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Unparticle degrees of freedom, no matter how weakly coupled to the standard model particles, must

affect the evolution of a black hole, which thermally decays into all available degrees of freedom. We

develop a method for calculating the grey-body factors for scalar unparticles for 3þ 1 and higher

dimensional black holes. We find that the power emitted in unparticles may be quite different from the

power emitted in ordinary particles. Depending on the parameters in the model, unparticles may become

the dominant channel. This is of special interest for small primordial black holes and also in models with

low scale quantum gravity where the experimental signature may significantly be affected. We also

discuss the sensitivity of the results on the (currently unknown) unparticle normalization.
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I. INTRODUCTION

There are many reasons to believe that interesting phys-
ics exists between the electroweak energy scale (� TeV)
and the Planck energy scale (� 1019 GeV). Esthetic prob-
lem of the huge desert between the scales, the standard
model hierarchy problem, unification of gauge couplings
etc., all require new physics between these two scales.
Many interesting models which accommodate new physics
have been proposed. In the most recent development, the
existence of a new scale invariant sector very weakly
coupled to the standard model was postulated [1–3]. The
fundamental energy scale,MF, of this sector is perhaps far
beyond the reach of today’s or near future accelerators.
However, the existence of such a sector may affect low
energy phenomenology. The effective low energy field
theory which describes these effects is often called unpar-
ticle physics since these new degrees of freedom would not
behave as ordinary particles. For example, their scaling
dimension does not have to be an integer or half an integer.
Because of the scale invariance, the fundamental particles
are massless. An unparticle is a composite state of the
fundamental massless particles, and couples to the stan-
dard model particles through a heavy mediator. This heavy
mediator has a mass of the order ofMF. Thus, interactions
between the unparticles and the standard model particles is
suppressed by powers of MF. The energy scale at which
unparticle physics is manifest is �u. At energies above �u,
physics is more appropriately described in terms of funda-
mental particles rather than unparticles. The scale �u of a
‘‘phase transition’’ in some sufficiently decoupled hidden
sector could be high or low. The presence of the standard
model Higgs sector perhaps indicates that scale invariance
is violated (at least for scalar unparticle degrees of free-
dom) below the electroweak scale and the unparticle be-
havior cannot arise below Oð100Þ GeV.

Unparticles have many odd characteristics [2]. One of
them is the continuous mass [4]. This fact increases the
effective number of species of unparticles. Although the

interaction between unparticles and the standard model
particles is supposed to be weak, the number of species
may overcome the suppression and the total effect can be
large. A lot of work [5–13] recently focused on the new
collider signals for unparticle physics. The unparticles
could also play the role in the early universe [14–18], are
a possible dark matter candidate [19,20], and can play the
role of the quintessence dark energy field [21]. A tensor
unparticle mode can modify Einstein’s gravity [22], in a
way to increase the cross section of black hole production
in high energy collisions [23] or produce large density
fluctuations. This in turn can increase the density of pri-
mordial black holes. For earlier work on black hole evapo-
ration of composite degrees freedom see [24].
Finally, these new degrees of freedom can also change

the power spectrum and lifetime of black holes. Black hole
radiation is (approximately [25]) thermal, which means
that all available degrees of freedom are emitted.
Suppressed interactions with the standard model particles
play no role in this case, since gravity is blind to this
suppression. Thus, black hole radiation will be modified,
which in turn has the potential to put new constraints on the
unparticle parameter space.
Here, we will focus on the Hawking radiation of the

scalar unparticle. Because of the peculiar properties of
unparticles (e.g. continuous mass), we have to modify the
standard procedure for calculating gray-body factors. We
will achieve this in two steps. In the first step, we will adapt
the method of including the mass of the field in gray-body
factor calculations. Usually, for simplicity, the gray-body
factors are calculated for massless fields. This approxima-
tion is valid for small black holes whose temperature is
much larger than the mass of the field, or in the last stages
of evaporation of large black holes. For any other purpose,
the mass of the field cannot be neglected. This is especially
true in the case of unparticles where the effective unpar-
ticle mass changes continuously. In the second step, we
will introduce the mass spectral density of unparticles and
integrate over all of the possible degrees of freedom. The
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results indicate that the power spectrum strongly depends
on the scaling dimension du and unparticle energy scale.
Since most of the unparticle degrees of freedom are light
(with the mass concentrated around zero) a black hole of
any size easily emits them. This is also true for any other
massless scalar particle. The question is then in which
regime the emitted unparticle spectrum is different from
the standard scalar field spectrum. We find that power
emitted in unparticles and ordinary particles is different
in almost all frequency regimes. We note here that our
calculations are valid only as long as one can treat unpar-
ticles as fundamental degrees of freedom. At the very last
stages of evaporation, when the black hole temperature is
higher than the unparticle phase transition scale �u, the
effective unparticle description fails and we need a full
fundamental theory.

II. THE MODEL FOR HAWKING RADIATION OF
UNPARTICLES

We consider a spherically symmetric black hole. The
metric is written as

ds2 ¼ �FðrÞdt2 þ 1

FðrÞ dr
2 þ r2d�: (1)

For a Schwarzschild black hole in a 3þ 1 dimensional
space-time we have FðrÞ ¼ 1� rg=r, where the gravita-

tional radius is rg ¼ 2GM=c2. The parameter M is the

mass of the black hole, G is Newton’s gravitational con-
stant and c is speed of light.

We treat an unparticle as an effective massive scalar
field. We will adapt the treatment of the massive scalar
field from [26,27]. The wave function of a scalar field with
the mass � satisfies the Klein-Gordon equation

h� ¼ �2�: (2)

We assume that the variables can be separated as � ¼
e�i!tRðrÞ�ð�;�Þ. The radial equation can then be written
as

1

r2
@r½Fr2@rRðrÞ� þ

�
!2

F
� lðlþ 1Þ

r2

�
RðrÞ ¼ �2RðrÞ: (3)

Here, lðlþ 1Þ is the eigenvalue of the angular equation. We
follow the standard procedure for calculating gray-body
factors and study the solutions to the radial equation in two
limits, i.e. near the gravitational radius and at infinity.
These solutions are

r ! rg: R
ðr¼rgÞ ¼ A

ðr¼rgÞ
in e�i!r� þ A

ðr¼rgÞ
out ei!r� (4)

r ! 1: Rðr¼1Þ ¼ Aðr¼1Þ
in e�i!1r þ Aðr¼1Þ

out ei!1r: (5)

Here, !1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 ��2

p
. r� is a ‘‘tortoise’’ coordinate de-

fined by the solution to the equation dr� ¼ dr=F. We

choose the boundary condition A
ðr¼rgÞ
out ¼ 0 to ensure that

near the horizon (i.e. gravitational radius) the solution is
purely ingoing. We then numerically integrate Eq. (3)
using the fourth-order Runge-Kutta method. From the
solution, we can calculate the absorption ratio as

j ~Al;mj2 ¼ 1�
��������
Aðr¼1Þ
out

Aðr¼1Þ
in

��������
2

: (6)

The power spectrum of the Hawking radiation is then
written as

d2E�

dtd!
¼ X

l;m

!

e!=Th � 1

Nl;mj ~Al;mj2
2�

: (7)

The multiplicity of states is Nl;m ¼ 2lþ 1.
So far, we have not included the specific properties of

unparticles. We will do so in what follows.
First we will define the mass spectral density (or mass

distribution) �ð�Þ for unparticles. Since precise details of
unparticle physics are not known, there will be ambiguity
in normalization.
For an unparticle with the scaling dimension du the mass

spectral density with the general normalization is

�ð�Þ ¼ Adu�
2ðdu�2Þ

�2ðdu�1Þ
u

; (8)

where the constant �u is inserted for dimensional reasons,
and is in general arbitrary. Another arbitrary constant that
depends only on du is Adu , which, depending on conven-

tion, may be absorbed into�u. We denote with �u the scale
of the phase transition below which unparticles appear. If
we wish to normalize the unparticle degrees of freedom to
unity, then we impose

Z �2
u

0
�ð�Þd�2 ¼ 1; (9)

which will be fulfilled for �u ¼ �u and

�ð�Þ ¼ ðdu � 1Þ�2ðdu�2Þ

�2ðdu�1Þ
u

: (10)

The limit of du ! 1 is singular so du must obey the strict
inequality du > 1. The unit normalization is convenient
because in the limit of du ! 1 the distribution in
Eq. (10) becomes the Dirac delta function �ð�Þ and it
reduces to the normalization of a single massless scalar
field. However, this is very limiting since the exact unpar-
ticle combinatorics is currently unknown. Instead, the gen-
eral normalization in Eq. (8) (with Adu absorbed into �u)

gives

N ¼
Z �2

u

0
�ð�Þd�2 ¼ 1

du � 1

�
�u

�u

�
2ðdu�1Þ

; (11)

where N is the total number of unparticle degrees of free-
dom. Clearly, N can be very large in the limit of du ! 1.
Since N is currently unknown, we believe that the general
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normalization is more appropriate than the unit normaliza-
tion. However, here we will compare results with both
normalizations.

An unparticle mass cannot be greater than the scale of
the phase transition �u, above which the effective unpar-
ticle description is not valid. This means that for the unit
normalization, an unparticle mass cannot be greater than
�u, since �u ¼ �u. However, for the general normaliza-
tion whereN can be large, from Eq. (11) we see that for the
fixed du, �u � �u, so unparticle mass can be much greater
than �u.

Obviously, the mass distribution of unparticles, depends
on the scaling dimension du and the normalization scale
�u in a nontrivial way. To get some intuition for the case of
the general normalization, in Fig. 1 we plot the mass
distribution �ð�Þ for three different values of du. For
convenience, � is measured in units of ��2

u while � is
measured in units of�u. [Alternatively, we could make the
plots while keeping�u fixed.] Figure 1 indicates that as the
value of the scaling dimension decreases, the distribution is
skewed toward lighter unparticles. This means that for
smaller du, there are more lighter unparticle degrees of
freedom.

In Fig. 2, we also plot the mass distribution �ð�Þ for
three different values of �u, while we keep du fixed, again
for the case of the general normalization. We see that for
smaller �u there are more unparticle degrees of freedom.
Since in this case �u � �u, we can plot the curves up to
the energy values much higher than �u, which will not be
the case for the unit normalization.

We now study the case of the unit normalization.
Figure 3 shows the mass spectra for the three characteristic

pairs of values: du ¼ 1:1, �u ¼ 1 TeV solid line, du ¼
1:1, �u ¼ 2 TeV dashed line, and du ¼ 1:5, �u ¼ 1 TeV
dotted line. The qualitative situation is the same as in the
case of the general normalization. As the value of the
scaling dimension decreases, the distribution is skewed
toward lighter unparticles. However, since in this case
�u ¼ �u, we can plot the curves only up to the energy
values of �u.
Since unparticles have effectively continuous mass, a

mass of an unparticle with energy ! takes all the values
from 0 to !. Therefore, we need to integrate over all the

FIG. 1. The case of the general normalization (many unparticle
degrees of freedom). The figure shows the mass distribution
�ð�Þ of unparticles for the fixed normalization scale �u. For
convenience, � is measured in units of ��2

u while � is measured
in units of�u. Since the scaling dimension du can take the values
between 1 and 2, we plot the three characteristic values: du ¼
1:1 solid line, du ¼ 1:5 dashed line, and du ¼ 1:9 dotted line. As
the value of the scaling dimension decreases, the distribution is
skewed toward lighter unparticles.

FIG. 2. The case of the general normalization (many unparticle
degrees of freedom). The figure shows the mass distribution
�ð�Þ of unparticles for the fixed du ¼ 1:5. We plot the distri-
bution for several values of �u: �u ¼ 1 TeV solid line, �u ¼
2 TeV dashed line, and �u ¼ 5 TeV dotted line. As the value of
�u decreases, there are more unparticle degrees of freedom (for
a fixed du).

FIG. 3. The case of the unit normalization (a single unparticle
degree of freedom). The figure shows the mass distribution �ð�Þ
for the three characteristic pairs of values: du ¼ 1:1, �u ¼
1 TeV solid line, du ¼ 1:1, �u ¼ 2 TeV dashed line, and du ¼
1:5, �u ¼ 1 TeV dotted line. As the value of the scaling dimen-
sion decreases, the distribution is skewed toward lighter unpar-
ticles. In this case unparticles cannot be heavier than �u, so the
distribution stops there.
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possibilities. Thus, the power spectrum must be written as

d2E

dtd!
¼

Z !2

0
�ð�Þ d

2E�

dtd!
d�2; (12)

where E� is given by Eq. (7). Equation (12) is then

integrated numerically.

III. RESULTS

A. 3þ 1 dimensional black holes

In Fig. 4 we plot the power spectrum obtained by
integrating Eq. (12) for the case of the general normaliza-
tion given in Eq. (11). The particular value of the black
hole mass is chosen to be 1012 g and the scale �u ¼
1 TeV. Since the scaling dimension du can take the values
between 1 and 2, in order to cover the whole parameter
space we plot the three characteristic values: du ¼ 1:1with
the solid line, du ¼ 1:5 with the dashed line, and du ¼ 1:9
with the dotted line. For comparison, we also plotted the
power spectrum of the regular scalar field with the dash-dot
line. Obviously, scalar unparticle spectrum can clearly be
different from the ordinary scalar particle spectrum, and
unparticles can easily out power ordinary particles. The
power emitted in unparticles grows as the scaling dimen-
sions gets closer to du ¼ 1, and at a certain point exceeds
the power emitted in ordinary scalar particle. For these
values, the black hole Hawking radiation is dominated by
unparticles. For example, the emitted unparticle power for
du ¼ 1:1 is about 10 times greater than power emitted in
ordinary scalar field. This effect may significantly shorten
the expected lifetime of a black hole.

The fact that unparticle power grows as the scaling
dimension goes down may be explained by observing
that lower scaling dimensions imply lighter unparticles,
which are, in turn, more easily emitted by a black hole at a
given temperature.
From Fig. 4 we also see that most of the power is emitted

at frequencies close to !� r�1
g , where rg is the gravita-

tional radius of the black hole. [For the chosen black hole
of 1012 g, we have r�1

g � 50 GeV.] This feature is ex-

pected since the peak of emitted power is determined by
the temperature of the black hole which roughly goes as
r�1
g .

In Fig. 5 we plot the Hawking radiation power spectra of
unparticles for several values of�u and fixed du ¼ 1:5, for
the case of the general normalization given in Eq. (11). As
the value of �u goes down, the emitted power in unpar-
ticles goes up. The reason is that for smaller �u, there are
more unparticle degrees of freedom at a given energy (i.e.
temperature of the black hole), as can be seen from Fig. 2.
For comparison, we plot the regular scalar field with the
dash-dot line. Again, scalar unparticle spectrum can clearly
be different from the ordinary scalar particle spectrum.
It is worth noting that, in the limit if du ! 1, we do not

recover the standard scalar field result, which is a direct
consequence of the form of the general normalization in
Eq. (11) which implies that in the limit of du ! 1 we have
many scalar unparticle degrees of freedom. However, with
the choice of the unit normalization in Eq. (10), � does
reduce to the Dirac delta function in du ! 1 limit and the
total number of unparticle degrees of freedom becomes 1
(a single massless scalar field). This implies that in du ! 1

FIG. 4. The Hawking radiation power spectra of unparticles
with the fixed value of �u (general normalization). The mass of
the black hole is 1012 g and the unparticle energy scale is �u ¼
1 TeV. Since the scaling dimension du can take the values
between 1 and 2, we plot the three characteristic values: du ¼
1:1 dashed line, du ¼ 1:5 dotted line and du ¼ 1:9 dash-dot line.
For comparison, we plot the regular scalar field with the solid
line. Scalar unparticle spectrum can clearly be different from the
ordinary scalar particle spectrum.

FIG. 5. The Hawking radiation power spectra of unparticles
for several values of �u and fixed du ¼ 1:5 (general normaliza-
tion). The mass of the black hole is 1012 g. We plot �u ¼ 1 TeV
dashed line, �u ¼ 2 TeV dotted line, and �u ¼ 5 TeV dash-dot
line. The emitted power in unparticles is larger for smaller �u

since then we have more unparticle degrees of freedom at a given
energy. For comparison, we plot the regular scalar field with the
solid line. Again, scalar unparticle spectrum can clearly be
different from the ordinary scalar particle spectrum.
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limit of the unit normalization we should recover the
Hawking radiation spectrum for an ordinary massless sca-
lar field.

In Fig. 6 we plot the power spectrum obtained by
integrating Eq. (12) for unparticles with the unit normal-
ization given in Eq. (10). The particular value of the black
hole mass is chosen to be the same as in Fig. 4. Here we
make plots with the fixed �u and several values of du. As
indicated in the previous paragraph, as du is getting closer
to 1, the spectra become closer to those for the standard
massless scalar field. With this normalization, unparticles
cannot out power ordinary particles.

In Fig. 7 we plot the power spectrum for unparticles with
the unit normalization, with the fixed du ¼ 1:5 and several
values of�u. The particular value of the black hole mass is
chosen to be the same as for the other plots. The qualitative
features are similar as in the general normalization. The
emitted power in unparticles is larger for smaller �u since
the mass distribution �ð�Þ gives higher probability for a
lighter unparticle.

B. Higher dimensional black holes

Small black holes whose Hawking radiation may in
principle be tested are of great interest in theories with
TeV scale gravity with extra dimensions. With an inception
of the LHC it is very important to study eventual experi-
mental signature of mini black hole production and their
subsequent evaporation. A lot of work has been done on
this topic [28–32], including building very comprehensive

black hole event generators [33], however, no unparticle
signature has been studied so far.
Calculation of gray-body factors for the higher dimen-

sional black holes closely follows the method we devel-
oped for 3þ 1 dimensions. The only change is in the
metric (1). The term FðrÞ is now

FðrÞ ¼ 1�
�
rðnÞg

r

�
1þn

; (13)

where rðnÞg is higher dimensional gravitational radius, while
n is the number of extra dimensions. In Fig. 8 we plot the
power spectrum obtained by integrating Eq. (12). The
particular value of the black hole mass is chosen to be
5 TeV, the number of extra dimensions is n ¼ 3, while the
higher dimensional Planck mass is 1 TeV. We also set
�u ¼ 1 TeV and du ¼ 1:1.
It is natural to expect that interesting effects happen if

�u (and therefore �u) is not much different than higher
dimensional Planck scale. Indeed, for the set of parameters
we chose here, the power emitted in scalar unparticles is
about 10 times larger than the power emitted in the ordi-
nary massless scalar field. Qualitative features remain the
same as in 3þ 1 dimensional case, i.e. the unparticle
effects become more prominent as �u is getting smaller.
Unparticle effects are also enhanced as du is getting closer
to 1 in the case of the general normalization since there are
many unparticle degrees of freedom with that normaliza-
tion. For the unit normalization, the unparticle spectrum
approaches the standard one as du is getting closer to 1.
Thus, the unparticle sector can significantly modify experi-

FIG. 6. The Hawking radiation power spectra of unparticles
with the fixed �u (unit normalization). The mass of the black
hole is 1012 g and the unparticle energy scale is �u ¼ 1 TeV.
Since the scaling dimension du can take the values between 1
and 2, we plot the three characteristic values: du ¼ 1:1 dashed
line, du ¼ 1:5 dotted line, and du ¼ 1:9 dash-dot line. For
comparison, we plot the regular scalar field with the dash-dot
line. Scalar unparticle spectrum can clearly be different from the
ordinary scalar particle spectrum. As du is approaching 1, the
unparticle spectrum approaches that of a single massless scalar
field.

FIG. 7. The Hawking radiation power spectra of unparticles
for several values of �u and fixed du ¼ 1:5 (unit normalization).
The mass of the black hole is 1012 g. We plot �u ¼ 1 TeV
dashed line, �u ¼ 2 TeV dotted line, and �u ¼ 5 TeV dash-dot
line. The emitted power in unparticles is larger for smaller �u

since the mass distribution �ð�Þ gives higher probability for a
lighter unparticle. For comparison, we plot the regular massless
scalar field with the solid line. Again, scalar unparticle spectrum
can clearly be different from the ordinary scalar particle spec-
trum.
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mental signature of mini black holes production at the
LHC. Because of the very weak interactions between the
standard model particles and unparticles, most of the emit-
ted energy might go into the hidden sector. This implies a
large percentage of missing energy in high energy colli-
sions, especially in the case of the general unparticle
normalization.

IV. CONCLUSIONS

We studied the consequences of an eventual existence of
unparticle degrees of freedom for the black hole Hawking
radiation. The unparticle sector is characterized with sev-
eral quantities. The fundamental energy scale of the new
scale invariant sector is MF. This scale is supposedly high
above energies accessible in colliders. However, its effects
may be observed as unparticles. The scale of the phase
transition above which the effective unparticle description
is not valid is �u, the characteristic (normalization) scale of
unparticle degrees of freedom is �u (with the hierarchy
�u � �u <MF). The scaling dimension of unparticles is

du with the property 1< du � 2. Another peculiar prop-
erty of the unparticle degrees of freedom is that their mass
is continuous.
We developed a method for calculating the gray-body

factors for the scalar unparticle mode emitted by 3þ 1
dimensional and higher dimensional black holes. Our re-
sults shows that the unparticle spectra are very different
from the spectra of ordinary particles. In general, the power
emitted in unparticles grows as the value of the scaling
dimension du gets closer to 1 (in the case of the general
normalization). The power is also larger for smaller values
of �u, regardless of the particular normalization. In the
first case the mass distribution of unparticles is shifted
toward smaller values, which implies that there are more
lighter unparticle degrees of freedom. Similarly, in the
second case, the mass distribution �ð�Þ gives higher
probability for a lighter unparticle. A black hole at a given
temperature emits all of the degrees of freedom which are
lighter than its temperature, which explains the du and �u

dependence of the Hawking radiation.
We compared the power emitted in unparticles with the

power emitted in ordinary scalar field particles and found
that the unparticle power may be larger by many orders of
magnitude for both 3þ 1 dimensional and higher dimen-
sional black holes. This may significantly affect the black
hole lifetime, which in turn can modify the phenomenol-
ogy of primordial black holes. Unfortunately, it is difficult
to obtain an exact quantitative result without studying the
grey-body factors for all of the unparticle degrees of free-
dom (e.g. vector, tensor, etc.).
In the context of TeV scale gravity models with extra

dimensions, a dominant unparticle emission may signifi-
cantly modify the collider signature of mini black hole
production. In particular, unparticles imply a large percent-
age of missing energy in high energy collisions.
Finally, we pointed out that some results are sensitive to

the choice of the normalization factors for unparticles. At
this point, exact combinatoric factors for unparticles are
unknown, and the choice of normalization is purely
conventional.
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