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The properties of the gravitational energy-momentum 3-form and of the superpotential 2-form are

discussed in the covariant teleparallel framework, where the Weitzenböck connection represents inertial

effects related to the choice of the frame. Because of its odd asymptotic behavior, the contribution of the

inertial effects often yields unphysical (divergent or trivial) results for the total energy of the system.

However, in the covariant teleparallel approach, the energy is always finite and nontrivial. The teleparallel

connection plays a role of a regularizing tool which subtracts the inertial effects without distorting the true

gravitational contribution. As a crucial test of the covariant formalism, we reanalyze the computation of

the total energy of the Schwarzschild and the Kerr solutions.
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I. INTRODUCTION

The problem of defining an energy-momentum density
for the gravitational field belongs to the oldest in modern
theoretical physics. The concepts of energy and momen-
tum are fundamental ones in classical field theory. Within
the general Lagrange-Noether approach, conserved cur-
rents arise from the invariance of the classical action under
transformations of fields and spacetime variables. In par-
ticular, energy and momentum are related to time and
space translations. However, due to the geometric nature
of the gravitational theory and because of the equivalence
principle, which identifies locally gravitation and inertia,
the definition of gravitational energy remained unsolved
for many years. In general, there are no symmetries in
Riemannian manifolds that can be used to generate the
corresponding conserved energy-momentum currents. It is
possible, though, to associate energy and momentum to
asymptotically flat gravitational field configurations. The
history of the problem and some of the corresponding
achievements is described in reviews [1–5], for example.

On the other hand, although equivalent to general rela-
tivity, the gauge structure of teleparallel gravity gives rise
to several conceptual and practical differences in relation
to the geometric structure of general relativity. An impor-
tant difference is that it is possible to distinguish gravita-
tion and inertia [6]. Since inertia is in the realm of the
pseudotensor behavior of the usual expressions for the

gravitational energy-momentum density, it turns out pos-
sible in teleparallel gravity to write down a tensorial ex-
pression for such density [7]. With the purpose of getting a
deeper insight into the covariant teleparallel formalism, as
well as to test how it works, we reanalyze the computation
of the total energy of the two important examples, namely,
the Schwarzschild and Kerr solutions.
The paper is organized as follows. Using the language of

exterior forms, we give in Sec. II an outline of the tele-
parallel approach to gravity. In Sec. III we present the
covariant formalism for the gravitational energy-
momentum. In simple terms, it means that a general rela-
tivistic system is described not by a single variable #�, as
was done in the pure tetrad approach [8–14], but by the pair
ð#�;��

�Þ. The tetrad #� is responsible for the gravita-
tional effects, but its form also reflects the choice of the
reference system. This inevitably brings in the inertial
phenomena which are mixed up with the truly gravitational
effects. The introduction of the teleparallel connection ��

�

makes it possible to deal with the inertial effects in a
constructive way. Specifically, we demonstrate in Sec. IV
that, due to an inconvenient choice of a reference system,
the traditional computation of the total energy of the
Schwarzschild solution can yield either a divergent or a
vanishing result. With an account of the teleparallel con-
nection, we can circumvent such results. In our covariant
formalism, the Weitzenböck connection acts as a regula-
rizing tool that separates the inertial contribution and pro-
vides the physically meaningful result for all reference
frames. The notion of a proper tetrad, introduced in
Sec. IVB, plays a central role in this approach. The results
obtained are then further generalized to the case of the Kerr
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solution in Sec. V. Finally, in Sec. VI we summarize our
results, namely, that the covariant teleparallel formalism
automatically regularizes the computations, always yield-
ing the physically relevant solution.

Our general notations are as in [15]. In particular, we use
the Latin indices i; j; . . . for local holonomic spacetime
coordinates and the Greek indices �;�; . . . label (co)frame
components. Particular frame components are denoted by

hats, 0̂, 1̂, etc. As usual, the exterior product is denoted by
^, while the interior product of a vector � and a p-form �
is denoted by �c�. The vector basis dual to the frame 1-

forms #� is denoted by e� and they satisfy e�c#� ¼ ��
�.

Using local coordinates xi, we have #� ¼ h�i dx
i and e� ¼

hi�@i. We define the volume 4-form by � :¼ # 0̂ ^ # 1̂ ^
# 2̂ ^ # 3̂. Furthermore, with the help of the interior product
we define �� :¼ e�c�, ��� :¼ e�c��, ���� :¼ e�c���

which are bases for 3-, 2- and 1-forms, respectively.
Finally, ����� ¼ e�c���� is the Levi-Civita tensor den-

sity. The �-forms satisfy the useful identities:

#� ^ �� ¼ ��
��; (1.1)

#� ^ ��� ¼ ��
��� � ��

���; (1.2)

#� ^ ���� ¼ ��
���� þ ��

���� þ ��
����; (1.3)

#� ^ ����� ¼ ��
����� � ��

����� þ ��
�����

� ��
�����: (1.4)

The line element ds2 ¼ g��#
� � #� is defined by the

spacetime metric g��.

II. TELEPARALLEL GRAVITY

The teleparallel approach is based on the gauge theory of
translations. Without going into the subtleties of the cor-
responding gauge-theoretic scheme (for an advanced read-
ing, see [12,16–19], for example), one can view the
coframe #� ¼ h�i dx

i (tetrad) as a one-form that plays
the role of the gauge translational potential of the gravita-
tional field. Einstein’s general relativity theory can be
reformulated as the teleparallel theory. Geometrically,
one can view the teleparallel gravity as a special (degen-
erate) case [20–22] of the metric-affine gravity in which
the coframe #� and the local Lorentz connection ��

� are
subject to the distant parallelism constraint R�

� ¼ 0. The
torsion 2-form

T� ¼ d#� þ ��
� ^ #�; (2.1)

arises as the gravitational gauge field strength, with ��
�

the Weitzenböck connection. As is well known, torsion T�

can be decomposed into three irreducible pieces: the tensor
part, the trace, and the axial trace, given, respectively, by

ð1ÞT� :¼ T� � ð2ÞT� � ð3ÞT�; (2.2)

ð2ÞT� :¼ 1

3
#� ^ ðe�cT�Þ; (2.3)

ð3ÞT� :¼ 1

3
e�cð#� ^ T�Þ: (2.4)

A Yang-Mills type Lagrangian is then constructed as a
quadratic polynomial in torsion. In the so-called telepar-
allel equivalent gravity model, the Lagrangian reads

V ¼ � 1

2	
T� ^ ?

�
ð1ÞT� � 2ð2ÞT� � 1

2
ð3ÞT�

�
; (2.5)

where 	 ¼ 8
G=c3, and ? denotes the Hodge dual in the
metric g��. The latter is assumed to be the flat Minkowski

metric g�� ¼ o�� :¼ diagðþ1;�1;�1;�1Þ, and it is

used to raise and lower the Greek (local frame) indices.
The teleparallel field equations are obtained from the

variation of the total action with respect to the coframe:

DH� � E� ¼ ��: (2.6)

Here D denotes the covariant exterior derivative, i.e.,
DH� ¼ dH� � ��

� ^H�. The translational momentum

and the canonical energy-momentum are, respectively:

H� ¼ � @V

@T� ¼ 1

	

?
�
ð1ÞT� � 2ð2ÞT� � 1

2
ð3ÞT�

�
; (2.7)

E� ¼ @V

@#� ¼ e�cV þ ðe�cT�Þ ^H�: (2.8)

In terms of H�, the Lagrangian (2.5) is recast in the form

V ¼ � 1

2
T� ^H�: (2.9)

We remark that the resulting model is degenerate from
the metric-affine viewpoint, because the variational deriva-
tives of the action with the respect to the metric and
connection are trivial. This means that the field equations
are satisfied for any ��

�. However, as we are going to see,
the presence of the connection field plays an important
regularizing role. Furthermore, in its presence the telepar-
allel gravity becomes explicitly covariant under local
Lorentz transformations of the coframe. In particular, the
Lagrangian (2.5) is invariant under the changes

#0� ¼ L�
�#

�;

�0
�
� ¼ ðL�1Þ����

�L�
� þ L�

�dðL�1Þ��;
(2.10)

with L�
� � L�

�ðxÞ 2 SOð1; 3Þ. In contrast to this, the

Lagrangian of the pure tetrad gravity, which is obtained
when we put ��

� ¼ 0 for all frames, is only quasi-
invariant—it changes by a total divergence.
The connection ��

� can be decomposed into
Riemannian and post-Riemannian parts as

TIAGO GRIBL LUCAS, YURI N. OBUKHOV, AND J. G. PEREIRA PHYSICAL REVIEW D 80, 064043 (2009)

064043-2



��
� ¼ ~��

� � K�
�: (2.11)

Here, ~��
� is the purely Riemannian connection and K�

� is
the contortion which is related to the torsion by the identity

T� ¼ K�
� ^ #�: (2.12)

One can then show that, due to geometric identities [23],
the translational momentum (2.7) can be written as

H� ¼ 1

2	
K�� ^ ����: (2.13)

A crucial property of the teleparallel framework is that
the Weitzenböck connection ��

� actually represents iner-
tial effects that arise from the choice of the reference
system. Because of its odd asymptotically behavior, the
inertial contributions in many cases yield unphysical re-
sults for the total energy of the system, producing either
trivial or divergent answers. We will show in this paper that
the computation of the energy in the covariant teleparallel
approach always yields finite and physically correct re-
sults. In this sense, we can say that the teleparallel con-
nection acts as a regularizing tool which helps to eliminate
the inertial effects without distorting the true gravitational
contribution.

It is worthwhile to mention that the Lagrangian (2.9)
differs from the Hilbert-Einstein Lagrangian by a total
derivative (surface term). Correspondingly, the field
Eq. (2.6) coincide with Einstein’s gravitational field equa-
tion. In this sense, the physical contents of the two theories
is the same.

III. ENERGY-MOMENTUM CONSERVATION

We begin by rewriting the field Eq. (2.6) in the Maxwell-
type form:

DH� ¼ E� þ��: (3.1)

The analogy with the electromagnetism is obvious. The
Maxwell 2-form F ¼ dA represents the gauge field
strength of the electromagnetic potential 1-form A. From
the Lagrangian VðFÞ, the 2-form of the electromagnetic
excitations is defined by H ¼ �@V=@F, and the field
equation reads dH ¼ J, where J is the 3-form of the
electric current density of matter. In view of the nilpotency
of the exterior differential, dd � 0, the Maxwell equation
yields the conservation law of the electric current, dJ ¼ 0.

In contrast to electrodynamics, gravity is a self-
interacting field, and the gauge field potential 1-form #�

carries an ‘‘internal’’ index �. The gauge field strength 2-
form T� ¼ D#� is now defined by the covariant derivative
of the potential (compare with F ¼ dA). The gravitational
field excitation 2-formH� is introduced by (2.7), in a direct
analogy to the Maxwell theory (recall H ¼ �@V=@F).
Finally, we observe that as compared to the Maxwell field
equation dH ¼ J, the gravitational field Eq. (3.1) contains
now the covariant derivative D, and in addition, the right-

hand side is represented by a modified current 3-form,
E� þ ��. The last term is the energy-momentum of mat-
ter, and we naturally conclude that the 3-form E� describes
the energy-momentum current of the gravitational field. Its
presence in the right-hand side of the field Eq. (3.1) reflects
the self-interacting nature of the gravitational field, and
such contribution is absent in the linear electromagnetic
theory.
We can complete the analogy with electrodynamics by

deriving the corresponding conservation law. Indeed, since
DD � 0 for the teleparallel connection, (3.1) tells us that
the sum of the energy-momentum currents of gravity and
matter, E� þ ��, is covariantly conserved [7],

DðE� þ ��Þ ¼ 0: (3.2)

This law is consistent with the covariant transformation
properties of the currents E� and ��.
One can rewrite the conservation of energy-momentum

in terms of the ordinary derivatives. Using the explicit
expression DH� ¼ dH� � ��

� ^H�, the field Eq. (2.6)

and (3.1) can be recast in an alternative form

dH� ¼ E� þ ��; (3.3)

where E� ¼ E� þ ��
� ^H�. Accordingly, (3.3) yields a

usual conservation law with the ordinary derivative

dðE� þ ��Þ ¼ 0: (3.4)

The 3-form E� describes the gravitational energy-
momentum in a covariant way, whereas the 3-form E� is
a noncovariant object. In terms of components, it gives rise
to the energy-momentum pseudotensor. It is worthwhile to
note that H� plays the role of energy-momentum super-
potential both for the covariant energy-momentum current
(E� þ��) and for the total (including inertia) noncovar-
iant current (E� þ ��).
The �-forms (defined above) serve as the basis of the

spaces of forms of different rank, and when we expand the
above objects with respect to the �-forms, the usual tensor
formulation is recovered. Explicitly,

H� ¼ 1

	
S�

�����: (3.5)

Here S�
�� ¼ �S�

�� is constructed from the contortion
tensor in a usual way [20].
Analogously, we have explicitly for the gravitational

energy-momentum

E� ¼ 1

2
½ðe�cT�Þ ^H� � T� ^ ðe�cH�Þ�: (3.6)

Substituting here (3.5) and T� ¼ 1
2T��

�#� ^ #�, and us-

ing (1.2), (1.3), and (1.4), we find

E� ¼ t�
���;

t�
� ¼ 1

2	
ð4T��

�S�
�� � T��

�S�
����

�Þ:
(3.7)
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Similarly, we have

E� ¼ j�
���;

j�
� ¼ 1

2	
ð4T��

�S�
�� � T��

�S�
����

� þ 4���
�S�

��Þ:
(3.8)

Now, whereas t�
� is a true tensor, because it depends

explicitly on theWeitzenböck connection ���
�, the current

j�
� is a pseudotensor. Since the Weitzenböck connection

���
� represents the inertial effects related to the choice of

the frame, we see clearly that the origin of the pseudotensor
behavior of the usual energy-momentum densities is that
they include those inertial effects [7].

Taking into account the analogous expansion of the
matter energy-momentum, �� ¼ ��

���, which introdu-

ces the energy-momentum tensor ��
�, and using (3.5) and

(3.7), we easily recover the field equation in tensor lan-
guage (used, for example, in [24]). Note that the conser-
vation laws (3.2) and (3.4) coincide when we put ��

� ¼ 0.
The last term in (3.8) then disappears, whereas torsion
reduces to the anholonomity 2-form, T� ¼ F� ¼ d#�.
We denote the corresponding energy-momentum and
superpotential with a tilde:

~E� ¼ E�j��
�¼0; ~H� ¼ H�j��

�¼0: (3.9)

The properties of these quantities and their use for the
computation of the total energy of the exact solutions
was discussed in [22,25]. Explicitly, we have

~H � ¼ 1

2	
~��� ^ ����; (3.10)

~E� ¼ 1

2
½ðe�cd#�Þ ^ ~H� � d#� ^ ðe�c ~H�Þ�: (3.11)

IV. ENERGY OF THE SCHWARZSCHILD
SOLUTION

In this section we will demonstrate the regularizing role
of the teleparallel connection for the computation of the
energy-momentum of the Schwarzschild solution. The
generalization to the rotating Kerr configurations will be
discussed separately in the next section.

Wewill consider several choices of the coframe. In order
to show how the covariant formulation works, we will
compare our results to the computations done in the pure
tetrad formalism. The latter gives, depending on the choice
of the reference system, either infinite or trivial answers. In
contrast, the use of the covariant teleparallel framework
always yields the physically meaningful result.

A. Schwarzschild metric: Naive choice of a tetrad

In accordance with the spherical symmetry of the
Schwarzschild solution, we choose the spherical local
coordinates, ðt; r; �; ’Þ. We start our analysis by using the
diagonal coframe:

# 0̂ ¼ 1

�
cdt; # 1̂ ¼ �dr;

# 2̂ ¼ rd�; # 3̂ ¼ r sin�d’;
(4.1)

with � ¼ �ðrÞ. Actually, this class of metrics includes not
only Schwarzschild, but also Reissner-Nordstrom (with
electric charge) and Kottler (with a cosmological term)
metrics. The pure Schwarzschild arises when

� ¼
�
1� 2m

r

��ð1=2Þ
; (4.2)

withm ¼ GM=c2 (G is Newtonian gravitational constant).
If we take tetrad (4.1), as well as the trivial Weitzenböck

connection ��
� ¼ 0, and substitute them into (3.9), we

find

~H 0̂ ¼
�

	
cos�dr ^ d’� 2r

	�
sin�d� ^ d’: (4.3)

In particular, if we compute the total energy at a fixed time
in the 3-space with a spatial boundary two-dimensional
surface @S ¼ fr ¼ R; �; ’g, with R ! 1, we obtain

~P 0̂ ¼
Z
@S

~H0̂ ¼ � 2R

	�

Z
@S
sin�d� ^ d’ ¼ � 8
R

	�
;

(4.4)

which diverges in the limit of R ! 1 (note that � ! 1
when the radius goes to infinity).
The physical reason that underlies such a result is ob-

vious—the energy-momentum current and the superpoten-
tial contain an infinite contribution of the inertial effects
that are present due to the inconvenient choice of the
reference system. We have demonstrated in [25] how to
regularize this result by subtracting the unphysical contri-
bution with the help of the suitable choice of the flat
background connection. Here we use a different regulari-
zation framework which is based on the covariance prop-
erty. Namely, let us associate with the tetrad (4.1) a
nontrivial teleparallel connection

�
1̂
2̂ ¼ d�; �

1̂
3̂ ¼ sin�d’; �

2̂
3̂ ¼ cos�d’:

(4.5)

The curvature obviously vanishes for this connection, but
torsion T� ¼ d#� þ ��

� ^ #� is nontrivial. Substituting

into (2.13), we then find

H0̂ ¼
2rð1� 1=�Þ

	
sin�d� ^ d’: (4.6)

The integral over the spatial boundary yields

P0̂ ¼
Z
@S
H0̂ ¼ M: (4.7)

It is worthwhile to note that the account for the tele-
parallel connection removed the divergence and automati-
cally produced the physical result. Another remark is in
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order about the choice of the connection (4.5). As one can
immediately see, this is the same flat connection that was
earlier used in [25] to subtract the inertial effects. This is
not a mere coincidence. In Ref. [25] we have demonstrated
the possibility of reinterpreting the background flat con-
nection as a Weitzenböck connection in the metric-affine
approach to the translational gauge gravity theory.

B. Schwarzschild metric: Proper tetrad

Instead of the inconvenient reference system of the
previous section, we now choose a coframe that represents
what we will call a proper tetrad. The definition will be
provided later. Since a coframe is a basis of the cotangent
space, it can be expanded with respect to a different basis.
In other words, a new coframe can be always obtained
from the old one with the help of the local Lorentz rotation.

We begin with an observation that the role of the tele-
parallel connection, that we used above, was to remove (or
to separate) the inertial contribution from the truly gravi-
tational one. By definition, since the teleparallel curvature
is zero, the connection is a ‘‘pure gauge’’, that is

��
� ¼ ð��1Þ��d�

�
�; (4.8)

The Weitzenböck connection always has the form (4.8).
Since the Lorentz matrix ��

� has to do with transforma-

tions among different frames, ��
� turns out to describe

inertial properties of a tetrad. In particular, it is easy to see
that (4.5) is of the form (4.8), with the Lorentz matrix given
explicitly by

��
� ¼

1 0 0 0
0 cos’ sin� cos’ cos� � sin’
0 � cos� sin� 0
0 sin’ sin� sin’ cos� cos’

0
BBB@

1
CCCA: (4.9)

Now, we are in a position to construct the proper tetrad.
Qualitatively, it is clear what we need to do. The system
described in the previous section is ‘‘spoiled’’ by the
presence of the inertial effects, so that the teleparallel
connection was required for the regularization of the
energy-momentum. These inertial effects are encoded in
the Lorentz matrix (4.9). Accordingly, in order to improve
the situation, we need to go to a new reference system by
performing the local Lorentz rotation that removes the
drawbacks mentioned. In technical terms, we define a

new tetrad #
0 �

with the help of the Lorentz transformation

#
0

� ¼ ��
�#

� (4.10)

with the rotation matrix (4.9). From (2.10) we can easily
verify that the corresponding teleparallel connection, that
is associated to the new tetrad, is trivial:

�
0

�
� ¼ ð��1Þ����

���
� þ��

�dð��1Þ�� ¼ 0: (4.11)

In addition, the new coframe #
0
� has another important

property: Let us ‘‘switch off’’ the gravitational effects.
Technically, one can do it by putting equal zero the essen-
tial gravitational parameters that describe a given configu-
ration; in this case m ¼ 0. After doing this, we discover
that such a ‘‘gravity switched-off’’ tetrad becomes holo-
nomic:

F
0
� ¼ d#

0
�jm¼0 ¼ 0: (4.12)

Actually, it is easy to see that the tetrad (4.10) describes the
Cartesian coordinate system whenm vanishes. This means,
in physical terms, that this frame does not include inertial
effects. This is the definition of proper tetrad: it is a
coframe that describes a reference system whose anholon-
omy has to do with gravitation only, not with inertial
effects. It corresponds, in this sense, to the inertial frames
of special relativity, and it reduces to a Cartesian frame in
the absence of gravitation.
Let us calculate the energy-momentum. Using (4.10)

and (4.11) in (3.5), we find

H0̂ ¼ ~H0̂ ¼
2rð1� 1=�Þ

	
sin�d� ^ d’: (4.13)

The total energy is found to be finite:P0̂ ¼
R
H0̂ ¼ M. The

regularization is not needed. The energy-momentum is
regular for the proper tetrad, which is consistent with the
fact that the inertial effects, that are responsible for the bad
behavior of the energy and momentum, are absent in the
proper reference system.

C. Schwarzschild metric: Freely falling tetrad

Since Einstein with his famous thought experiments
with an elevator, we know that gravity can be locally
imitated by inertial effects, or alternatively, gravitational
effects can be locally eliminated by using an appropriate
noninertial reference system. A freely falling elevator is an
example. This fact constitutes the contents of the strong
equivalence principle which underlies Einstein’s gravity
theory.
A natural question then arises: What about the energy of

the gravitational field? What happens to the energy when
we ‘‘eliminate’’ gravity by going to a noninertial system?
One possible answer was recently proposed in [26] in the
framework of the pure tetrad (noncovariant) formulation.
Here we will discuss the result of [26] and in the next
section we will reanalyze the same question in the cova-
riant formulation.
We start again from the diagonal tetrad (4.1), and con-

struct a new coframe with the help of the Lorentz trans-

formation #
f
� ¼ ��

��
0�
�#

�, where��
� is given by (4.9),

and
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�0�
� ¼

� �� 0 0
�� � 0 0
0 0 1 0
0 0 0 1

0
BBB@

1
CCCA; (4.14)

with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

p
(and hence � ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
).

Specifically for the Schwarzschild metric, we have

� ¼
ffiffiffiffiffiffiffi
2m

r

s
; � ¼

�
1� 2m

r

��ð1=2Þ
: (4.15)

A direct computation shows that the superpotential is
identically zero for this tetrad:

~H 0̂ ¼ 0: (4.16)

This was demonstrated by Maluf et al [26]. In physical
terms, such a tetrad describes a reference frame that is
freely falling along the radial coordinate onto the attracting
source. Gravity is ‘‘eliminated’’ in such a noninertial sys-
tem, and at the first sight the trivial result (4.16) seems to be
a natural outcome. However, it is interesting to ask whether
we still can calculate the total energy of the source, after
all, the latter did not disappear physically in the new
reference system. We will come back to this question in
the next section, whereas here our aim is to analyze the
origin of the trivial result (4.16).

In order to do this, we will make use of the object that is
often called the ‘‘generalized acceleration’’ [26,27]. Let us
take the frame e� ¼ hi�@i, dual to the coframe #� ¼
h�i dx

i. The zeroth leg of the frame

e0̂ ¼ u; (4.17)

is usually interpreted as the 4-velocity of an observer, and
the total frame then represents a comoving reference sys-
tem of an observer. The ‘‘generalized acceleration’’ object
is defined by

��
� :¼ h�i

~Dhi�
ds

; (4.18)

where ~Dhi� ¼ dhi� þ ~�j
ihj� is a covariant derivative with

respect to the Riemannian (Christoffel) connection. It acts
on the vector index i, whereas the local tetrad index is just a
label of the four legs of the frame.

By definition, this object is not a tensor, which is a well
known fact. Indeed, by using the standard relation for the
components of the connection in different frames, we

easily find h�i ~Dhi� ¼ h�i dh
i
� þ h�i

~�j
ihj� ¼ ~��

�. Con-

sequently, we have explicitly

��
� ¼ uc~��

� ¼ ~�
0̂�

�: (4.19)

In other words, the components of the ‘‘generalized accel-
eration’’ object coincide with some components of the
Riemannian connection.

One can say that the condition

��
� ¼ 0 (4.20)

defines a kind of inertial reference system. It is easy to see

that�
0̂
� ¼ a� ¼ h�i a

i with ai ¼ uk ~rku
i the acceleration.

Accordingly, when ��
� ¼ 0, the observer is ‘‘freely fall-

ing’’ without acceleration, and vanishing of the spatial
components �a

b (a; b; . . . ¼ 1, 2, 3) means that the co-
moving triad of an observer is not rotating.
Suppose that we have a reference system (a tetrad) with

the property (4.20). Is this a sufficient condition for the
energy to vanish? To find this out, we recall that in the pure
tetrad formulation the energy is calculated with the help of
the superpotential (3.10). We can straightforwardly see
how the latter is related to the ‘‘generalized acceleration’’
object. We expand the connection 1-form with respect to

the coframe basis, ~��� ¼ #�~��
��, and then find ~��� ^

���� ¼ ~��
����� þ 2~��

�����. Accordingly, the zeroth-

component of the superpotential (3.10) reads

~H 0̂ ¼
1

2	
ð~�

0̂
����� þ 2~��

���0̂�Þ

¼ 1

2	
ð�ab�ab þ 2~�b

ab�0̂aÞ: (4.21)

Thus, we see that, contrary to the assumption of [26], the
condition (4.20) of the vanishing ‘‘generalized accelera-
tion’’ is not responsible for the ‘‘zero-energy’’ result (4.16).
Instead, we find from (4.21) that the vanishing rotation is
indeed needed: �ab ¼ 0, a, b ¼ 1, 2, 3. However, the
absence of acceleration a� is not necessary. In addition,
however, one needs a rather curious condition for the 3D

trace of the connection ~�b
ab ¼ 0. As a matter of fact, the 6

conditions

�ab ¼ 0; ~�b
ab ¼ 0; (4.22)

can be used to fix the choice of the tetrad, thus eliminating
the freedom of the 6-parameter local Lorentz transforma-
tions. It is unclear though if this gauge is useful in practice.
One can prove by a direct inspection that indeed the
condition (4.22) is fulfilled for the freely falling tetrad

#
f
�
. As we will demonstrate later, a similar freely falling

tetrad can be constructed also for the Kerr solution.

D. Schwarzschild metric: Free fall in the covariant
formulation

Let us now reanalyze the same question in the covariant
formulation. We expect that taking appropriately into ac-
count the teleparallel connection (that is responsible for the
inertial effects, as we already know), it will become pos-
sible to clear the gravitational energy of the contributions
coming from the noninertial dynamics of the reference
system. Indeed, this can be perfectly confirmed by explicit
computations as follows.
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Using (2.10), we straightforwardly find the teleparallel

connection associated with the ‘‘freely falling’’ tetrad #
f
�
.

It reads

�
f

�
� ¼ ð�

f
�1Þ��d�

f
�
�; (4.23)

where �
f
�
� ¼ ��

�ð�0�1Þ��ð��1Þ��. The Weitzenböck

torsion for ð#
f
�;�

f

�
�Þ has a rather complicated form, but

using it in (3.5) we find for the superpotential

H0̂ ¼
2rð�� 1Þ

	
sin�d� ^ d’: (4.24)

The total energy is thus P0̂ ¼
R
H0̂ ¼ M, as before. It is

satisfactory to see that the final result is neither infinity nor
zero. The teleparallel connection (4.23) has automatically
regularized the situation. The contribution due to the non-
inertial motion of the ‘‘freely falling’’ reference system
(that compensated the gravitational one in the purely tetrad
formulation) is now subtracted and the correct total energy
of the source is recovered.

V. ENERGY FOR THE ROTATING KERR
SOLUTION

Although the Schwarzschild solution is a special case of
the Kerr solution, we analyze these cases separately. The
reason is that the Kerr metric is essentially more compli-
cated and its study requires some specific techniques,
which are not needed in the Schwarzschild case.
Moreover, the final formulas are usually very nontrivial
for the Kerr configuration and one needs to make various
approximations (taking the limit of infinite radius, for
example), whereas in the previous section it was possible
to give the exact expressions.

In our discussion we use a spherical type local coordi-
nate system ðt; r; �; ’Þ that is known also as the Boyer-
Lindquist coordinate system.

A. Kerr metric: A naive tetrad

We will follow closely the scheme outlined earlier for
the Schwarzschild metric, and choose the tetrad in the form

# 0̂ ¼
ffiffiffiffiffiffiffiffi
��

p
A

cdt; # 1̂ ¼
ffiffiffiffi
�

�

s
dr; # 2̂ ¼

ffiffiffiffi
�

p
d�;

# 3̂ ¼ sin�ffiffiffiffi
�

p
�
Ad’� 2amr

A
dt

�
: (5.1)

Here the functions and constants are defined by

� :¼ r2 þ a2 � 2mr; (5.2)

� :¼ r2 þ a2cos2�; (5.3)

m :¼ GM

c2
; (5.4)

A 2 ¼ ��þ 2mrðr2 þ a2Þ � ðr2 þ a2Þ2 � a2sin2��:

(5.5)

As we can immediately check, this tetrad reduces to the
diagonal coframe (4.1) when we put the rotation parameter
equal to zero: a ¼ 0. After noticing this direct relation to
the diagonal tetrad of the Schwarzschild solution, we can
expect similar problems for the computation of the energy-
momentum. As a matter of fact, this is indeed the case.
For the tetrad (5.1), accompanied by the trivial

Weitzenböck connection ��
� ¼ 0, we find the superpoten-

tial

~H0̂ ¼
am

	A
ffiffiffiffiffiffiffiffi

�

p cdt ^ ð2r cos�dr��sin�d�Þ

þA cos�

	
ffiffiffiffiffiffiffiffi

�

p dr ^ d’

�
ffiffiffiffi
�

p ½2rðr2 þ a2Þ þ ðm� rÞa2sin2��
	A

ffiffiffiffi
�

p

� sin�d� ^ d’: (5.6)

The last term has the leading behavior �2r, just like the
last term in (4.3), and thus the total energy (calculated as
the integral over the sphere of infinite radius) is divergent.
As a check, we can straightforwardly verify that the

tetrad (5.1) is not holonomic as such, and the tetrad that
is obtained from it by ‘‘switching off’’ gravity (putting
m ¼ 0 and a ¼ 0) is anholonomic too. This means that the
inertial effects are again ‘‘spoiling’’ the picture.
The regularization is needed and as before this is

achieved with the help of the same teleparallel connection
(4.5). Substituting now the pair ð#�;��

�Þ, where the tetrad
is given by (5.1) and the connection by (4.5), into (2.13), we
find

H0̂ ¼
�
2m

	
þ . . .

�
sin�d� ^ d’þ . . . : (5.7)

The resulting expressions are rather complicated for the
Kerr metric, so from now on we will display only the
leading terms, whereas the terms that are proportional to
1=rn, n � 1 will be denoted by the dots. The integral over
the spatial boundary then yields

P0̂ ¼
Z
@S
H0̂ ¼ M: (5.8)

B. Kerr metric: Proper tetrad

The proper tetrad is constructed along the same lines as
we did in the previous section. Since the regularizing tele-
parallel connection has the form (4.8), we define the proper

tetrad as the coframe #
0
� that is obtained from (5.1) with
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the help of the Lorentz transformation (4.9). It is easy to see
that the resulting coframe indeed has the required proper-
ties: (i) the teleparallel connection is zero (4.11), (ii) the

tetrad #
0
� becomes holonomic (4.12) when the gravity is

‘‘switched off’’ (for m ¼ 0, a ¼ 0).
The computation of the energy and momentum for the

proper Kerr tetrad is straightforward. The result reads
(again giving the leading terms only) as follows:

H0̂ ¼ ~H0̂ ¼
2mþ ðm2 þ a2 � 1

2a
2sin2�Þ=rþOð1=r2Þ
	

� sin�d� ^ d’þ . . . : (5.9)

The total energy is finite, P0̂ ¼
R
H0̂ ¼ M. Thus again we

prove that for the proper tetrad one does not need a

regularization, the result for the total energy-momentum
is automatically finite and has the correct value.

C. Kerr metric: Freely falling tetrad

Here we study the possibility to find a noninertial refer-
ence system in which gravitation is eliminated by the
inertia. Such a generalization of a freely falling tetrad
from the Schwarzschild to the Kerr case can be indeed
constructed.
As a first step, let us make a local Lorentz transformation

#
d

� ¼ �
d
�
�#

�; (5.10)

where �
d
�
� ¼ ð�2Þ��ð�1Þ��, with

ð�1Þ�� ¼
A=

ffiffiffiffiffiffiffiffi
��

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrðr2 þ a2Þp

=
ffiffiffiffiffiffiffiffi
��

p
0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mrðr2 þ a2Þp
=

ffiffiffiffiffiffiffiffi
��

p
A=

ffiffiffiffiffiffiffiffi
��

p
0 0

0 0 1 0
0 0 0 1

0
BBBB@

1
CCCCA; (5.11)

ð�2Þ�� ¼
1 0 0 0
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr2 þ a2Þp

=A 0 �a sin�
ffiffiffiffiffiffiffiffiffi
2mr

p
=A

0 0 1 0
0 a sin�

ffiffiffiffiffiffiffiffiffi
2mr

p
=A 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr2 þ a2Þp

=A

0
BBB@

1
CCCA: (5.12)

This brings us from the original tetrad (5.1) to the coframe

#
d 0̂ ¼ cdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrðr2 þ a2Þp

�
dr; (5.13)

#
d 1̂ ¼

ffiffiffiffiffiffiffiffiffi
2mr

�

s
ðcdt� asin2�d’Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr2 þ a2Þp

�
dr;

(5.14)

#
d 2̂ ¼

ffiffiffiffi
�

p
d�; (5.15)

#
d 3̂ ¼ sin�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
d’þ a

ffiffiffiffiffiffiffiffiffi
2mr

p
�

dr

�
: (5.16)

We will call this new coframe a Doran tetrad because
(5.13), (5.14), (5.15), and (5.16) is closely related to an
alternative representation of the Kerr metric given by
Doran in [28]. We can simplify the above formulas by
making the coordinate transformations

cdtd ¼ cdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrðr2 þ a2Þp

�
dr; (5.17)

d’d ¼ d’þ a

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mr

r2 þ a2

s
dr: (5.18)

In the new ‘‘Doran coordinates’’ ðtd; r; �; ’dÞ, the Kerr
metric will reduce to the form described in [28]. Indeed,
the coframe (5.13), (5.14), (5.15), and (5.16) in the new
coordinates reads

#
d 0̂ ¼ cdtd; (5.19)

#
d 1̂ ¼

ffiffiffiffiffiffiffiffiffi
2mr

�

s
ðcdtd � asin2�d’dÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

r2 þ a2

s
dr; (5.20)

#
d 2̂ ¼

ffiffiffiffi
�

p
d�; (5.21)

#
d 3̂ ¼ sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
d’d: (5.22)

This exactly reproduces the line element of Doran, see
Eq. (18) in [28].
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One can verify that the zeroth leg of the dual frame

u ¼ e
d

0̂ ¼
A
c��

@t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrðr2 þ a2Þp

�
@r þ 2amr

��
@’

¼ 1

c
@td �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrðr2 þ a2Þp

�
@r (5.23)

is a geodesic vector field, the acceleration is zero uiriu
j ¼

0, or �
0̂
a ¼ 0. However, this frame has a nontrivial rota-

tion, namely

�1̂ 2̂ ¼ a2 sin� cos�

ffiffiffiffiffiffiffiffiffi
2mr

p
�2

: (5.24)

This reference system thus does not satisfy the ‘‘compen-
sation conditions’’ (4.22).
However, we can improve the situation if we make an

additional Lorentz transformation

#
f

� ¼ ð�4Þ��ð�3Þ��#
d
�; (5.25)

where the matrices

ð�3Þ�� ¼
1 0 0 0
0 cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 þ a2Þ=�p � sin�r=
ffiffiffiffi
�

p
0

0 sin�r=
ffiffiffiffi
�

p
cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 þ a2Þ=�p
0

0 0 0 1

0
BBB@

1
CCCA; (5.26)

and

ð�4Þ�� ¼
1 0 0 0
0 0 cos’d � sin’d

0 0 sin’d cos’d

0 1 0 0

0
BBB@

1
CCCA: (5.27)

Note that the transformation (5.26) is the same in both
coordinate systems, in the original ðt; r; �; ’Þ and in the
Doran coordinates ðtd; r; �; ’dÞ. However the transforma-
tion (5.27) refers to the Doran coordinate system. Of course
one can apply it also in the original coordinates, but keep in
mind that ’d is a function defined by the integral from
(5.18).

One can verify that the ‘‘generalized acceleration’’ ob-
ject vanishes for the final coframe, ��

� ¼ 0. This means
that indeed the resulting tetrad does not have acceleration
and rotation, i.e., it describes a ‘‘freely falling’’ reference

system. However, still ~�b
ab � 0 for this frame. Namely,

~� b
1̂b ¼ a sin’d sin�

�

ffiffiffiffiffiffiffi
2m

r

s
; (5.28)

~� b
2̂b ¼ �a cos’d sin�

�

ffiffiffiffiffiffiffi
2m

r

s
(5.29)

As a result, the conditions (4.22) are not satisfied for this
frame, and the tetrad energy-momentum does not vanish,
in contrast to (4.16). Instead, the direct computation of the

~H� for the final coframe #
f
� yields:

~H0̂ ¼ a sin�

�
2m

�
ðcdtd � a sin2�d’dÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

rðr2 þ a2Þ

s
dr

�
^ d�; (5.30)

~H 1̂ ¼
sin2�

�
½cos’d

ffiffiffiffiffiffiffiffiffi
2mr

p ða2 � 2r2ðr2 þ a2Þ=�Þ

þ sin’dam
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�d’d ^ d�þ . . . ; (5.31)

~H 2̂ ¼
sin2�

�
½sin’d

ffiffiffiffiffiffiffiffiffi
2mr

p ða2 � 2r2ðr2 þ a2Þ=�Þ

� cos’dam
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�d’d ^ d�þ . . . ; (5.32)

~H 3̂ ¼ � sin� cos�

�2

ffiffiffiffi
m

p ½2rðr2 þ a2Þ�3=2d’d ^ d�þ . . . :

(5.33)

The expression (5.30) is exact, whereas in (5.31), (5.32),
and (5.33) the dots denote other terms which are irrelevant
for the computation of the total conserved quantities in a
sphere of an arbitrary radius. It is easy to see that integra-
tion over the spherical angles (

R
2

0 d’d

R


0 d�, note that

d’d ¼ d’ on a sphere) yields zero for the components
(5.31), (5.32), and (5.33).
Thus, the local energy density is nontrivial despite the

fact that the tetrad is nonaccelerating and nonrotating.
Nevertheless, since in the limit of the large radius we
have the leading behavior ~H0̂ ffi r�2, the total energy is

obviously zero for this coframe:

P0̂ ¼
Z

~H0̂ ¼ 0: (5.34)
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This result again originates from the contribution of the
essentially noninertial behavior of the reference system.

D. Kerr metric: Covariant treatment of the freely
falling frame

As in the Schwarzschild case, the situation can be im-
proved if the reanalyze the same problem in the covariant
teleparallel framework. In this case we start with the origi-
nal coframe (5.1) and the corresponding regularizing tele-
parallel connection (4.5), and construct for the final

coframe #
f
� the corresponding Weitzenböck connection

from the transformation law (2.10):

�
f

�
� ¼ ð�

f �1Þ����
��
f
�
� þ�

f
�
�dð�

f �1Þ��; (5.35)

where �
f
�
� ¼ ð�4Þ��ð�3Þ��ð�2Þ��ð�1Þ��.

The Weitzenböck torsion for the final pair of fields

ð#
f
�;�

f

�
�Þ is much more complicated than that of the

Schwarzschild metric. Nevertheless, it is straightforward
to substitute it in (2.13) and (3.5) and to get the super-
potential

H0̂ ¼
2mþ ð3m2 þ a2 � 3

2a
2sin2�Þ=rþOð1=r2Þ

	

� sin�d� ^ d’þ . . . : (5.36)

The total energy is thus P0̂ ¼
R
H0̂ ¼ M, as before. We see

again that the end result is neither infinity nor zero. The
teleparallel connection (5.35) has automatically regular-
ized the energy for the Kerr solution in the same way it
worked for the Schwarzschild case. Namely, the contribu-
tion due to the noninertial motion of the generalized

‘‘freely falling’’ reference system (in which gravity is
locally eliminated) is again correctly subtracted and the
physically meaningful value for the total energy of the
source is again recovered.

VI. DISCUSSION AND CONCLUSION

Although equivalent to general relativity, teleparallel
gravity has several conceptual differences with respect to
general relativity. One of these differences is that the
Weitzenböck connection represents only inertial effects
related to the frame. As a consequence of this property,
one can separate gravitation from inertial effects. It be-
comes then possible to write down a tensorial expression
for the energy-momentum density of gravity. Because of
the fact that the frame-related inertial contribution to the
conserved quantities is always properly subtracted by the
Weitzenböck connection, the covariant teleparallel ap-
proach naturally yields regularized solutions for the energy
and momentum.
As a test of the regularizing property of teleparallelism,

we have considered in this paper two concrete examples:
the Schwarzschild and Kerr solutions. For these two im-
portant cases, we have computed the total energy for differ-
ent frames, and have shown that the covariant teleparallel
approach always yields the physically correct result. We
can thus say that the Weitzenböck connection acts as a
regularizing tool which separates the inertial energy-
momentum density, leaving the tensorial, physical
energy-momentum density of the system untouched.
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