; 0Þ. Respectively, the world components of

the particle’s 4-velocity read dxi=d� ¼ Ui ¼ ei�U
� ¼ ei

0̂
.

Explicitly we then find from the inverse of (64)

dt

d�
¼ ;

dxa

d�
¼ cð1� �ÞKa ) dxa

dt
¼ ð1� �Þ	abc!bxc:

(65)

This is how the particle’s dynamics is described in the
coordinates ðt; xaÞ of a homogeneously rotating flat world.
But how does this motion look in terms of the genuinely
inertial coordinates? Substituting (61) into (65), we obtain

dXa

dT
¼ ��	abc!bXc: (66)

As we see, for � ¼ 0 the particle is at rest in the inertial
coordinates, Xa ¼ const. That is, a particle which is at rest
in the Schwinger reference frame indeed does not physi-
cally move in the Cartesian coordinates ðT; XaÞ. However,
when a particle is at rest with respect to the Landau-
Lifshitz � ¼ 1 tetrad or with respect to the symmetric � ¼
1=2 tetrad, it actually turns out to be moving (rotating) in
the inertial coordinates.
In this sense, the Schwinger gauge is physically distin-

guished as it qualifies for defining an almost inertial ref-
erence frame. In all the other tetrads with � � 0, the
description of physical effects is ‘‘spoiled’’ by noninertial-
ity. Such a spoiling effect is manifested by the additional
(last) term in (60), for example.
Certainly, one should be careful when generalizing the

above observation to the case of the nontrivial gravitational
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field. Note that we use the expression ‘‘almost inertial’’ to
distinguish the anholonomic Schwinger tetrad from a truly
inertial tetrad which is holonomic. In a curved spacetime
one cannot, as a matter of principle, separate the inertial
effects from the gravitational ones. However, we recall
again that Lense and Thirring have demonstrated, in the
weak-field approximation, the similarity of the particle’s
motion in a gravitational field of a rotating source to its
dynamics in a noninertial frame rotating with the angular
velocity (9). Our analysis thus demonstrates that the
Schwinger choice clearly appears to be preferable.

VIII. DISCUSSION AND CONCLUSION

In this paper, we consider the quantum and classical
dynamics of a particle with spin in the gravitational field
of a rotating source. Being primarily interested in the
dynamics of spin, we derive the quantum-mechanical and
semiclassical equations of motion of the spin of a Dirac
particle from the Foldy-Wouthuysen approach. We dem-
onstrate that the precession of the quantum spin is in
perfect agreement with the motion of the classical spin
derived within a general scheme of Sec. IV. The results
obtained are compared to the earlier computations for
different tetrad gauges, and we show that the precession
effect depends crucially on the choice of a tetrad. At the
same time, we find a perfect consistency with the classical
Mathisson-Papapetrou approach by explicitly calculating
the quantum and semiclassical expressions for the spin-
dependent force on a Dirac particle.

The Lense-Thirring effect or frame dragging is one of
the most impressive predictions of the general relativity.
This effect is currently analyzed in the Gravity Probe B
experiment [35,36]. However, relativistic corrections to the
LTeffect are not observable in this experiment as well as in
other experiments inside the Solar System [37].
Nevertheless, it is necessary to take the relativistic cor-

rections to the LT precession into account for the inves-
tigation of physical phenomena in the binary stars such as
pulsar systems. In this case, both components of a system
undergo a mutual Lense-Thirring precession about the total
angular momentum J. Since the spin precession effects are
well observable [38–40], the use of the results obtained in
the present work may be helpful for the high-precision
calculations of spin dynamics in the binaries.
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